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Abstract This paper introduces a new life distribution, the generalized three-
parameter Lindley distribution, derived as a product of the inverse power law
model and the generalized two-parameter Lindley distribution in a progres-
sive stress accelerated life testing scenario. The study presents the graphical
characteristics of the density function, failure rate function, mean failure rate
function, and mean residual life function. Point estimates for the three param-
eters are provided through logarithmic transformation. The paper concludes
with two practical examples demonstrating the application of this method.
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1. Introduction

The Lindley distribution was first introduced by Lindley in 1958, as documented
in reference [24]. Since then, numerous scholars have conducted extensive research
on both the Lindley distribution and its generalized forms, achieving significant
results. These results are not exhaustively enumerated here, but are available in
references [1–10,13–24,26–32,35–46]. The distribution plays an essential role in the
reliability studies of the stress-strength model.

Consider a non-negative continuous random variable that follows a Lindley dis-
tribution with parameter θ, denoted as Lindley(θ). The density function f(x) and
distribution function F (x) of this distribution are defined as follows:

f(x) =
θ2

θ + 1
(1 + x)e−θx, F (x) = 1−

(
1 +

θ

θ + 1
x

)
e−θx, x > 0, θ > 0.

This article initially extends the single-parameter Lindley distribution to the
generalized three-parameter Lindley distribution. Through theoretical derivation,
it is demonstrated that under the inverse power law model, the life distribution in a
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progressive stress accelerated life testing scenario for the generalized two-parameter
Lindley distribution exactly corresponds to the generalized three-parameter Lindley
distribution. Furthermore, the study investigates the graphical characteristics of
the density function and failure rate function of the generalized three-parameter
Lindley distribution. Lastly, the paper presents a methodology for point estimation
of parameters in a full-sample context and illustrates its application with practical
examples.

2. Generalized two-parameter and three-parameter
Lindley distributions

Consider a non-negative continuous random variable that follows a Lindley distri-
bution with parameter θ, denoted as Lindley(θ). Its density function f(x) can be
expressed as:

f(x) =
θ2

θ + 1
(1 + x)e−θx =

(
1− 1

θ + 1

)
θe−θx +

1

θ + 1
θ2xe−θx.

Let f1(x) = θe−θx, f2(x) = θ2xe−θx. It is evident that f1(x) is the density
function of the Exponential distribution Exp(θ), and f2(x) is the density function
of the Gamma distribution Γ(2, θ). Then we have f(x) = (1 − β)f1(x) + βf2(x)
where β = 1

θ+1 .

From the above, it can be seen that the single-parameter Lindley distribution can
be regarded as a mixture of the Exponential distribution Exp(θ) and the Gamma
distribution Γ(2, θ), where β = 1

θ+1 . If the parameter β is retained 0 ≤ β ≤ 1
while assuming that β is independent of θ, the generalized two-parameter Lindley
distribution is obtained.

Definition 2.1. A non-negative continuous random variable X is said to follow
the generalized two-parameter Lindley distribution GL(θ, β), with its distribution
function F (x) and density function f(x) respectively defined as:

F (x) = 1−
(
1 +

β

θ
x

)
e−x/θ, f(x) =

1

θ

(
1− β +

β

θ
x

)
e−x/θ, x > 0,

where 0 ≤ β ≤ 1 is referred to as the shape parameter, and θ > 0 as the scale
parameter.

Specifically, when β = 0, the distribution function is F (x) = 1 − e−x/θ, that
is, the generalized two-parameter Lindley distribution GL(θ, β) degenerates into
the single-parameter Exponential distribution Exp(1/θ). When β = 1, the distri-
bution function is F (x) = 1−

(
1 + x

θ

)
e−x/θ, which is the one-parameter Ailamujia

distribution. When θ′ = θ−1 and β = 1
θ′+1 = θ

θ+1 , the distribution function is

F (x) = 1−
(
1 + θ′

θ′+1x
)
e−θ′x, which is the single-parameter Lindley distribution.

Building upon Definition 2.1, the introduction of an additional shape parameter
m leads to the following generalized three-parameter Lindley distribution.

Definition 2.2. A non-negative continuous random variable X is said to follow the
generalized three-parameter Lindley distribution GL(θ, β,m), with its distribution
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function F (x) and density function f(x) respectively defined as:

F (x) = 1−
[
1 + β

(x
θ

)m]
exp

[
−
(x
θ

)m]
, x ≥ 0, θ,m > 0, 0 ≤ β ≤ 1,

f(x) = −βmxm−1

θm
exp

[
−
(x
θ

)m]
+

[
1 + β

(x
θ

)m] mxm−1

θm
exp

[
−
(x
θ

)m]
=

mxm−1

θm

[
β
(x
θ

)m

+ 1− β
]
exp

[
−
(x
θ

)m]
.

In particular, when β = 0, the distribution function is F (x) = 1−exp
[
−
(
x
θ

)m]
,

which is the two-parameter Weibull distribution.

When m = 1, the distribution function is F (x) = 1−
(
1 + β

θ x
)
e−x/θ, which is

the generalized two-parameter Lindley distribution.
When m = 1, β = 0, the distribution function is F (x) = 1− e−x/θ, which is the

Exponential distribution Exp(1/θ).
When m = 1, β = 1, the distribution function is F (x) = 1−

(
1 + x

θ

)
e−x/θ, which

is the Ailamujia distribution.

When β = 1, the distribution function is F (x) = 1−
[
1 +

(
x
θ

)m]
e−(

x
θ )

m

, which
is the generalized Exponential sum distribution.

When m = 1, θ′ = θ−1 and β = 1
θ′+1 = θ

θ+1 , the distribution function is

F (x) = 1−
(
1 + θ′

θ′+1x
)
e−θ′x, which is the single-parameter Lindley distribution.

Theorem 2.1. (1) The generalized three-parameter Lindley distribution GL(θ, β,
m) can be viewed as a mixture of the two-parameter Weibull distribution with the

density function mxm−1

θm exp
[
−
(
x
θ

)m]
and the distribution with the density function

mxm−1

θm

(
x
θ

)m
exp

[
−
(
x
θ

)m]
.

(2) For k > 0, the k-order moment of X is

E
(
Xk

)
= θk

[
βΓ

(
2 +

k

m

)
+ (1− β)Γ

(
1 +

k

m

)]
.

Proof. (1) By denoting

f1(x) =
mxm−1

θm
exp

[
−
(x
θ

)m]
, f2(x) =

mxm−1

θm

(x
θ

)m

exp
[
−
(x
θ

)m]
,

we have

f(x) = (1− β)
mxm−1

θm
exp

[
−
(x
θ

)m]
+ β

mxm−1

θm

(x
θ

)m

exp
[
−
(x
θ

)m]
= (1− β)f1(x) + βf2(x).

