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Abstract In this article, we present a series of fixed point results of the
Ishikawa iterative algorithm and the SP iterative algorithm in graphical convex
metric spaces. First, we introduce the Ishikawa sequence and the SP sequence
in the above space. Furthermore, we study the existence and uniqueness of
fixed points for set-valued G-contractions in graphical convex metric spaces.
Finally, by providing an example, we demonstrate the hypotheses of the ex-
istence theorem of fixed points for set-valued G-contractions in G-complete
graphical convex metric spaces are sufficient but not necessary.
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1. Introduction

The fixed point theory has always been a crucial branch of functional analysis,
which occupies a crucial position in the field of mathematics. Besides, it is also
an important component of nonlinear functional analysis, which is closely related
to many branches of modern mathematics. Especially, it plays an important role
in establishing the existence and uniqueness of solutions to various equations. The
fixed point theory can be applied to many fields, namely variational inequalities,
initial and boundary value problems of differential equations, financial mathemat-
ics, biology, computer science, physics and other fields. For example, in 2022, Zoto
et al. [46] certified the existence and uniqueness of solutions for a class of nonlin-
ear integral equations. In 2023, Younis et al. [38] demonstrated the existence of a
solution to a fourth-order two-point boundary value problem for elastic beam de-
formations by using the fixed point results studied. In 2023, Mani et al. [17] used
fixed point theory to solve the integral equation and fractional differential equation.
The research on it not only helps to solve the theoretical problems, but also helps
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to solve some practical application problems. In recent years, the fixed point theory
has been widely developed [30]. Among them, Banach’s fixed point theorem is of
great significance in solving many nonlinear analysis problems and other mathe-
matical fields [5–7, 18, 19, 27]. Since Banach’s fixed point theorem was presented,
fixed point problems have attracted the attention of many scholars at home and
abroad. Later, they also proposed a series of generalized concepts of contractive
mappings and fixed point theorems on this basis. In [21], Nadler extended Banach’s
fixed point theorem to the case of set-valued mappings, which led many researchers
to study fixed point problems of set-valued mappings [23–25,28,39].

Mann iterative algorithm, Ishikawa iterative algorithm, and Halpern iterative
algorithm are the basic iterative algorithms for solving fixed point problems of
nonexpansive mappings. In recent years, a great deal of researchers constructed
many different algorithms to approach fixed points of different types of nonlinear
mappings, such as SP iteration [26], Normal-S iteration [31], Agarwal iteration [1]
and so on. On the one hand, iterative algorithms can be chosen to approach the
fixed points for nonexpansive mappings. On the other hand, iterative algorithms
can also be used to solve the existence of solutions of some equations related to
fixed point problems [32]. Recently, there have been some new developments in
iterative algorithms. In [3], a new high-order and efficient iterative technique was
constructed to solve a system of nonlinear equations. Garodia and Uddin [13]
constructed a new iterative algorithm, and showed that the convergent rate of the
new iterative algorithm is faster than many existing iterative algorithms by giving
an example. Furthermore, they used the proposed algorithm to find a solution of a
delay differential equation and prove that the sequence generated by the proposed
algorithm converges to this solution. Yuanheng Wang et al. [37] proposed a new
hybrid relaxed iterative algorithm to solve the fixed point problem and the split
feasibility problem involving demicontractive mappings.

In 2008, Jachymski [16] introduced the concepts of graphical metric spaces,
popularizing some important fixed point theorems. Later, some researchers in the
study of fixed point theorems combined with graph theory [8,15,20,40–45]. In recent
work, there have been some new developments in the combination of fixed point
theory and graph theory. For example, Ahmad, Younis and Abdou [2] developed a
new space—graphical bipolar b-metric space. Monica-felicia, Liliana and Gabriela
[4] gave some existence and stability results for cyclic graphical contractions in
complete metric spaces. Shukla, Dubey and Shukla [32] proposed the notions of
graphical cone metric spaces on Banach algebra. In addition, they proved some
fixed point results of a class of special contractive mappings which are defined on
this kind of spaces.

In [22], the concept of the set-valued mapping was extended to graphical metric
spaces. In 2013, a more general definition of the set-valued contractive mapping
was given in the above mentioned space by Dinevari and Frigon [11].

A natural generalization of the Banach contractive mapping is the nonexpansive
mapping. In 1970, the concepts of convex structures and convex metric spaces
were proposed by Takahashi [36]. And he also gave the fixed point theorems of
nonexpansive mappings in convex metric spaces. Besides, Goebel and Kirk [14]
researched some iterative procedures of nonexpansive mappings in hyperbolic metric
spaces in 1983. Nonexpansive iterations were proposed in hyperbolic metric spaces
by Reich and Shafrir [29] in 1990. Actually, the Picard iterative algorithm has been
widely used to study different kinds of fixed point theorems in graphical metric
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spaces. But because the graphical structure itself does not have a linear structure,
the graphical metric spaces are more complex than the general metric spaces. So
other iterative algorithms are difficult to be directly generalized to this space.

Based on the above related research, in this article, we present a series of fixed
point results of the Ishikawa iterative algorithm and the SP iterative algorithm in
graphical convex metric spaces. And the structure of the article is as shown below:
Section 1 mainly introduces the history and research status of fixed point theory
and iterative algorithms. And set-valued contractions and graphical convex metric
spaces are introduced step by step. Section 2 introduces some elementary notations,
concepts and results. Section 3 proposes the Ishikawa iterative algorithm. Further-
more, some results of fixed points theorems of the Ishikawa iterative algorithm for
set-valued G-contractions are given in G-complete graphical convex metric spaces.
And by providing an example, we demonstrate the hypotheses of the existence the-
orem of fixed points for set-valued G-contractions in the above space are sufficient
but not necessary. Section 4 proposes the SP iterative algorithm. Likewise, we also
give the fixed point results of the SP iterative algorithm.

2. Preliminaries

First of all, we enunciate some elementary notations, concepts and basic results
which are helpful for this article.

Let the set of positive integers be represented by Z+. And in the following study,
we presume that the graph G = (Ω(G),Ξ(G)) does not have parallel edges. Among
them, Ω(G) represents a set containing all vertices and Ξ(G) represents a binary
relation on Ω(G), where the elements in Ξ(G) are said to be edges. We can say
G is a directed graph when every edge of it has a direction. On the contrary, an
undirected graph is every edge of G has no direction.

By reversing the direction of edges of a graph G, we can obtain the inverse of a
directed graph G, which is denoted by G−1. Therefore, we have

Ξ(G−1) = {(f, h) ∈M ×M : (h, f) ∈ Ξ(G)}.

We let a directed graph with symmetrical edges be denoted by Ĝ. And it is
defined as follows:

Ξ(Ĝ) = Ξ(G) ∪ Ξ(G−1),

so we can see that Ĝ is symmetrical. If all loops are contained in Ξ(G), for every
f ∈ Ω(G), there is (f, f) ∈ Ξ(G), then the directed graph G is called reflexive.
Furthermore, if the following condition is satisfied,

(f, h) ∈ Ξ(G), (h, s) ∈ Ξ(G) =⇒ (f, s) ∈ Ξ(G),

for all f, h, s ∈ Ξ(G), then G is said to be transitive.
Moreover, if the each edge of G is allocated by the distance between its edges,

then G can be viewed as a graph with weights assigned to it. And in this paper, we
presume the directed graph G is symmetric, reflexive and transitive.