It is easy to see that the generalized three-parameter Lindley distribution GL(θ,
β,m) can be regarded as a special mixed distribution

(2) E
(
Xk

)
=

∫ +∞

0

xkmxm−1

θm

[
β
(x
θ

)m

+ 1− β
]
exp

[
−
(x
θ

)m]
dx

= θk
∫ +∞

0

(βt+ 1− β)tk/me−t dt

= θk
[
β

∫ +∞

0

tk/m+1e−t dt+ (1− β)

∫ +∞

0

tk/me−t dt

]
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= θk
[
βΓ

(
2 +

k

m

)
+ (1− β)Γ

(
1 +

k

m

)]
.

In particular, its mathematical expectation and the second moment are

E(X) = θ

[
βΓ

(
2 +

1

m

)
+ (1− β)Γ

(
1 +

1

m

)]
,

E
(
X2

)
= θ2

[
βΓ

(
2 +

2

m

)
+ (1− β)Γ

(
1 +

2

m

)]
.

3. Failure mode of progressive stress accelerated
test for the generalized two-parameter Lindley
distribution under the inverse power law model

3.1. Basic assumptions of step-stress testing and the inverse
power law model

Assumption 3.1. It is assumed that the product life X follows the generalized two-
parameter Lindley distribution GL(θ, β) with the shape parameter β and the scale
parameter θ at any stress level V .

Assumption 3.2. Under various stress levels, the failure mechanism of the product
remains the same. That is, the shape parameter β of the product’s lifetime distri-
bution is the same for each stress level, while the scale parameter depends on the
stress level.

Assumption 3.3. The scale parameter θ and accelerated stress level V satisfy the
inverse power law model.

The inverse power law model refers to the relationship between the scale parame-
ter θ (in hours) and voltage (in volts) when voltage is used as the accelerated stress.
This is based on physical principles and empirical summaries from experiments,
which have found that for some products (such as insulating materials, capacitors,
micro motors, and certain electronic devices), there is the following inverse power
law relationship between the scale parameter and voltage: θ = 1

dV c , where d > 0
and c > 0 are constants. For electronic components, physical experiments have
shown that c is only related to the type of component and is independent of its
specifications.

After taking the logarithm of both sides of the above equation, the parameter θ
satisfies a logarithmic linear relationship: ln θ = a+bϕ(V ), where a = − ln d, b = −c
and ϕ(V ) = lnV is a function of stress V .

The statistical analysis of step-stress or progressive-stress accelerated life tests
is primarily based on the well-known Nelson assumptions, commonly referred to as
the Cumulative Exposure (CE) model.

Assumption 3.4. The residual life of a product depends solely on the extent of
failure that has already accumulated and the current stress level, rather than on the
manner in which the failure has accumulated.



Generalized three-parameter lindley distribution 3585

The Nelson Assumption essentially represents a form of “time scaling”. That is,
if a product is continuously subjected to a constant stress, the non-failed products
will fail according to the distribution function under that stress, but this failure
process starts from the previously accumulated failures.

Assume that under a constant stress Vi, i = 1, 2, the lifetime Xi of a product
follows a generalized two-parameter Lindley distribution GL (θi, β) , with its distri-
bution function given as:

FVi(x) = 1−
(
1 +

β

θi
x

)
e−x/θi , x > 0, β > 0, θi > 0, i = 1, 2.

Based on the Nelson assumption FV1 (x1) = FV2 (x2) , that is,

1−
(
1 +

β

θ1
x1

)
e−x1/θ1 = 1−

(
1 +

β

θ2
x2

)
e−x2/θ2 .

From which we derive x1

θ1
= x2

θ2
. This is equivalent to x1 = θ1

θ2
x2 =

(
V2

V1

)c

x2.

The above equation can be interpreted as: The duration x2 for which a product

operates under stress V2 is equivalent to the time x1 =
(

V2

V1

)c

x2 for which it operates

under stress V1.

3.2. Failure modes under progressive stress (V (x) = Kx) in
accelerated life testing with the inverse power law model

The statistical analysis of generalized two-parameter Lindley distribution progres-
sive stress accelerated life tests (abbreviated as progressive stress tests) under the
inverse power law model is also based on the aforementioned four fundamental
assumptions.

First, consider the general progressive stress V (x) = Kx + V1, V1 > 0 acceler-
ated life testing. It is assumed that under a given stress V1, the life distribution
of a product follows a generalized two-parameter Lindley fatigue life distribution
GL (θ1, β) , and the scale parameter θ1 conforms to an inverse power law model
θ1 = 1

dV c
1
.

According to reference [34], the duration x for which a product operates under
a given stress level V (x) = Kx + V1, V1 > 0 is equivalent to the operational time
under a constant stress level V1, which can be expressed as:∫ x

0

(Kt+ V1)
c

V c
1

dt =
Kc

V c
1

∫ x

0

(
t+

V1

K

)c

dt

=
Kc

V c
1

1

c+ 1

[(
x+

V1

K

)c+1

−
(
V1

K

)c+1
]

=
1

K(c+ 1)

(Kx+ V1)
c+1 − V c+1

1

V c
1

.

Therefore, the life distribution of the product under progressive stress V (x) =
Kx+ V1, V1 > 0 is

FV (x)(x) = 1−
{
1 + β

d

K(c+ 1)

[
(Kx+ V1)

c+1 − V c+1
1

]}
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× exp

{
− d

K(c+ 1)

[
(Kx+ V1)

c+1 − V c+1
1

]}
.

Specifically, when V1 = 0, the life distribution of the product under progressive
stress V (x) = Kx is as follows:

FV (x)(x) = 1−
(
1 + β

dKcxc+1

c+ 1

)
exp

(
−dKcxc+1

c+ 1

)
.

By denoting θ =
(
c+1
dKc

)1/(c+1)
,m = c+ 1, it is observed that:

F (x) = 1−
[
1 + β

(x
θ

)m]
exp

[
−
(x
θ

)m]
,

which is the generalized three-parameter Lindley distribution.

Note. While the requirement here is m > 1, in fact, it can be extended to m > 0.

4. The graphical characteristics of the generalized
three-parameter Lindley distribution

Theorem 4.1. Assume that a non-negative random variable X follows the three-
parameter generalized Lindley distribution GL(θ, β,m). Then, its density function
f(x) exhibits the following graphical characteristics:

(1) When 0 < m ≤ 1
3 , f(x) is strictly monotonically decreasing. (2) When 1

3 <
m < 1

2 , f(x) is strictly monotonically decreasing. (3) When 1
2 ≤ m ≤ 1 and β0 =

m(m+1)+2m
√

m(1−m)

5m2−2m+1 , (i) If β ≤ m
3m−1 , f(x) is strictly monotonically decreasing. (ii)

If m
3m−1 < β ≤ β0, f(x) is strictly monotonically decreasing. (iii) If β0 < β < 1, f(x)

first strictly monotonically decreases, then increases, and eventually decreases again.
(4) When m > 1, f(x) exhibits an “inverted bathtub” shape.

Proof.

f(0) = +∞, f(+∞) = 0 for 0 < m < 1,

f(0) =
1− β

θ
, f(+∞) = 0 for m = 1,

f(0) = 0, f(+∞) = 0 for m > 1,

f ′(x) =
m

θm
x2m−2

θm
exp

[
−
(x
θ

)m]
×
{
(m− 1)

θm

xm

[
β
(x
θ

)m

+ 1− β
]
+ βm−m

[
β
(x
θ

)m

+ 1− β
]}

.

By denoting t =
(
x
θ

)m
, we have

f ′(x) =
m

θm
x2m−2

θm
exp

[
−
(x
θ

)m]
×
[
(m− 1)t−1(βt+ 1− β) + βm−m(βt+ 1− β)

]
=

m

θm
x2m−2

θm
t−1 exp

[
−
(x
θ

)m]
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×
[
−mβt2 + (3βm− β −m)t+ (m− 1)(1− β)

]
.

Define the function as g(t) = −mβt2 + (3βm− β −m)t+ (m− 1)(1− β), t ≥ 0.

g(0) = (m− 1)(1− β), g(+∞) = −∞,

∆ = (3βm− β −m)2 + 4mβ(m− 1)(1− β)

= 5β2m2 − 2β2m− 2βm2 + β2 +m2 − 2βm.

(1) When m ≤ 1
3 , 3βm − β − m ≤ 0, g(t) < 0, f ′(x) < 0, implying f(x) is strictly

monotonically decreasing.
(2) When 1

3 < m < 1
2 , at this point

m
3m−1 > 1, 3m− 1 < m, (3m− 1)β < m, 3βm−

β −m < 0, g(t) < 0, f ′(x) < 0, indicating f(x) is strictly monotonically decreasing.
(3) When 1

2 ≤ m ≤ 1, if β ≤ m
3m−1 , at this point

m
3m−1 ≤ 1, then 3βm − β −m ≤

0, g(t) < 0, f ′(x) < 0, which means f(x) is strictly monotonically decreasing.
When 1

2 ≤ m ≤ 1, and β > m
3m−1 , it is evident that 1

2 ≤ m
3m−1 ≤ 1, at this

point, 3βm− β −m > 0.
Define the function as h(m,β) = 5β2m2 − 2mβ2 − 2m2β − 2mβ + β2 +m2,

∂h(m,β)

∂β
= 10m2β − 4mβ − 2m2 − 2m+ 2β = 2

(
5m2β − 2mβ −m2 −m+ β

)
.

Define the function as h1(m,β) = 5m2β − 2mβ −m2 −m+ β.

∂h1(m,β)

∂β
= 5m2 − 2m+ 1 > 0, β >

m

3m− 1
,

h1

(
m,

m

3m− 1

)
= 5m2 m

3m− 1
− 2m

m

3m− 1
−m2 −m+

m

3m− 1

=
2m(m− 1)2

3m− 1

> 0.

Then h1(m,β) > h1

(
m, m

3m−1

)
> 0, indicating that h(m,β) is strictly monotoni-

cally increasing for β,

h

(
m,

m

3m− 1

)
=

4m2(2m− 1)(m− 1)

(3m− 1)2
< 0, h(m, 1) = (2m− 1)2 ≥ 0.

Moreover h(m,β) =
(
5m2 − 2m+ 1

)
β2 − 2m(m+ 1)β +m2.

Solving for the root β0 of β from the equation h(m,β) = 0,

∆ = 4m2(m+ 1)2 − 4m2
(
5m2 − 2m+ 1

)
= 16m3(1−m) ≥ 0.

If we choose β0 =
m(m+1)−2m

√
m(1−m)

5m2−2m+1 , since it is required that β0 > m
3m−1 , then

m(m+ 1)− 2m
√
m(1−m)

5m2 − 2m+ 1
>

m

3m− 1
,

which means

(m+ 1)− 2
√
m(1−m)

5m2 − 2m+ 1
>

1

3m− 1
,
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(m+ 1)(3m− 1)− 2(3m− 1)
√
m(1−m) > 5m2 − 2m+ 1,

3m2 + 2m− 1− 2(3m− 1)
√
m(1−m) > 5m2 − 2m+ 1,

− 2(3m− 1)
√
m(1−m) > 2(m− 1)2,

which is a contradiction.

Therefore, β0 should be taken as β0 =
m(m+1)+2m

√
m(1−m)

5m2−2m+1 , and m
3m−1 < β0 < 1.

Hence, when 1
2 ≤ m ≤ 1, and m

3m−1 < β < β0, h(m,β) < 0, then g(t) <
0, f ′(x) < 0, indicating that f(x) is strictly monotonically decreasing.

When 1
2 ≤ m ≤ 1, and β0 < β < 1, h(m,β) > 0, then due to the symmetry

axis of the equation g(t) = 0 is 3βm−β−m
2mβ > 0, it follows that equation g(t) = 0

has two positive real roots t1, t2, t1 < t2, i.e., when t < t1, g(t) < 0, f ′(x) < 0, f(x)
is strictly monotonically decreasing, when t1 < t < t2, g(t) > 0, f ′(x) > 0, f(x) is
strictly monotonically increasing, when t > t2, g(t) < 0, f ′(x) < 0, f(x) is strictly
monotonically decreasing.

(4) When m > 1, g(0) > 0, there exists t0, when t < t0, g(t) > 0, f ′(x) > 0, f(x)
is strictly monotonically increasing, when t > t0, g(t) < 0, f ′(x) < 0, f(x) is strictly
monotonically decreasing. Thus, f(x) exhibits an “inverted bathtub” shape.

Note. The graph of β0 as a function of m is shown in Figure 1 below, where

β0 =
m(m+1)+2m

√
m(1−m)

5m2−2m+1 , 1
2 ≤ m ≤ 1.

0.5 0.6 0.7 0.8 0.9 1.0
m

0.6

0.7

0.8

0.9

1.0

β0

Figure 1. Graph of β0 variation with respect to m(0.5 ≤ m ≤ 1).

Set the scale parameter as θ = 1, and for different combinations of the parame-
ters m,β, the graphical representations of the density function f(x) are illustrated
in Figures 2 to 7.

Theorem 4.2. Assume a non-negative random variable X follows a three-parameter
generalized Lindley distribution GL(θ, β,m). The failure rate function λ(x) then ex-
hibits the following graphical characteristics:
(1) When m ≤ 1

2 , λ(x) is strictly monotonically decreasing.
(2) When 1

2 < m < 1, (i) If 2m− 2 + β ≤ 0, λ(x) is strictly monotonically decreas-
ing. (ii) If 2m − 2 + β > 0, β = 1, λ(x) exhibits an “inverted bathtub” shape. (iii)
If 2m− 2 + β > 0, 2(1−m) < β < 1, β ≤ 4m(1−m), λ(x) is strictly monotonically
decreasing. (iv) If 2m − 2 + β > 0, 4m(1 − m) < β < 1, λ(x) initially decreases
strictly monotonically, then increases, and finally decreases again.
(3) When m ≥ 1, λ(x) is strictly monotonically increasing.
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1 2 3 4
x

0.02

0.04

0.06

0.08

f(x)

Figure 2. Graph of the density function with m = 0.1, β = 0.5, θ = 1.