Definition 2.1. [42] Let m,n ∈ Ω(G). A path (or directed path) of length h ∈
Z+ between m and n in G is defined as a sequence {fk}hk=0 of vertices with m = f0,
n = fh and (fk−1, fk) ∈ Ξ(G) for k = 1, 2, ..., h.
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In [42], they also defined

[m]
h
G = {n ∈ Ω(G) : there exists a path directing from m to n having length h}.

Definition 2.2. [42] There is a relation R on Ω(G) satisfing (mRn)G if there is
a path directing from m to n in G and ζ ∈ (mRn)G if ζ is contained in (mRn)G.
For all i ∈ Z+, if {fi} satisfies (fiRfi+1)G, then the sequence {fi} ∈ Ω(G) is called
G-termwise connected (G− TWC).

Definition 2.3. [33] Let d : Ω(G) × Ω(G) −→ [0,∞) be a mapping and G be a
graph, if

(i) d(m,n) = 0 ⇐⇒ m = n for all m, n ∈ Ω(G),
(ii) d(m,n) = d(n,m) for all m, n ∈ Ω(G),
(iii) for (mRn)G, ζ ∈ (mRn)G, we have d(m,n) ≤ d(m, ζ) + d(ζ, n), where m,

n, ζ ∈ Ω(G).
Then we can say the space (G, d) is a graphical metric space.

Definition 2.4. [42] In a graphical metric space (G, d), a sequence {fi} is called:
(i) a convergent sequence ⇐⇒ there is a ∈ G making limi−→∞ d(fi, a) = 0

hold,
(ii) a Cauchy sequence ⇐⇒ limi,j−→∞ d(fi, fj) = 0. Namely, for any ϵ > 0,

there is i0 ∈ Z+ making d(fi, fj) < ϵ hold for all j, i > i0.

Definition 2.5. [42] If every G−TWC Cauchy sequence converges in G, then we
can say the (G, d) is G-complete.

Definition 2.6. [34] Choose a graphical metric space (G, d). Besides, we also
select two sets D, E ⊂ Ω(G). Then by:

(i) If D and E contain an edge, then (D,E) ⊂ Ξ(G) for some u ∈ D and v ∈ E,
(ii) If D and E contain a path, then there exists a path between some u ∈ D

and v ∈ E.
Moreover, we mean DRE by the relation R if and only if there exists a path

between two sets D and E. In addition, if the relation R on Ω(G) satisfies the
following:

DRE,ERF =⇒ DRF,

then R is said to be transitive.

Definition 2.7. [35] Let Ψ be a set of all nonempty closed sets on a sphere V .
For any X,Y ∈ Ψ , let

H(X,Y ) = inf{ν;X ⊂ Yν , Y ⊂ Xν}.

Then H(., .) defines a distance called Hausdorff distance. And we say (Ψ,H) is
a Hausdorff metric space.

Definition 2.8. [9] Let (M,d) be a metric space. Then we can say Γ: M →
2M \ {∅} is a set-valued contractive mapping when there is κ ∈ (0, 1) such that

H(Γ(f),Γ(h)) ≤ κd(f, h), f, h ∈M,

where H(X,Y ) represents the Hausdorff distance between two elements X and Y .

Definition 2.9. [22] Define a set-valued mapping Γ on (G, d), where (G, d) is a
graphical metric space. If

(i) there is κ ∈ (0, 1) making H(Γ(f),Γ(h)) ≤ κd(f, h) hold for all (f, h) ∈ Ξ(G),
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(ii) there is κ ∈ (0, 1) making d(m,n) ≤ κd(f, h) hold for each (f, h) ∈ Ξ(G),
m ∈ Γ(f) and n ∈ Γ(h), one has (m,n) ∈ Ξ(G).

Then we can say Γ is a set-valued contraction in (G, d).

Definition 2.10. [11] Define a set-valued mapping Γ on (G, d), where (G, d) is a
graphical metric space. Then the mapping Γ is said to be a G-contraction if there
is κ ∈ (0, 1) such that for all (f, h) ∈ Ξ(G) and m ∈ Γ(f), there is n ∈ Γ(h) such
that

(m,n) ∈ Ξ(G) and d(m,n) ≤ κd(f, h). (2.1)

Remark 2.1. [8] From the above definition, we can acquire that

H(Γ(f),Γ(h)) ≤ κd(f, h)

holds for all (f, h) ∈ Ξ(G).

Definition 2.11. [36] Let (M,d) be a metric space and U = [0, 1]. A mapping
W : M ×M × U → M is called the convex structure on M if for each τ ∈ M and
(f, h;ϕ) ∈M ×M × U ,

d(τ,W (f, h;ϕ)) ≤ ϕd(τ, f) + (1− ϕ)d(τ, h).

Then we can say (M,d,W ) is a convex metric space.

Definition 2.12. [42] If for any G − TWC sequence {xm} which converges to
some a ∈ Ω(G), and there is m0 ∈ Z+ such that (xm, a) ∈ Ξ(G) for any m ≥ m0,
then we can say the property (P) holds on (G, d).

Definition 2.13. [8] Let (G, d) be a graphical metric space and U = [0, 1]. If a
mapping W : Ω(G)× Ω(G)× U → Ω(G) satisfies

d(τ,W (f, h;σ)) ≤ (1− σ)d(τ, f) + σd(τ, h), (2.2)

for all f , h, τ ∈ Ω(G) and σ ∈ (0, 1), then we can say (G, d,W ) is a graphical convex
metric space. And in the following discussion, we will use GCMS to represent this
space.

Meanwhile, a set is defined as follows:

L(Ω(G)) = {ℓ ⊆ Ω(G) : ℓ is a closed subset of Ω(G)}.

Definition 2.14. [8] If for any (f, s) ∈ Ξ(G) and h =W (f, s;σ), we have (f, h) ∈
Ξ(G) and (h, s) ∈ Ξ(G), then we can say the property (Q) holds on (G, d,W ).

Then, by introducing the concepts of Γ-Ishikawa sequence and Γ-SP sequence,
the Ishikawa iterative algorithm and the SP iterative algorithm of set-valued map-
pings are extended to a graphical metric space.

3. Fixed point theorems of Γ-Ishikawa sequences

First of all, in [8], an example is given to prove that the property (P) and the
property (Q) are both satisfied in a G-complete GCMS.

Next, the fixed point theorems of Γ-Ishikawa sequences will be given in the above
mentioned space.
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Definition 3.1. Suppose Γ: Ω(G) → L(Ω(G)) is a set-valued mapping on aGCMS.
Presume f0 ∈ Ω(G) is the initial value. Then {fn} is said to be a Γ-Ishikawa se-
quence if it satisfies {

hn =W (fn, sn; en),

fn+1 =W (fn, s
′

n; ρn),
(3.1)

where sn ∈ Γfn, s
′

n ∈ Γhn, and ρn, en ∈ (0, 1).