1 2 3 4
x

0.05

0.10

0.15

0.20

0.25

0.30

f(x)

Figure 3. Graph of the density function with m = 0.4, β = 0.5, θ = 1.

1 2 3 4
x

0.1

0.2

0.3

0.4

0.5

0.6

f(x)

Figure 4. Graph of the density function with m = 0.8, β = 0.5, θ = 1 (β0 = 0.8, m
3m−1 = 4

7 ).

Proof. The failure rate function is defined as λ(x) = m
θm

xm−1[β( x
θ )

m
+1−β]

1+β( x
θ )

m .

When 0 < m < 1, λ(0) = +∞, λ(+∞) = 0.

When m = 1, λ(0) = 1−β
θ , λ(+∞) = 1

θ .

When m > 1, λ(0) = 0, λ(+∞) = +∞.

λ′(x) =
m

θm
x2m−2

θm

[
1 + β

(x
θ

)m]−2
{
(m− 1)

θm

xm

[
β
(x
θ

)m

+ 1− β
] [

1 + β
(x
θ

)m]
+βm

[
1 + β

(x
θ

)m]
− βm

[
β
(x
θ

)m

+ 1− β
]}

.
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1 2 3 4
x

0.1

0.2

0.3

0.4

0.5

0.6

f(x)

Figure 5. Graph of the density function with m = 0.8, β = 0.6, θ = 1 (β0 = 0.8, m
3m−1 = 4

7 ).

0.5 1.0 1.5
x

0.25

0.30

0.35

0.40

0.45

f(x)

Figure 6. Graph of the density function with m = 0.8, β = 0.85, θ = 1 (β0 = 0.8, m
3m−1 = 4

7 ).

1 2 3 4
x

0.1

0.2

0.3

0.4

0.5

f(x)

Figure 7. Graph of the density function with m = 1.5, β = 0.5, θ = 1.

By denoting t =
(
x
θ

)m
, we have

λ′(x) =
mx2m−2

θ2m
1

t(1 + βt)2
[
β2(m− 1)t2 + β(2m− 2 + β)t+ (1− β)(m− 1)

]
.

Define the function as g(t) = β2(m− 1)t2 + β(2m− 2+ β)t+ (1− β)(m− 1), t > 0,

g(0) = (1− β)(m− 1), g(+∞) =


+∞, m > 1,

+∞, m = 1,

−∞, m < 1,

∆ = β2[2(m− 1) + β]2 − 4β2(1− β)(m− 1)2 = β3
[
4(m− 1)2 + 4(m− 1) + β

]
.
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(1) When m ≤ 1
2 , g(t) < 0, λ(x) is strictly monotonically decreasing.

(2) When 1
2 < m < 1, if 2m − 2 + β ≤ 0, that is β ≤ 2(1 − m), g(t) < 0, λ(x) is

strictly monotonically decreasing.
When 1

2 < m < 1, if 2m− 2 + β > 0, that is 2(1−m) < β ≤ 1.
(i) If β = 1, at this point

g(t) = (m− 1)t2 + (2m− 1)t = t[(m− 1)t+ (2m− 1)] = t(1−m)

(
−t+

2m− 1

1−m

)
.

Let t0 = 2m−1
1−m . When t < t0, g(t) > 0, λ′(x) > 0; when t > t0, g(t) < 0, λ′(x) < 0,

indicating λ(x) first strictly monotonically increases then decreases, forming an “in-
verted bathtub” shape.
(ii) If 2(1−m) < β < 1,∆ = β3[4m(m− 1) + β] = β3[β − 4m(1−m)].
If β ≤ 4m(1−m),∆ ≤ 0, g(t) < 0, λ′(x) < 0, λ(x) is strictly monotonically decreas-
ing. If 4m(1−m) < β < 1,∆ > 0, there exists t1, t2, 0 < t1 < t2, such that g (t1) =
g (t2) = 0. When t < t1, g(t) < 0, λ′(x) < 0, when t1 < t < t2, g(t) > 0, λ′(x) > 0,
when t > t2, g(t) < 0, λ′(x) < 0, indicating λ(x) first strictly monotonically de-
creases, then increases, and finally decreases again.
(3) When m ≥ 1, g(t) > 0, λ(x) is strictly monotonically increasing.

Set the scale parameter as θ = 1, and for different combinations of the pa-
rameters m,β, the graphical representations of the failure rate function λ(x) are
illustrated in Figures 8 to 13.
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Figure 8. Graph of the failure rate function with m = 0.1, β = 0.5, θ = 1.
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Figure 9. Graph of the failure rate function with m = 0.8, β = 0.2, θ = 1.

Theorem 4.3. Assume that a non-negative random variable X follows a three-
parameter generalized Lindley distribution GL(θ, β,m).Then, the mean failure rate
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Figure 10. Graph of the failure rate function with m = 0.8, β = 1, θ = 1.
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Figure 11. Graph of the failure rate function with m = 0.8, β = 0.6, θ = 1.
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Figure 12. Graph of the failure rate function with m = 0.8, β = 0.8, θ = 1.

function λ̄(x) exhibits the following graphical characteristics:

(1) When m ≤ 1
2 , λ̄(x) is strictly monotonically decreasing. (2)When 1

2 < m < 1,
(a) If 2(m−1)+β ≤ 0, λ̄(x) is strictly monotonically decreasing. (b) If 2(m−1)+β >
0, denote β0 as the root of the equation 1 − m − βm + β ln β

2(1−m) = 0, (i) If

2(1 − m) < β ≤ β0, λ̄(x) is strictly monotonically decreasing. (ii) If β0 < β < 1,
the graph of λ̄(x) can exhibit two possible behaviors: < 1 > strictly monotonically
decreasing, < 2 > initially strictly monotonically decreasing, then increasing, and
finally decreasing again. (c)If β = 1, λ̄(x) initially increases strictly monotonically
and then decreases. (3)When m ≥ 1, λ̄(x) is strictly monotonically increasing.

Proof. The mean failure rate is defined as λ̄(x) = − 1
x

{
ln
[
1 + β

(
x
θ

)m]
−
(
x
θ

)m}
.
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Figure 13. Graph of the failure rate function with m = 1.5, β = 0.5, θ = 1.

By denoting t =
(
x
θ

)m
, we have λ̄(x) = − ln(1+βt)−t

θt1/m
, and

λ̄(0) =
m

θ
lim
t→0

βt+ 1− β

t(1−m)/m + βt1/m
.

When m < 1, λ̄(0) = m
θ lim

t→0

βt+1−β
t(1−m)/m+βt1/m

= +∞.