Theorem 3.1. Let Γ: Ω(G) → L(Ω(G)) be a G-contraction mapping on G-complete
GCMS satisfying properties (P) and (Q). Suppose that {ρn} and {en} satisfy
0 < 1 − (1 − κ)(ρn + κρnen) + 2κen < 1 − θ where θ ∈ (0, 1), {ρn} and {en}
are monotonous. If

EΓ = {f ∈ Ω(G) : there is h ∈ Γf such that (f, h) ∈ Ξ(G)}

is nonempty, then the mapping Γ has a fixed point in G.

Proof. There is s0 ∈ Γf0 making (f0, s0) ∈ Ξ(G) hold for any f0 ∈ EΓ. Let
h0 = W (f0, s0; e0), according to the property (Q), we have (f0, h0) ∈ Ξ(G) and
(h0, s0) ∈ Ξ(G). From Definition 2.13, we can obtain that

d(h0, s0) = d(W (f0, s0; e0), s0) ≤ (1− e0)d(f0, s0).

Since Γ is a G-contraction and (f0, h0) ∈ Ξ(G), for s0 ∈ Γf0, there is s
′

0 ∈ Γh0
such that

(s0, s
′

0) ∈ Ξ(G)

and

d(s0, s
′

0) ≤ κd(f0, h0).

And by the transitivity of G, we can also acquire (h0, s
′

0) ∈ Ξ(G) and (f0, s
′

0) ∈
Ξ(G).

Let f1 = W (f0, s
′

0; ρ0), by using the property (Q), we have (f0, f1) ∈ Ξ(G) and
(f1, s

′

0) ∈ Ξ(G). Thanks to Definition 2.13, we can infer that

d(f0, f1) = d(f0,W (f0, s
′

0; ρ0)) ≤ ρ0d(f0, s
′

0),

and

d(f1, s
′

0) = d(W (f0, s
′

0; ρ0), s
′

0) ≤ (1− ρ0)d(f0, s
′

0).

Since (f0, f1) ∈ Ξ(G) and (f0, h0) ∈ Ξ(G), we can obtain (h0, f1) ∈ Ξ(G). And
since Γ is a G-contraction and (h0, f1) ∈ Ξ(G), for s

′

0 ∈ Γh0, there is s1 ∈ Γf1 such
that

(s
′

0, s1) ∈ Ξ(G)

and

d(s
′

0, s1) ≤ κd(h0, f1).

By using the transitivity of G, we claim (s1, f1) ∈ Ξ(G) and (s0, s1) ∈ Ξ(G).
And by induction, we can acquire sequences {fn}, {hn}, {sn} and {s′n}, where
hn = W (fn, sn; en), fn+1 = W (fn, s

′

n; ρn), sn ∈ Γfn and s
′

n ∈ Γhn. We still get
that (fn, sn) ∈ Ξ(G) and (fn, s

′

n) ∈ Ξ(G). From the property (Q), we can see that
(fn, hn) ∈ Ξ(G), (hn, sn) ∈ Ξ(G) and (fn, fn+1) ∈ Ξ(G), (fn+1, s

′

n) ∈ Ξ(G).
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Thanks to Definition 2.13, it is not hard to see

d(fn, hn) = d(fn,W (fn, sn; en)) ≤ end(fn, sn),

d(hn, sn) = d(W (fn, sn; en), sn) ≤ (1− en)d(fn, sn),

d(fn, fn+1) = d(fn,W (fn, s
′

n; ρn)) ≤ ρnd(fn, s
′

n),

d(fn+1, s
′

n) = d(W (fn, s
′

n; ρn), s
′

n) ≤ (1− ρn)d(fn, s
′

n),

and

(sn, s
′

n) ∈ Ξ(G), d(sn, s
′

n) ≤ κd(fn, hn),

(s
′

n, sn+1) ∈ Ξ(G), d(s
′

n, sn+1) ≤ κd(hn, fn+1).

Moreover, we also notice that {fn} is G − TWC. Subsequently, we proclaim
{d(fn, sn)} is decreasing. Actually, we can acquire

d(fn+1, sn+1) ≤ d(fn+1, s
′

n) + d(s
′

n, sn+1)

= d(W (fn, s
′

n; ρn), s
′

n) + d(s
′

n, sn+1)

≤ (1− ρn)d(fn, s
′

n) + κd(hn, fn+1)

≤ (1− ρn)d(fn, sn) + (1− ρn)d(sn, s
′

n) + κd(hn, fn+1)

≤ (1− ρn)d(fn, sn) + κ(1− ρn)d(fn, hn) + κd(hn, fn+1),

and

d(hn, fn+1) = d(W (fn, sn; en),W (fn, s
′

n; ρn))

≤ d(W (fn, sn; en), fn) + d(fn,W (fn, s
′

n; ρn))

≤ end(fn, sn) + ρnd(fn, s
′

n)

≤ (en + ρn)d(fn, sn) + ρnd(sn, s
′

n)

≤ (en + ρn)d(fn, sn) + κρnd(fn, hn)

= (en + ρn)d(fn, sn) + κρnd(fn,W (fn, sn; en))

≤ (ρn + en + κρnen)d(fn, sn).

It follows

d(fn+1, sn+1) ≤ (1− ρn)d(fn, sn) + κen(1− ρn)d(fn, sn)

+ κ(ρn + en + κρnen)d(fn, sn)

= (1− ρn + κen − κρnen + κρn + κen + κ2ρnen)d(fn, sn)

= [1− (1− κ)(ρn + κρnen) + 2κen]d(fn, sn).

Since 0 < 1−(1−κ)(ρn+κρnen)+2κen < 1−θ where θ ∈ (0, 1), which indicates
{d(fn, sn)} is decreasing.

Let tn = 1− (1− κ)(ρn + κρnen) + 2κen, so we have

tn ∈ (0, 1) and d(fn+1, sn+1) ≤ tnd(fn, sn).

And we also find

d(fn, fn+1) = d(fn,W (fn, s
′

n; ρn))
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≤ ρnd(fn, s
′

n)

≤ ρnd(fn, sn) + ρnd(sn, s
′

n)

≤ ρnd(fn, sn) + κρnd(fn, hn)

= ρnd(fn, sn) + κρnd(fn,W (fn, sn; en))

≤ ρnd(fn, sn) + κρnend(fn, sn)

= (ρn + κρnen)d(fn, sn).

Let ρn + κρnen = γn. Furthermore, for any q ∈ Z+, we can infer

d(fn, fn+q) ≤ d(fn, fn+1) + d(fn+1, fn+2) + · · ·+ d(fn+q−1, fn+q)

≤ γnd(fn, sn) + γn+1d(fn+1, sn+1) + · · ·+ γn+q−1d(fn+q−1, sn+q−1)

≤ (γn

n−1∏
i=0

ti + γn+1

n∏
i=0

ti + · · ·+ γn+q−1

n+q−2∏
i=0

ti)d(f0, s0).