When m = 1, λ(0) = 1
θ lim
t→0

t−ln(1+βt)
t = 1

θ lim
t→0

[
1− ln(1+βt)

t

]
= 1−β

θ .

When m > 1, λ̄(0) = 0,

λ̄(+∞) =
m

θ
lim

t→+∞

βt+ 1− β

t(1−m)/m + βt1/m
.

When m < 1, λ̄(+∞) = 0.

When m = 1, λ̄(+∞) = 1
θ lim
t→0

t−ln(1+βt)
t = 1

θ lim
t→0

[
1− ln(1+βt)

t

]
= 1

θ .

When m > 1, λ̄(+∞) = +∞,

λ̄′(x) =
xm−1

θm+1
t−1/m−1 1

1 + βt
[−mβt+ (m− 1)(1 + βt)t+ (1 + βt) ln(1 + βt)].

Define the function as g(t) = −mβt+(m−1)(1+βt)t+(1+βt) ln(1+βt), t > 0,
then we have g(t) = −mβt+mt+mβ2t− t− βt2 + (1 + βt) ln(1 + βt),

g(0) = 0, g(+∞) =


+∞, m > 1,

+∞, m = 1,

−∞, m < 1.

In fact, when m > 1, g(t) = t2
[
β(m− 1) + (m−mβ − 1) 1t +

(1+βt) ln(1+βt)
t2

]
,

lim
t→+∞

(1+βt) ln(1+βt)
t2 = β2 lim

y→+∞
(1+y) ln(1+y)

y2 = β2 lim
y→+∞

ln(1+y)+1
2y = 0.

Thus, it follows that: g(+∞) = +∞.

When m = 1, g(t) = −βt+ (1 + βt) ln(1 + βt) = βt
[
(1+βt) ln(1+βt)

βt − 1
]
,

lim
t→+∞

(1+βt) ln(1+βt)
βt = lim

y→+∞
(1+y) ln(1+y)

y = lim
y→+∞

[ln(1 + y)− 1] = +∞.

We have g(+∞) = +∞.
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When m < 1, g(+∞) = −∞,

g′(t) = −βm+ (m− 1)(1 + βt) + (m− 1)βt+ β + β ln(1 + βt)

= 2(m− 1)βt+ (m− 1)(1− β) + β ln(1 + βt).

Define the function as g1(t) = 2(m− 1)βt+ (m− 1)(1− β) + β ln(1 + βt), t > 0,

g1(0) = (m− 1)(1− β) =


> 0, m > 1,

= 0, m = 1,

< 0, m < 1,

g1(+∞) =

+∞, m ≥ 1,

−∞, m < 1,

g′1(t) = 2(m− 1)β +
β2

1 + βt
.

Define the function as g2(t) = 2(m− 1)β + β2

1+βt , t > 0,

g2(0) = β[2(m− 1) + β], g2(+∞) = 2(m− 1)β, g′2(t) = − β3

(1+βt)2 < 0.

(1) When m ≤ 1
2 , 2(1 − m) > 1, 2(m − 1) + β < 0, g2(t) < 0, g′1(t) < 0, g1(t) <

0, g′(t) < 0, g(t) < 0, λ̄(x) is strictly monotonically decreasing.
(2) When 1

2 < m < 1,
(a) 2(m−1)+β ≤ 0, that is β ≤ 2(1−m) < 1, g2(0) ≤ 0, g2(t) < 0, g′1(t) < 0, g1(t) <
0, g′(t) < 0, g(t) < 0, λ̄(x) is strictly monotonically decreasing.
(b) 2(m − 1) + β > 0, that is 2(1 − m) < β < 1, there exists t2, g2 (t2) = 0, if
t < t2, g2(t) > 0, g′1(t) > 0; if t > t2, g2(t) < 0, g′1(t) < 0,

2(m− 1)(1 + βt) + β = 0, 2(m− 1) + 2(m− 1)βt+ β = 0, t2 =
2(m− 1) + β

2(1−m)β
.

Then when t = t2, g1 (t2) is the maximum value of g1(t) :

g1 (t2) = 2(m− 1)β
2(m− 1) + β

2(1−m)β
+ (m− 1)(1− β) + β ln

[
1 +

2(m− 1) + β

2(1−m)β

]
= 1−m− βm+ β ln

β

2(1−m)
.

Define the function as h(β) = 1−m− βm+ β ln β
2(1−m) , 2(1−m) ≤ β ≤ 1,

h′(β) = −m+ ln
β

2(1−m)
+ 1 > 0,

h(2(1−m)) = 1−m− 2(1−m)m = 2m2 − 3m+ 1 = (2m− 1)(m− 1) < 0,

h(1) = 1−m−m− ln[2(1−m)] = 1− ln 2− 2m− ln(1−m).

Define the function as h1(m) = 1− ln 2− 2m− ln(1−m), 1
2 < m < 1,

h′
1(m) = −2 +

1

1−m
=

2m− 1

1−m
> 0, h1(0.5) = 0, h1(m) > 0, h(1) > 0.

Then, there exists β0 such that h (β0) = 0, when 2(1 − m) < β < β0, h(β) < 0,
when β0 < β ≤ 1, h(β) > 0.
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(i) When 2(1 − m) < β ≤ β0, h(β) ≤ 0, g1 (t2) ≤ 0, g1(t) ≤ 0, g′(t) < 0, g(t) <
0, λ̄(x) is strictly monotonically decreasing. (ii) When β0 < β < 1, h(β) > 0, g1 (t2)
> 0, there exists t11, t12, t11 < t12 with g1 (t11) = g1 (t12) = 0.

When t < t11, g1(t) < 0, g′(t) < 0, when t11 < t < t12, g1(t) > 0, g′(t) > 0, when
t > t12, g1(t) < 0, g′(t) < 0.

It is clear that, < 1 > if g(t) ≤ 0, then λ̄(x)is strictly monotonically decreasing,
< 2 > if there exists t01, t02, g (t01) = g (t02) = 0, when t < t01, g(t) < 0; when t01 <
t < t02, g(t) > 0; when t > t02, g(t) < 0, then λ̄(x) is “first strictly monotonically
decreasing then increasing and again decreasing”.

(c) Especially when β = 1, and 1
2 < m < 1, at this time

g(t) = −mt+mt+mt2 − t− t2 + (1 + t) ln(1 + t)

= mt2 − t− t2 + (1 + t) ln(1 + t),

g(0) = 0, g(+∞) = −∞,

g′(t) = 2mt− 1− 2t+ 1 + ln(1 + t)

= 2mt− 2t+ ln(1 + t).

Define the function as g1(t) = 2mt− 2t+ ln(1 + t), t > 0,

g1(0) = 0, g1(+∞) = −∞, g′1(t) = 2m− 2 +
1

1 + t
= 2(m− 1) +

1

1 + t
.