Let Dn+j = γn+j

n+j−1∏
i=0

ti, j = 0, 1, 2, . . . , q − 1. Then we obtain

d(fn, fn+q) ≤ (Dn +Dn+1 + · · ·+Dn+q−1)d(f0, s0).

Since 0 < 1 − (1 − κ)(ρn + κρnen) + 2κen < 1 − θ where θ ∈ (0, 1), {ρn} and
{en} are monotonous, we can get that

lim
j→∞

sup
Dn+j+1

Dn+j
= lim

j→∞
sup

γn+j+1

n+j∏
i=0

ti

γn+j

n+j−1∏
i=0

ti

= lim
j→∞

sup
γn+j+1tn+j

γn+j

= lim
j→∞

sup
ρn+j+1 + κρn+j+1en+j+1

ρn+j + κρn+jen+i

× [1− (1− κ)(ρn+j + κρn+jen+j) + 2κen+j ]

< 1.

According to the virtue of D’Alembert’s test, we deduce
∑∞

j=0Dj is convergent.
Thus, we can draw a conclusion limn→∞ d(fn, fn+q) = 0 which indicates that {fn}
is a Cauchy sequence. Since G is G-complete, we can find a q ∈ Ω(G) that makes
limn→∞ d(fn, q) = 0 hold. According to the property (P), for large enough n, we
can acquire (fn, q) ∈ Ξ(G), thus there is qn ∈ Γq such that

d(fn, qn) ≤ κd(fn, q),

which implies d(fn, qn) → 0 as n→ ∞. Let n→ +∞, then

d(qn, q) ≤ d(qn, fn) + d(fn, q) → 0,

which indicates q ∈ Γq since Γq is closed.
Next, we will give an example to prove that it is sufficient but not necessary for

the assumptions of the above theorem.
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Example 3.1. Consider M = [0, 1], X = { 1

3n
: n ∈ Z+ ∪ {0}}, Y = { 1

32n+1
: n ∈

Z+ ∪ {0}}. For any f, h ∈M , we define

d(f, h) =

{
|f − h|, f ̸= h,

0, f = h.

Next, we give further consideration to G with Ω(G) =M and

Ξ(G) = A ∪B ∪ C,

where

A = {(f, h) ∈M ×M : f, h ∈ X or f, h ∈M \X},
B = {(f, h) ∈M ×M : f ∈ X \ Y and h ∈M \X, or h ∈ X \ Y and f ∈M \X},
C = {(f, h) ∈M ×M : f ∈M \X and h ∈ Y ,

or f ∈ Y and h ∈M \X, then
3

2
f ≤ h or h ≤ 2

3
f}.

For any ρ ∈ (0, 1) and f, h ∈M , we define W (f, h; ρ) = (1− ρ)f + ρh, so we can
see (G, d,W ) is a GCMS. Subsequently, it will be demonstrated (G, d,W ) does
not have the property (P) and the property (Q).

Factually, we choose irrational number sequences {fn} and {µn} for any n ∈ Z+

in Ω(G), then we can obtain (fn, µn) ∈ A, that is (fn, µn) ∈ Ξ(G), so the sequences

{fn} and {µn} are G − TWC. Furthermore, for some n0 ∈ Z+, let f =
1

32n0+1
,

and we choose the irrational number sequence {fn} in Ω(G) with fn > f for every
n ∈ Z+ which converges to f . Therefore, we can acquire (fn, f) /∈ A and (fn, f) /∈
B. For any n, since fn > f , we have fn >

2

3
f . And for large enough n, we

have fn <
3

2
f . Consequently, we can obtain (fn, f) /∈ C. Hence, from the above

analysis, we can get that (fn, f) /∈ Ξ(G), that is, (G, d,W ) does not have the

property (P). Moreover, we take f =
1

32n+1
, h = 0. And we choose ρ making

W (f, h; ρ) = (1 − ρ)f >
2

3
f and W (f, h; ρ) ∈ [0, 1] \ X. Then we can acquire

(f,W (f, h; ρ)) /∈ Ξ(G). This is equivalent to saying that (G, d,W ) does not have
the property (Q).

Furthermore, we let Γ be a set-valued mapping which is defined as follows:

Γf =


{ 1

32n+3
,

1

32n+5
}, f =

1

32n+1
∈ Y,

{0}, f =
1

32n
∈ X \ Y,

{0}, f ∈M \X.

Now we say Γ is a G-contraction with κ =
1

3
, namely, for all (f, h) ∈ Ξ(G) and

a ∈ Γf , there is b ∈ Γh making (a, b) ∈ Ξ(G) and d(a, b) ≤ κd(f, h) hold. In the
following, we will give the consideration to several cases:

Case 1. Choose f , h ∈ X and f =
1

32n+1
, h =

1

32m+1
, without loss of generality,

presuming m > n, we can obtain
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Γf = { 1

32n+3
,

1

32n+5
} and Γh = { 1

32m+3
,

1

32m+5
}.

We take b =
1

32m+5
, then

d(
1

32n+3
,

1

32m+5
) =

1

32
d(

1

32n+1
,

1

32m+3
) < κd(

1

32n+1
,

1

32m+1
) = κd(f, h),

and

d(
1

32n+5
,

1

32m+5
) =

1

34
d(

1

32n+1
,

1

32m+1
) < κd(f, h).

Case 2. Choose f , h ∈ X and f =
1

32n
, h =

1

32m
, then we get

Γf = {0}, Γh = {0}

and

0 = d(0, 0) ≤ κd(f, h).

Case 3. Choose f , h ∈ X and f =
1

32n+1
, h =

1

32m
, then we acquire

Γf = { 1

32n+3
,

1

32n+5
}, Γh = {0},

and

d(
1

32n+5
, 0) =

1

32
d(

1

32n+3
, 0) < d(

1

32n+3
, 0) =

1

32
f.

If m ≤ n, then we obtain

κd(f, h) = κd(
1

32n+1
,

1

32m
) = κ

1

32m
(1− 1

32(n−m)+1
) ≥ κ

1

32n+1
(1−1

3
) =

2

32
f >

1

32
f .

If m > n, then we obtain

κd(f, h) = κd(
1

32n+1
,

1

32m
)

= κ
1

32n+1
(1− 1

32(m−n)−1
)

≥ κ
1

32n+1
(1− 1

3
)

=
2

32
f

>
1

32
f.

Therefore,

d(
1

32n+5
, 0) < d(

1

32n+3
, 0) < κd(f, h).

Case 4. Choose f , h ∈ X and f =
1

32n
, h =

1

32m+1
, this case is similar to Case 3.

Case 5. Choose f , h ∈M \X, then we deduce
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Γf = {0}, Γh = {0}

and

0 = d(0, 0) ≤ κd(f, h).

Case 6. Choose f ∈ X, h ∈M \X and (f, h) ∈ Ξ(G).

If f =
1

32n
, then we acquire Γf = {0}, Γh = {0} and 0 = d(0, 0) ≤ κd(f, h).

If f =
1

32n+1
, then we acquire

Γf = { 1

32n+3
,

1

32n+5
}, Γh = {0},

and

d(
1

32n+5
, 0) < d(

1

32n+3
, 0) =

1

32
f.

Since (f, h) ∈ Ξ(G), f ∈ Y and h ∈M \X, so we have
3

2
f ≤ h or h ≤ 2

3
f.

When
3

2
f ≤ h, we get that

κd(f, h) =
1

3
|f − h| = 1

3
(h− f) ≥ 1

3
× 1

2
f >

1

32
f.

When h ≤ 2

3
f , we get that

κd(f, h) =
1

3
|f − h| = 1

3
(f − h) ≥ 1

3
× 1

3
f =

1

32
f.

Thus

d(
1

32n+5
, 0) < d(

1

32n+3
, 0) ≤ κd(f, h).

Case 7. Choose f ∈M \X, h ∈ X, this case is similar to Case 6.

Hence, Γ is a G-contraction with κ =
1

3
. And there is no doubt that we have

0 ∈ Γ0, which indicates 0 is a fixed point of Γ.

Remark 3.1. In the proof procedure of Theorem 3.1, we can also gain

lim
n→∞

d(fn, sn) = 0 and lim
n→∞

d(fn, hn) = 0.

Proof. Thanks to the definitions of {fn} and {hn}, we can get

d(fn, hn) = d(fn,W (fn, s
′

n; ρn)) ≤ ρnd(fn, s
′

n)

≤ ρn[d(fn, sn) + d(sn, s
′

n)]

≤ ρnd(fn, sn) + κρnd(fn, hn).

Since κ, ρn ∈ (0, 1), we can acquire

d(fn, hn) ≤
ρn

1− κρn
d(fn, sn).
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Thus, from the above analysis, we only require to demenstrate limn→∞ d(fn, sn)
= 0.

From the proof of Theorem 3.1, it can be found that

d(fn, sn) ≤
n−1∏
i=0

tid(f0, s0),

which indicates limn→∞ d(fn, sn) = 0 since ti ∈ (0, 1). Furthermore, we can get
limn→∞ d(fn, hn) = 0.

Theorem 3.2. Presume all assumptions of Theorem 3.1 hold, and set{
hn =W (fn, sn; en),

fn+1 =W (fn, s
′

n; ρn),

where sn ∈ Γfn, s
′

n ∈ Γhn, and ρn, en ∈ (0, 1), and{
χn =W (µn, gn; τn),

µn+1 =W (µn, g
′

n;ψn),

where gn ∈ Γµn, g
′

n ∈ Γχn, and τn, ψn ∈ (0, 1). In addition, {fn} and {µn} are
generated from the above iterative process where {fn} converges to f and {µn}
converges to µ, the sequence {ψn} satisfies limn→∞ ψn = ψ ̸= 0. Then f = µ
provided that (fn, µn) ∈ Ξ(G) for large enough n ∈ Z+.

Proof. According to Theorem 3.1, it follows f and µ are fixed points of Γ. Since
Γ is a G-contraction, (fn, µn) ∈ Ξ(G) and (fn, hn) ∈ Ξ(G), for all sn ∈ Γfn, there
are gn ∈ Γµn and s

′

n ∈ Γhn such that

(sn, gn) ∈ Ξ(G), d(sn, gn) ≤ κd(fn, µn),

and
(sn, s

′

n) ∈ Ξ(G), d(sn, s
′

n) ≤ κd(fn, hn).

From Remark 3.1, we deduce that limn→∞ d(fn, hn) = 0, limn→∞ d(µn, χn) = 0
and limn→∞ d(fn, sn) = 0. Combining the conditions limn→∞ d(fn, f) = 0 and
limn→∞ d(µn, µ) = 0, we can get limn→∞ d(hn, f) = 0 and limn→∞ d(χn, µ) = 0.

By using the property (P), we can acquire that (fn, f) ∈ Ξ(G), (µn, µ) ∈ Ξ(G),
(hn, f) ∈ Ξ(G) and (χn, µ) ∈ Ξ(G) for large enough n.

From Theorem 3.1, it can be concluded that (fn, fn+1) ∈ Ξ(G) and (fn, s
′

n) ∈
Ξ(G). Since (fn, fn+1) ∈ Ξ(G), (fn, hn) ∈ Ξ(G), we can obtain (fn+1, hn) ∈ Ξ(G).
Similarly, we also have (µn+1, χn) ∈ Ξ(G). Combining with (fn+1, µn+1) ∈ Ξ(G),
we can get (fn+1, χn) ∈ Ξ(G). And we also draw a conclusion that (hn, χn) ∈ Ξ(G)
due to the transitivity of G.

Because Γ is a G-contraction and (hn, χn) ∈ Ξ(G), thus for any s
′

n ∈ Γhn, there
exists g

′

n ∈ Γχn such that

(s
′

n, g
′

n) ∈ Ξ(G) and d(s
′

n, g
′

n) ≤ κd(hn, χn).

Since (fn, s
′

n) ∈ Ξ(G), (s
′

n, g
′

n) ∈ Ξ(G), (fn, µn) ∈ Ξ(G), according to the
transitivity, we can acquire that (fn, g

′

n) ∈ Ξ(G) and (s
′

n, µn) ∈ Ξ(G).
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Notice that

d(f, µ) ≤ d(f, fn+1) + d(fn+1, µn+1) + d(µn+1, µ), (3.2)

and

d(fn+1, µn+1) = d(W (fn, s
′

n; ρn),W (µn, g
′

n;ψn))

≤ (1− ρn)(1− ψn)d(fn, µn) + (1− ρn)ψnd(fn, g
′

n)

+ ρn(1− ψn)d(s
′

n, µn) + ρnψnd(s
′

n, g
′

n)

≤ (1− ρn)(1− ψn)d(fn, µn) + (1− ρn)ψn[d(fn, s
′

n) + d(s
′

n, g
′

n)]

+ ρn(1− ψn)[d(s
′

n, fn) + d(fn, µn)] + ρnψnd(s
′

n, g
′

n)

= (1− ψn)d(fn, µn) + [ρn + ψn − 2ρnψn]d(fn, s
′

n) + ψnd(s
′

n, g
′

n)

≤ (1− ψn)[d(fn, f) + d(f, µ) + d(µ, µn)]

+ [ρn + ψn − 2ρnψn][d(fn, sn) + d(sn, s
′

n)]

+ κψn[d(hn, f) + d(f, µ) + d(µ, χn)]

< (1− ψn)[d(fn, f) + d(µ, µn)] + 2[d(fn, sn) + d(sn, s
′

n)]

+ κψn[d(hn, f) + d(µ, χn)] + (1 + κψn − ψn)d(f, µ)

< d(fn, f) + d(µ, µn) + 2d(fn, sn) + 2d(sn, s
′

n) + κ[d(hn, f)

+ d(µ, χn)] + (1 + κψn − ψn)d(f, µ). (3.3)

Combining with (3.2) and (3.3), we can obtain

(1− κ)ψnd(f, µ) ≤ d(f, fn+1) + d(fn, f) + d(µ, µn) + 2d(fn, sn)

+ 2d(sn, s
′

n) + κ[d(hn, f) + d(µ, χn)] + d(µn+1, µ).