Denote t2 = 2m−1
2(1−m) , then g′1 (t2) = 0, when t < t2, g

′
1(t) > 0, when t > t2, g

′
1(t) < 0.

There exists t1, g1 (t1) = 0, when t < t1, g1(t) > 0, g′(t) > 0, when t > t1, g1(t) <
0, g′(t) < 0. There exists t0, g (t0) = 0, when t < t0, g(t) > 0, when t > t0, g(t) < 0,
then λ̄(x) first strictly monotonically increases then decreases.
(3) When m ≥ 1, g′1(t) > 0, g1(t) > 0, g′(t) > 0, g(t) > 0, λ̄(x) is strictly monotoni-
cally increasing.

Set the scale parameter as θ = 1, and for different combinations of the param-
eters m,β, the graphical representations of the mean failure rate function λ̄(x) are
illustrated in Figures 14 to 23.
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Figure 14. Graph of the mean failure rate function with m = 0.1, β = 0.5, θ = 1.

Theorem 4.4. Assume a non-negative random variable X follows a three-
parameter generalized Lindley distribution GL(θ, β,m). Then, the mean residual
life M(x) exhibits the following graphical characteristics:
(1) When m < 1, (a) If 2(m−1)+β ≤ 0, < 1 > If m ≤ 1

2 ,M(x) is strictly monoton-
ically increasing. < 2 > If 1

2 < m < 1,M(x) is strictly monotonically increasing.
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Figure 15. Graph of the mean failure rate function with m = 0.8, β = 0.2, θ = 1.
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Figure 16. Graph of the mean failure rate function with m = 0.8, β = 0.5, θ = 1(β0 = 0.656402).
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Figure 17. Graph of the mean failure rate function with m = 0.8, β = 0.66, θ = 1(β0 = 0.656402).

(b) If 2(m − 1) + β > 0, < 1 > If m < 1
2 , this condition does not exist. < 2 > If

1
2 ≤ m < 1, (i) If β ≤ 4(1−m)m,M(x) is strictly monotonically increasing. (ii) If
4(1 −m)m < β < 1,M(x) may strictly monotonically increase, or it may initially
increase, then decrease, and increase again. (iii) If β = 1,M(x) initially decreases
strictly monotonically, then increases.
(2) When m ≥ 1,M(x) is strictly monotonically decreasing.

Proof. The mean residual life is defined as:

M(x) =

∫ +∞
x

[1− F (y)]dy

1− F (x)
=

∫ +∞
( x

θ )
m

(1+βz)θ
m e−zz1/m−1 dz[

1 + β
(
x
θ

)m]
exp

[
−
(
x
θ

)m] .
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Figure 18. Graph of the mean failure rate function with m = 0.8, β = 0.67, θ = 1(β0 = 0.656402).
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Figure 19. Graph of the mean failure rate function with m = 0.8, β = 0.68, θ = 1(β0 = 0.656402).
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Figure 20. Graph of the mean failure rate function with m = 0.8, β = 0.685, θ = 1(β0 = 0.656402).

By denoting t =
(
x
θ

)β
, we have M(x) = θ

m

∫ +∞
t

(1+βz)e−zz1/m−1 dz

(1+βt)e−t ,M(0) = E(X),

M(+∞) = lim
x→+∞

1− F (x)

f(x)

=
θm

m
lim

x→+∞

1 + β
(
x
θ

)m
xm−1

[
β
(
x
θ

)m
+ 1− β

]
=

θm

m
lim

x→+∞

1 + βt

θm−1t1−1/m(βt+ 1− β)
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Figure 21. Graph of the mean failure rate function with m = 0.8, β = 0.69, θ = 1(β0 = 0.656402).
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Figure 22. Graph of the mean failure rate function with m = 0.8, β = 0.7, θ = 1(β0 = 0.656402)
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Figure 23. Graph of the mean failure rate function with m = 1.5, β = 0.5, θ = 1.

=
θ

m
lim

x→+∞

1 + βt

t1−1/m(βt+ 1− β)

=


0, m > 1,

θ, m = 1,

+∞, m < 1,

M ′(x) =
(x
θ

)m−1 βt+ 1− β

(1 + βt)2e−t

{∫ +∞

t

(1 + βz)z1/m−1e−z dz
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− (1 + βt)2t1/m−1e−t

βt+ 1− β

}
.

Define the function as g(t) =
∫ +∞
t

(1 + βz)z1/m−1e−z dz − (1+βt)2t1/m−1e−t

βt+1−β , t > 0,

g′(t) =
1 + βt

m
t1/m−2e−t

[
(m− 1)(1 + βt)2 + β(1 + βt)− βm

]
,

g(+∞) = 0,

g(0) =

∫ +∞

0

(1 + βz)z1/m−1e−z dz − lim
t→0

(1 + βt)2t1/m−1e−t

βt+ 1− β

=


−∞, m > 1,∫ +∞

0

(1 + βz)e−z dz − 1

1− β
= 1 + β − 1

1− β
= − β2

1− β
, m = 1,∫ +∞

0

(1 + βz)z1/m−1e−z dz, m > 1.

Define the function as g1(t) = (m− 1)(1 + βt)2 + β(1 + βt)− βm, t > 0,

g1(0) = m− 1 + β − βm = (m− 1)(1− β) =


> 0, m > 1,

= 0, m = 1,

< 0, m < 1,

g1(+∞) =


+∞, m > 1,

+∞, m = 1,

−∞, m < 1,

g′1(t) = 2β(m− 1)(1 + βt) + β2.

(1) When m < 1, let g′1(t) = 0, that is
2(m−1)+2β(m−1)t+β = 0, 2β(1−m)t = 2(m−1)+β, g′1(0) = β[2(m−1)+β].

(a) If 2(m− 1) + β ≤ 0, that is β ≤ 2(1−m).
< 1 > For m ≤ 1

2 , that is 2(1 − m) ≥ 1, then 2(m − 1) + β ≤ 0, furthermore
g′1(t) < 0, g1(t) < 0, g′(t) < 0, g(t) > 0,M(x) is strictly monotonically increasing.
< 2 > If 1

2 < m < 1, β ≤ 2(1 − m), g′1(t) < 0, g1(t) < 0, g′(t) < 0, g(t) > 0, then
M(x) is strictly monotonically increasing.
(b) If 2(m− 1) + β > 0, that is β > 2(1−m).
< 1 > If m < 1

2 , β > 2(1−m) > 1, which is in contradiction with 0 ≤ β ≤ 1.