Letting n→ ∞, we have (1−κ)ψd(f, µ) ≤ 0. Since κ ∈ (0, 1), limn→∞ ψn = ψ ̸= 0,
we can acquire d(f, µ) = 0, that is f = µ.

4. Fixed point theorems of Γ-SP sequences

Next, on a G-complete GCMS, the fixed point results related to Γ-SP sequences
will be presented.

Definition 4.1. Suppose Γ: Ω(G) → L(Ω(G)) is a set-valued mapping on aGCMS.
Presume f0 ∈ Ω(G) is the initial value. Then {fn} is said to be a Γ-SP sequence if
it satisfies 

sn =W (fn, µn; cn),

hn =W (sn, vn; en),

fn+1 =W (hn, φn; ρn),

(4.1)

where µn ∈ Γfn, vn ∈ Γsn, φn ∈ Γhn, and ρn, en, cn ∈ (0, 1).

Theorem 4.1. Let Γ: Ω(G) → L(Ω(G)) be a G-contraction mapping on
G-complete GCMS satisfying properties (P) and (Q). Suppose that {ρn}, {en} and
{cn} satisfy {ρn}, {en} and {cn} ⊂ (0, 1), {ρn}, {en} and {cn} are monotonous. If
the set
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EΓ = {f ∈ Ω(G) : there is h ∈ Γf such that (f, h) ∈ Ξ(G)}

is nonempty, then the mapping Γ has a fixed point in G.

Proof. There is µ0 ∈ Γf0 making (f0, µ0) ∈ Ξ(G) hold for any f0 ∈ EΓ. Let
s0 = W (f0, µ0; c0), according to the property (Q), we have (f0, s0) ∈ Ξ(G) and
(s0, µ0) ∈ Ξ(G). From Definition 2.13, we can obtain that

d(f0, s0) = d(f0,W (f0, µ0; c0)) ≤ c0d(f0, µ0),

and

d(s0, µ0) = d(W (f0, µ0; c0), µ0) ≤ (1− c0)d(f0, µ0).

Since Γ is a G-contraction and (f0, s0) ∈ Ξ(G), for µ0 ∈ Γf0, there is v0 ∈ Γs0
such that

(µ0, v0) ∈ Ξ(G) and d(µ0, v0) ≤ κd(f0, s0).

Moreover, by the transitivity of G, we can also acquire (f0, µ0) ∈ Ξ(G), (s0, v0) ∈
Ξ(G) and (f0, v0) ∈ Ξ(G).

Let h0 =W (s0, v0; e0), by using the property (Q), we have (s0, h0) ∈ Ξ(G) and
(h0, v0) ∈ Ξ(G). From Definition 2.13, we deduce that

d(s0, h0) = d(s0,W (s0, v0; e0)) ≤ e0d(s0, v0),

and

d(h0, v0) = d(W (s0, v0; e0), v0) ≤ (1− e0)d(s0, v0).

Since (s0, µ0) ∈ Ξ(G) and (s0, h0) ∈ Ξ(G), we can obtain (h0, µ0) ∈ Ξ(G). Since
Γ is a G-contraction and (s0, h0) ∈ Ξ(G), for v0 ∈ Γs0, there is φ0 ∈ Γh0 such that

(v0, φ0) ∈ Ξ(G) and d(v0, φ0) ≤ κd(s0, h0).

By using the transitivity of G, we also claim (s0, v0) ∈ Ξ(G), (h0, φ0) ∈ Ξ(G),
(s0, φ0) ∈ Ξ(G), (f0, φ0) ∈ Ξ(G), (µ0, φ0) ∈ Ξ(G) and (f0, h0) ∈ Ξ(G).

Let f1 =W (h0, φ0; ρ0), by using the property (Q), we have (h0, f1) ∈ Ξ(G) and
(f1, φ0) ∈ Ξ(G). From Definition 2.13, we deduce that

d(h0, f1) = d(h0,W (h0, φ0; ρ0)) ≤ ρ0d(h0, φ0),

and

d(f1, φ0) = d(W (h0, φ0; ρ0), φ0) ≤ (1− ρ0)d(h0, φ0).

Since (s0, h0) ∈ Ξ(G) and (h0, f1) ∈ Ξ(G), we can acquire that (s0, f1) ∈ Ξ(G).
Similarly, we can also get (h0, φ0) ∈ Ξ(G), (f1, v0) ∈ Ξ(G) and (f1, µ0) ∈ Ξ(G).

Since Γ is a G-contraction and (h0, f1) ∈ Ξ(G) and (s0, f1) ∈ Ξ(G), for φ0 ∈ Γh0,
there is µ1 ∈ Γf1 such that

(µ1, φ0) ∈ Ξ(G) and d(µ1, φ0) ≤ κd(f1, h0),

and for v0 ∈ Γs0, there is µ1 ∈ Γf1 such that

(µ1, v0) ∈ Ξ(G) and d(µ1, v0) ≤ κd(f1, s0).
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By the transitivity ofG, we claim (µ1, f1) ∈ Ξ(G), (µ1, µ0) ∈ Ξ(G) and (µ1, h0) ∈
Ξ(G). And by induction, we can acquire sequences {fn}, {hn}, {sn}, {µn}, {vn}
and {φn}, where sn = W (fn, µn; cn), hn = W (sn, vn; en), fn+1 = W (hn, φn; ρn),
µn ∈ Γfn and vn ∈ Γsn and φn ∈ Γhn. We still get that (fn, µn) ∈ Ξ(G),
(sn, vn) ∈ Ξ(G) and (hn, φn) ∈ Ξ(G). From the property (Q), it follows (fn, sn) ∈
Ξ(G), (sn, µn) ∈ Ξ(G), (sn, hn) ∈ Ξ(G), (hn, vn) ∈ Ξ(G), (hn, fn+1) ∈ Ξ(G), and
(fn+1, φn) ∈ Ξ(G).

Thanks to Definition 2.13, it is not hard to see

d(fn, sn) = d(fn,W (fn, µn; cn)) ≤ cnd(fn, µn),

d(sn, µn) = d(W (fn, µn; cn), µn) ≤ (1− cn)d(fn, µn),

d(sn, hn) = d(sn,W (sn, vn; en)) ≤ end(sn, vn),

d(hn, vn) = d(W (sn, vn; en), vn) ≤ (1− en)d(sn, vn),

d(hn, fn+1) = d(W (hn, φn; ρn), hn) ≤ ρnd(hn, φn),

d(fn+1, φn) = d(W (hn, φn; ρn), φn) ≤ (1− ρn)d(hn, φn),

and

(µn, vn) ∈ Ξ(G)andd(µn, vn) ≤ κd(fn, sn),

(vn, φn) ∈ Ξ(G)andd(vn, φn) ≤ κd(hn, sn),

(µn+1, φn) ∈ Ξ(G)andd(µn+1, φn) ≤ κd(fn+1, hn),

(µn+1, vn) ∈ Ξ(G)andd(µn+1, vn) ≤ κd(fn+1, sn).