< 2 > If 1
2 ≤ m < 1, β ≥ 2(1 − m), i.e.2(1 − m) ≤ β ≤ 1, denote t2 = 2(m−1)+β

2β(1−m)

at this point. When t < t2, g
′
1(t) > 0; when t > t2, g

′
1(t) < 0, i.e. g1 (t2) is the

maximum value of g1(t),

g1 (t2) = (m− 1)

[
1 +

2(m− 1) + β

2(1−m)

]2
+ β

[
1 +

2(m− 1) + β

2(1−m)

]
− βm

=
β

4(1−m)
[β − 4(1−m)m].
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(i) If β ≤ 4(1 −m)m, g1(t) ≤ 0, g′(t) < 0, g(t) > 0,M(x) is strictly monotonically
increasing.
(ii) If 4(1 − m)m < β < 1, there exists t11, t12, t11 < t12, g1 (t11) = g1 (t12) = 0,
when t < t11, g1(t) < 0, g′(t) < 0; when t11 < t < t12, g1(t) > 0, g′(t) > 0; when
t > t12, g1(t) < 0, g′(t) < 0, then M(x) may strictly monotonically increase or first
increase, then decrease, and increase again.
(iii) If β = 1, since g1(0) = 0, there exists t1, g1 (t1) = 0, when t < t1, g1(t) >
0, g′(t) > 0; when t > t1, g1(t) < 0, g′(t) < 0, then M(x) first strictly monotonically
decreases, then increases.
(2) When m ≥ 1, g′1(t) > 0, g1(t) > 0, g′(t) > 0, g(t) < 0,M(x) is strictly monotoni-
cally decreasing.

Set the scale parameter as θ = 1, and for different combinations of the parame-
tersm,β, the graphical representations of the mean residual lifeM(x) are illustrated
in Figures 24 to 30.
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Figure 24. Graph of the mean residual life with m = 0.1, β = 0.5, θ = 1.
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Figure 25. Graph of the mean residual life with m = 0.8, β = 0.3, θ = 1.

5. Estimation of parameters for the generalized
three-parameter Lindley distribution in a full
sample context

Let X1, X2, · · · , Xn be a simple random sample of size n from a population fol-
lowing a three-parameter generalized Lindley distribution X ∼ GL(θ, β,m), with
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Figure 26. Graph of the mean residual life with m = 0.8, β = 0.5, θ = 1.
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Figure 27. Graph of the mean residual life with m = 0.8, β = 0.65, θ = 1.
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Figure 28. Graph of the mean residual life with m = 0.8, β = 0.7, θ = 1.

sample observations denoted as x1, x2, · · · , xn and ordered observations as x(1), x(2),
· · · , x(n).

Due to the complexity of the distribution function, density function, and higher-
order moments of the generalized three-parameter Lindley distribution GL(θ, β,m),
the conventional methods of maximum likelihood estimation and moment estima-
tion involve solving very complex transcendental equations. It is theoretically dif-
ficult to study their existence and uniqueness, hence the necessity of finding new
methods for parameter estimation.

Let Y = lnX,Yi = lnXi, yi = lnxi, i = 1, 2, · · · , n, and denote µ = ln θ, σ = 1
m .
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Figure 29. Graph of the mean residual life with m = 0.8, β = 1, θ = 1.
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Figure 30. Graph of the mean residual life with m = 1.5, β = 0.5, θ = 1.

For −∞ < y < +∞, the distribution function of Y is

FY (y) = P (lnX ≤ y)

= P (X ≤ ey)

= 1−
[
1 + β

(
ey

θ

)m]
exp

[
−
(
ey

θ

)m]
= 1−

[
1 + β exp

(
y − µ

σ

)]
exp

[
− exp

(
y − µ

σ

)]
.

Let Z = lnX−µ
σ , and then for −∞ < z < +∞, the distribution function of Z is

FZ(z) = 1− (1 + βez) e−ez , fZ(z) = (1 + βez − β) eze−ez .

Lemma 5.1. Suppose the distribution function FZ(z) and density function fZ(z)
of a random variable Z are respectively:

FZ(z) = 1− (1 + βez) e−ez , fZ(z) = [(1− β) + βez] eze−ez .

Then E(Z) = a1 + β,E
(
Z2

)
= a2 + c2β,E

(
Z3

)
= a3 + c3β,E

(
Z4

)
= a4 + c4β,

D(Z) = −β2 + b2, E[Z − E(Z)]3 = 2β3 + b3, E[Z − E(Z)]4 = −3β4 − 6b2β
2 + b4,

where a1 = −0.577216, a2 = 1.97811, a3 = −5.44487, a4 = 23.5615,

c1 = 1, c2 = −1.15443, c3 = 5.93434, c4 = −21.7795,

b2 = a2 − a21 = 1.64493, b3 = a3 − 3a1a2 + 2a31 = −2.40411,

b4 = a4 − 4a3a1 + 6a2a
2
1 − 3a41 = 14.6114.



Generalized three-parameter lindley distribution 3603

Proof. It is evident that the k -th moment of Z is

E
(
Zk

)
=

∫ +∞

−∞
zk [(1− β) + βez] eze−ez dz

=

∫ +∞

0

[(1− β) + βt](ln t)ke−t dt

= (1− β)

∫ +∞

0

(ln t)ke−t dt+ β

∫ +∞

0

t(ln t)ke−t dt

=

∫ +∞

0

(ln t)ke−t dt+ β

[∫ +∞

0

t(ln t)ke−t dt−
∫ +∞

0

(ln t)ke−t dt

]
.

Let ak =
∫ +∞
0

(ln t)ke−t dt, ck =
∫ +∞
0

t(ln t)ke−t dt−
∫ +∞
0

(ln t)ke−t dt.
Considering:

lim
t→0

(ln t)ke−t = lim
t→0

(t+ 1)(ln t)ke−t = 0,

lim
t→+∞

(ln t)ke−t = lim
t→+∞

(t+ 1)(ln t)ke−t = 0,

ak =

∫ +∞

0

(ln t)ke−t dt

= − (ln t)ke−t
∣∣+∞
0

+ k

∫ +∞

0

1

t
(ln t)k−1e−t dt

= k

∫ +∞

0

1

t
(ln t)k−1e−t dt,

ck =

∫ +∞

0

t(ln t)ke−t dt− ak

= − (t+ 1)(ln t)ke−t
∣∣+∞
0

+ k

∫ +∞

0

t+ 1

t
(ln t)k−1e−t dt− ak

= k

∫ +∞

0

(ln t)k−1e−t dt+ k

∫ +∞

0

1

t
(ln t)k−1e−t dt

− k

∫ +∞

0

1

t
(ln t)k−1e−t dt

= k

∫ +∞

0

(ln t)k−1e−t dt

= kak−1.

By calculation, we have

a1 = −0.577216, a2 = 1.97811, a3 = −5.44487, a4 = 23.5615,

c1 = 1, c2 = −1.15443, c3 = 5.93434, c4 = −21.7795.

Let b2 = a2 − a21 = 1.64493, b3 = a3 − 3a1a2 + 2a31 = −2.40411,

b4 = a4 − 4a3a1 + 6a2a
2
1 − 3a41 = 14.6114.