Moreover, we also notice that {fn} is G − TWC. Subsequently, we proclaim
{d(fn, µn)} is decreasing. Actually, we can acquire

d(fn+1, µn+1) ≤ d(fn+1, φn) + d(φn, µn+1)

= d(W (hn, φn; ρn), φn) + d(φn, µn+1)

≤ (1− ρn)d(hn, φn) + κd(fn+1, hn)

≤ (1− ρn)d(hn, φn) + κρnd(hn, φn)

= [1 + κρn − ρn]d(hn, φn),

and

d(hn, φn) ≤ d(hn, vn) + d(vn, φn)

= d(W (sn, vn; en), vn) + d(vn, φn)

≤ (1− en)d(sn, vn) + κd(hn, sn)

≤ (1− en)d(sn, vn) + κend(sn, vn)

= (1 + κen − en)d(sn, vn)

≤ (1 + κen − en)[d(sn, µn) + d(µn, vn)]

≤ (1 + κen − en)(1− cn)d(fn, µn) + κ(1 + κen − en)d(fn, sn)

≤ (1 + κen − en)(1− cn)d(fn, µn) + κcn(1 + κen − en)d(fn, µn)

= (1 + κen − en)(1 + κcn − cn)d(fn, µn).

It follows

d(fn+1, µn+1) ≤ (1 + κρn − ρn)d(hn, φn)
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≤ (1 + κρn − ρn)(1 + κen − en)(1 + κcn − cn)d(fn, µn)

≤ d(fn, µn),

which indicates the sequence {d(fn, µn)} is decreasing.
Let tn = (1 + κρn − ρn)(1 + κen − en)(1 + κcn − cn), so we have

tn ∈ (0, 1) and d(fn+1, µn+1) ≤ tnd(fn, µn).

And we also find

d(fn, fn+1) = d(fn,W (hn, φn; ρn))

≤ (1− ρn)d(fn, hn) + ρnd(fn, φn)

= (1− ρn)d(fn,W (sn, vn; en)) + ρnd(fn, φn)

≤ (1− ρn)(1− en)d(fn, sn) + (1− ρn)end(fn, vn) + ρnd(fn, φn)

≤ (1− ρn)(1− en)cnd(fn, µn) + (1− ρn)en[d(fn, µn)

+ d(µn, vn)] + ρn[d(fn, µn) + d(µn, vn) + d(vn, φn)]

≤ (1− ρn)(1− en)cnd(fn, µn) + (1− ρn)end(fn, µn)

+ κ(1− ρn)encnd(fn, µn) + ρnd(fn, µn)

+ κρncnd(fn, µn) + κρnend(sn, vn)

≤ (1− ρn)(1− en)cnd(fn, µn) + (1− ρn)end(fn, µn)

+ κ(1− ρn)encnd(fn, µn) + ρnd(fn, µn) + κρncnd(fn, µn)

+ κρnen[d(sn, µn) + d(µn, vn)]

≤ (1− ρn)(1− en)cnd(fn, µn) + (1− ρn)end(fn, µn)

+ κ(1− ρn)encnd(fn, µn) + ρnd(fn, µn) + κρncnd(fn, µn)

+ κρnen(1− cn)d(fn, µn) + κ2ρnencnd(fn, µn)

= [ρn + en + cn + κρnen + κρncn + κencn + ρnencn

− ρnen − ρncn − encn − 2κρnencn]d(fn, µn).

Let ρn + en + cn + κρnen + κρncn + κencn + ρnencn − ρnen − ρncn − encn −
2κρnencn = γn. Furthermore, for any q ∈ Z+, we can infer

d(fn, fn+q) ≤ d(fn, fn+1) + d(fn+1, fn+2) + · · ·+ d(fn+q−1, fn+q)

≤ γnd(fn, µn) + γn+1d(fn+1, µn+1) + · · ·+ γn+q−1d(fn+q−1, µn+q−1)

≤ (γn

n−1∏
i=0

ti + γn+1

n∏
i=0

ti + · · ·+ γn+q−1

n+q−2∏
i=0

ti)d(f0, µ0).

Let Dn+j = γn+j

n+j−1∏
i=0

ti, j = 0, 1, 2, . . . , q − 1. Then we obtain

d(fn, fn+q) ≤ (Dn +Dn+1 + · · ·+Dn+q−1)d(f0, µ0).

Since {ρn}, {en} and {cn} are monotonous, we can get that {γn} is also
monotonous. Furthermore, we can acquire that

lim
j→∞

sup
Dn+j+1

Dn+j
= lim

j→∞
sup

γn+j+1

n+j∏
i=0

ti

γn+j

n+j−1∏
i=0

ti
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= lim
j→∞

sup
γn+j+1tn+j

γn+j

= lim
j→∞

sup
γn+j+1

γn+j
[(1 + κρn+j − ρn+j)

× (1 + κen+j − en+j)(1 + κcn+j − cn+j)]

< 1.

According to the virtue of D’Alembert’s test, we deduce
∑∞

j=0Dj is convergent.
Thus, we can draw a conclusion limn→∞ d(fn, fn+q) = 0 which indicates that {fn}
is a Cauchy sequence. Since G is G-complete, we can find a q ∈ Ω(G) that makes
limn→∞ d(fn, q) = 0 hold. According to the property (P), for large enough n, we
can acquire (fn, q) ∈ Ξ(G), thus there is qn ∈ Γp such that

d(fn, qn) ≤ κd(fn, q),

which implies d(fn, qn) → 0 as n→ ∞. Let n→ +∞, then

d(qn, q) ≤ d(qn, fn) + d(fn, q) → 0,

which indicates q ∈ Γq since Γq is closed.

Remark 4.1. From the proof process of Theorem 4.1, we can also gain

limn→∞ d(fn, µn) = 0, limn→∞ d(fn, hn) = 0,

and

limn→∞ d(fn, sn) = 0, limn→∞ d(hn, sn) = 0.

Proof. Thanks to the definitions of {fn} and {hn}, we can get

d(fn, hn) = d(fn,W (sn, vn; en))

≤ (1− en)d(fn, sn) + end(fn, vn)

≤ (1− en)cnd(fn, µn) + en[d(fn, µn) + d(µn, vn)]

≤ (1− en)cnd(fn, µn) + end(fn, µn) + κend(fn, sn)

≤ (1− en)cnd(fn, µn) + end(fn, µn) + κencnd(fn, µn)

= [en + cn + κencn − encn]d(fn, µn).

From the proof of Theorem 4.1, it can be found that

d(fn, µn) ≤
n−1∏
i=0

tid(f0, µ0),

which indicates limn→∞ d(fn, sn) = 0 since ti ∈ (0, 1). Furthermore, we can acquire
that limn→∞ d(fn, hn) = 0.

From the definitions of {fn} and {sn}, it follows

d(fn, sn) = d(fn,W (fn, µn; cn))

≤ cnd(fn, µn),

so we can obtain limn→∞ d(fn, sn) = 0.
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From the definitions of {hn} and {sn}, we have

d(hn, sn) = d(W (sn, vn; en),W (fn, µn; cn))

≤ d(W (sn, vn; en), fn) + d(fn,W (fn, µn; cn))

≤ (1− en)d(fn, sn) + end(fn, vn) + cnd(fn, µn)

≤ (1− en)cnd(fn, µn) + en[d(fn, sn)

+ d(sn, µn) + d(µn, vn)] + cnd(fn, µn)

≤ (1− en)cnd(fn, µn) + encnd(fn, µn) + en(1− cn)d(fn, µn)

+ κcnd(fn, µn) + cnd(fn, µn)

= [en + 2cn + κcn − encn]d(fn, µn),

then we can acquire limn→∞ d(hn, sn) = 0.

Theorem 4.2. Presume all assumptions of Theorem 4.1 hold, and set
sn =W (fn, µn; cn),

hn =W (sn, vn; en),

fn+1 =W (hn, φn; ρn),

where µn ∈ Γfn, vn ∈ Γsn, φn ∈ Γhn, ρn, en, cn ∈ (0, 1), and
dn =W (an, τn; δn),

bn =W (dn, ξn;ωn),

an+1 =W (bn, gn;λn),

where τn ∈ Γan, ξn ∈ Γdn, gn ∈ Γbn, and λn, ωn, δn ∈ (0, 1). In addition, {fn} and
{an} are generated from the above iterative process where {fn} converges to f and
{an} converges to a, the sequence {λn} satisfies limn→∞ λn = λ ̸= 0. Then f = a
provided that (fn, an) ∈ Ξ(G) for large enough n ∈ Z+.

Proof. According to Theorem 4.1, it follows f and a are fixed points of Γ. Since
Γ is a G-contraction, (fn, an) ∈ Ξ(G) and (fn, hn) ∈ Ξ(G), for all µn ∈ Γfn, there
are τn ∈ Γan, φn ∈ Γhn such that

(µn, τn) ∈ Ξ(G), d(µn, τn) ≤ κd(fn, an),

and

(µn, φn) ∈ Ξ(G), d(µn, φn) ≤ κd(fn, hn).

Similarly, for (an, bn) ∈ Ξ(G), we have that for all τn ∈ Γan, there is gn ∈ Γbn
such that

(τn, gn) ∈ Ξ(G) and d(τn, gn) ≤ κd(an, bn).

From Remark 4.1, we deduce limn→∞ d(fn, hn) = 0, limn→∞ d(an, bn) = 0
and limn→∞ d(fn, µn) = 0. Combining the conditions limn→∞ d(fn, f) = 0 and
limn→∞ d(an, a) = 0, we can obtain limn→∞ d(hn, f) = 0 and limn→∞ d(bn, a) = 0.
By using the property (P), we can acquire that (fn, f) ∈ Ξ(G), (an, a) ∈ Ξ(G),
(hn, f) ∈ Ξ(G), (bn, a) ∈ Ξ(G) and (fn, µn) ∈ Ξ(G) for large enough n. By



3576 L. Chen, Y. Jiang & Y. Zhao

the transitivity of the graph G, we also draw a conclusion that (hn, bn) ∈ Ξ(G),
(hn, gn) ∈ Ξ(G), (φn, bn) ∈ Ξ(G) and (φn, gn) ∈ Ξ(G).

Notice that

d(f, a) ≤ d(f, fn+1) + d(fn+1, an+1) + d(an+1, a), (4.2)

and

d(fn+1, an+1)

= d(W (hn, φn; ρn),W (bn, gn;λn))

≤ (1− ρn)(1− λn)d(hn, bn) + (1− ρn)λnd(hn, gn)

+ ρn(1− λn)d(φn, bn) + ρnλnd(φn, gn)

≤ (1− ρn)(1− λn)[d(hn, fn) + d(fn, an) + d(an, a) + d(a, bn)]

+ (1− ρn)λn[d(hn, fn) + d(fn, µn) + d(µn, τn) + d(τn, gn)]

+ ρn(1− λn)[d(φn, µn) + d(µn, fn) + d(fn, an) + d(an, a) + d(a, bn)]

+ ρnλn[d(φn, µn) + d(µn, τn) + d(τn, gn)]

= (1− ρn)d(hn, fn) + (1− λn)[d(fn, an) + d(an, a) + d(a, bn)]

+ [(1− ρn)λn + ρn(1− λn)]d(fn, µn) + λn[d(µn, τn) + d(τn, φn)] + ρnd(φn, µn)

≤ (1− ρn)d(hn, fn) + (1− λn)d(fn, an) + (1− λn)[d(an, a) + d(a, bn)]

+ [(1− ρn)λn + ρn(1− λn)]d(fn, µn) + κλn[d(fn, an) + d(an, bn)]

+ κρnd(fn, hn)

≤ (1− ρn)d(hn, fn) + (1− λn)[d(fn, f) + d(f, a) + d(a, an)]

+ (1− λn)[d(an, a) + d(a, bn)] + [(1− ρn)λn + ρn(1− λn)]d(fn, µn)

+ κλn[d(fn, f) + d(f, a) + d(a, an)] + κλn[d(an, a) + d(a, bn)] + κρnd(fn, hn)

= (1 + κρn − ρn)d(fn, hn) + (1 + κλn − λn)[d(fn, f) + d(f, a) + d(a, an)]

+ (1 + κλn − λn)[d(an, a) + d(a, bn)] + (ρn + λn − 2ρnλn)d(fn, µn)

< (1 + κρn − ρn)d(fn, hn) + (1 + κλn − λn)[d(fn, f) + d(a, an)]

+ (1 + κλn − λn)[d(an, a) + d(a, bn)] + 2d(fn, µn) + (1 + κλn − λn)d(f, a).
(4.3)

Combining with (4.2) and (4.3), we can obtain

(1− κ)λnd(f, a) ≤d(f, fn+1) + (1 + κρn − ρn)d(fn, hn)

+ (1 + κλn − λn)[d(fn, f) + d(a, an)]

+ (1 + κλn − λn)[d(an, a) + d(a, bn)] + 2d(fn, µn) + d(an+1, a).

Letting n→ ∞, we have (1− κ)λd(f, a) ≤ 0. Since κ ∈ (0, 1), limn→∞ λn = λ ̸= 0,
we can acquire d(f, a) = 0, that is f = a.

5. Conclusion

In this paper, by using the convex structure, we extended the Ishikawa iterative
algorithm and the SP iterative algorithm to grapgical metric spaces. We obtained
the existence and uniqueness of fixed points for set-valued G-contractions in the
above space. And an example was explored to demonstrate the hypotheses of the
existence theorem of fixed points for set-valued G-contractions are sufficient but not
necessary.
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Open problems

• Can the condition that GCMS in Theorem 3.1 and Theorem 4.1 satisfies properties
(P) and (Q) be weakened? If this condition is weakened or even removed, can the
corresponding conclusions still be reached?
• In the paper, the example is given without the conditions of Theorem 3.1, that
is, GCMS satisfies properties (P) and (Q), and the theorem can still be established.
Then, can we find an example that satisfies the conditions of Theorem 3.1?
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