Then we have

E(Z) = a1 + β,E
(
Z2

)
= a2 + c2β,E

(
Z3

)
= a3 + c3β,E

(
Z4

)
= a4 + c4β,
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D(Z) = E[Z − E(Z)]2

= a2 + c2β − (a1 + β)
2

= −β2 + (c2 − 2a1)β + a2 − a21

= −β2 + b2

= −β2 + 1.64493,

E[Z − E(Z)]3 = E
(
Z3

)
− 3E

(
Z2

)
E(Z) + 2[E(Z)]3

= a3 + c3β − 3 (a2 + c2β) (a1 + β) + 2 (a1 + β)
3

= 2β3 + b3

= 2β3 − 2.40411,

E[Z − E(Z)]4 = E
(
Z4

)
− 4E

(
Z3

)
E(Z) + 6E

(
Z3

)
[E(Z)]2 − 3[E(Z)]4

= a4 + c4β − 4 (a3 + c3β) (a1 + β) + 6 (a2 + c2β)
(
a21 + 2a1β + β2

)
− 3

(
a21 + 2a1β + β2

)2
= −3β4 − 6

(
a2 − a21

)
β2 + b4 = −3β4 − 6b2β

2 + b4

= −3β4 − 9.86958β2 + 14.6114.

Furthermore, given that Y = µ+σZ,it can be deduced from the aforementioned
lemma that:

E(Y ) = µ+ σE(Z) = µ+ σ (a1 + β) , D(Y ) = σ2D(Z).

Let Ȳ = 1
n

n∑
i=1

Yi, S
2
Y = 1

n

n∑
i=1

(
Yi − Ȳ

)2
, and thus a system of moment equations

can be established as follows:  Ȳ = µ+ σ (a1 + β),

S2
Y = σ2

(
b2 − β2

)
.

If the shape parameter β is known, then the point estimates of the parameters
σ,m are:

σ̂ =

√
S2
Y

b2 − β2
, m̂ =

√
b2 − β2

S2
Y

.

And the point estimates for the parameters µ, θ are:

µ̂ = Ȳ − σ̂ (a1 + β) , θ̂ = exp

{
Ȳ − a1 + β

m̂

}
.

Since m̂, θ̂ depend on the shape parameter β, it can be denoted as m̂(β), θ̂(β) .

Let F
(
x(j)

)
= 1 −

[
1 + β

(
x(j)

θ̂(β)

)m̂(β)
]
exp

[
−
(

x(j)

θ̂(β)

)m̂(β)
]
, j = 1, 2, · · · , n be a

function of the shape parameter β.

Define Q(β) =
n∑

j=1

∣∣F (
x(j)

)
− j

n

∣∣ , and considering the range [0, 1] of the shape

parameter β, set a step size 0.00001, denote βj = 0.00001j, j = 0, 1, 2, · · · , 105 and
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calculate the values of Q (βj) , j = 0, 1, · · · , 105, taking its minimum value. The
corresponding βj can then be considered as the point estimate of the parameter β,

denoted as β̂.

Note. The step size mentioned above can be determined according to the required
computational precision and is not necessarily 0.00001.

Consequently, the point estimates of the parameters m, θ can be obtained as:

m̂ =

√
b2 − β̂2

S2
Y

, θ̂ = exp

{
Ȳ − a1 + β̂

m̂

}
.

6. Case study analysis

Case 6.1. Reference [18] provides data on the waiting time (in minutes) of 100
customers waiting for service at a bank:

0.8, 0.8, 1.3, 1.5, 1.8, 1.9, 1.9, 2.1, 2.6, 2.7, 2.9, 3.1, 3.2, 3.3, 3.5, 3.6

4.0, 4.1, 4.2, 4.2, 4.3, 4.3, 4.4, 4.4, 4.6, 4.7, 4.7, 4.8, 4.9, 4.9, 5.0, 5.3,

5.5, 5.7, 5.7, 6.1, 6.2, 6.2, 6.2, 6.3, 6.7, 6.9, 7.1, 7.1, 7.1, 7.1, 7.4, 7.6,

7.7, 8.0, 8.2, 8.6, 8.6, 8.6, 8.8, 8.8, 8.9, 8.9, 9.5, 9.6, 9.7, 9.8, 10.7, 10.9,

11.0, 11.0, 11.1, 11.2, 11.2, 11.5, 11.9, 12.4, 12.5, 12.9, 13.0, 13.1, 13.3, 13.6, 13.7,

13.9, 14.1, 15.4, 15.4, 17.3, 17.3, 18.1, 18.2, 18.4, 18.9, 19.0, 19.9, 20.6, 21.3, 21.4,

21.9, 23.0, 27.0, 31.6, 33.1, 38.5.

Reference [11], through the K-S test, considers the data to originate from a
single-parameter Lindley distribution. In the full sample context, the point estimate
of parameter θ is calculated as θ̂ = 0.1866, and its distribution function is shown in
Figure 31.

Utilizing the method proposed in this paper, the data is fitted with the general-
ized three-parameter Lindley distribution, resulting in point estimates for the three
parameters as β̂ = 0.99999, m̂ = 1.02945, and θ̂ = 5.005. The distribution function
is illustrated in Figure 31.

Figure 31. Empirical distribution function and theoretical distribution functions for case 6.1.

Observing Figure 31, it is evident that both the single-parameter Lindley dis-
tribution and the generalized three-parameter Lindley distribution fit the batch of
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data well.

Case 6.2. In reference [25], through 47 observations during the maintenance pro-
cess of a certain model of tank, the on-site observed values for the primary level
preventive maintenance and secondary level upkeep time were obtained as follows
(unit: hours):

0.80, 1.00, 1.00, 1.41, 1.50, 1.50, 1.50, 2.00, 2.00, 2.00

2.00, 2.50, 2.50, 2.75, 3.20, 3.30, 3.70, 3.80, 3.80, 4.00

4.00, 4.00, 4.00, 4.00, 4.00, 4.10, 5.00, 5.00, 5.50, 5.50

5.50, 6.00, 6.50, 7.00, 7.16, 7.75, 8.00, 8.00, 9.50, 9.73

10.00, 11.40, 12.00, 12.00, 14.00, 15.21, 15.50.

Reference [12], through fitting tests, arrived at the following two conclusions: (1)
It is considered that the primary level preventive maintenance and secondary level
upkeep time for this model of tank follows an Ailamujia distribution with parameter
θ̂ = 2.7299. (2) It is believed that the primary level preventive maintenance and
secondary level upkeep time for this model of tank follows a Lindley distribution
with parameter θ̂ = 0.3217. The corresponding distribution functions are shown in
Figure 32.

Using the method presented in this paper, the data is fitted with the general-
ized three-parameter Lindley distribution, resulting in point estimates for the three
parameters as β̂ = 0.99999, m̂ = 1.06297, θ̂ = 2.823. The distribution function is
illustrated in Figure 32.

Figure 32. Empirical distribution function and theoretical distribution functions for case 6.2.

Observing Figure 32, it is evident that both the single-parameter Lindley dis-
tribution and the generalized three-parameter Lindley distribution fit the batch of
data well.
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