MULTIPLICITY AND CONCENTRATION OF SOLUTIONS TO A SINGULAR CHOQUARD EQUATION WITH CRITICAL SOBOLEV EXPONENT*

Shengbin Yu^{1,†} and Jianqing Chen²

Abstract In this paper, we consider a nonautonomous singular Choquard equation with critical exponent

$$\begin{cases}
-\Delta u + V(x)u + \lambda (I_{\alpha} * |u|^{p})|u|^{p-2}u = f(x)u^{-\gamma} + |u|^{4}u, & x \in \mathbb{R}^{3}, \\
u > 0, & x \in \mathbb{R}^{3},
\end{cases}$$

where I_{α} is the Riesz potential of order $\alpha \in (0,3)$ and $1 + \frac{\alpha}{3} \leq p < 3, 0 < \gamma < 1$. Under certain assumptions on V and f, we show the existence and multiplicity of positive solutions for $\lambda > 0$ by using variational method and Nehari type constraint. We also study concentration of solutions as $\lambda \to 0^+$.

Keywords Singular Choquard equation, variational method, concentration, critical Sobolev exponent.

MSC(2010) 35J20, 35J75, 35B09, 35B40.

1. Introduction

In this paper, we are interested in the nonautonomous Choquard equation

$$\begin{cases} -\Delta u + V(x)u + \lambda(I_{\alpha} * |u|^{p})|u|^{p-2}u = f(x)u^{-\gamma} + |u|^{4}u, & x \in \mathbb{R}^{3}, \\ u > 0, & x \in \mathbb{R}^{3}, \end{cases}$$
(P_{\lambda})

where $1+\frac{\alpha}{3} \leq p < 3, \ 0 < \gamma < 1, \ \lambda > 0$ and I_{α} with $\alpha \in (0,3)$ is the Riesz potential defined by $I_{\alpha} = \frac{\Gamma(\frac{3-\alpha}{2})}{\Gamma(\frac{\alpha}{2})2^{\alpha}\pi^{3/2}|x|^{3-\alpha}}, \ x \in \mathbb{R}^3 \setminus \{0\}$. Here, Γ denotes the Gamma function. Throughout the paper, we suppose V and f satisfy:

 (V_1) $V \in C(\mathbb{R}^3)$ satisfies $\inf_{x \in \mathbb{R}^3} V(x) > V_0 > 0$, where V_0 is a constant.

$$(V_1) \text{ meas}\{x \in \mathbb{R}^3 : -\infty < V(x) \le \nu\} < +\infty \text{ for all } \nu \in \mathbb{R}.$$

Email: yushengbin.8@163.com(S. Yu), jqchen@fjnu.edu.cn(J. Chen)

 $^{^{\}dagger} \text{The corresponding author.}$

 $^{^1\}mathrm{College}$ of Information Engineering, Fujian Business University, Fuzhou 350102, China

²School of Mathematics and Statistics & FJKLMAA, Fujian Normal University, Qishan Campus, Fuzhou 350117, China

^{*}The authors were supported by National Natural Science Foundation of China (No. 11871152, 11671085) and Natural Science Foundation of Fujian Province (No. 2023J01163).

 (f_1) $f \in L^{\frac{6}{5+\gamma}}(\mathbb{R}^3)$ is a positive function. (f_2) There are $\delta_1 > 0$, $\max\{\frac{3+\gamma}{2}, \frac{5+\gamma-2\alpha}{2}\} < \beta_1 < \frac{5+\gamma}{2}$ and $\rho_1 > 0$ such that $f(x) \ge \rho_1 |x|^{-\beta_1} \text{ for } |x| < \delta_1.$

Recently, many scholars pay attentions to the following more general Choquard equation

$$-\Delta u + V(x)u + \lambda (I_{\alpha} * |u|^{p})|u|^{p-2}u = h(x, u), \quad x \in \mathbb{R}^{N},$$
(1.1)

where $N \in \mathbb{N}$ and $\alpha \in (0, N)$. Problem (1.1) with N = 3, V(x) = 1, $\lambda = -1$, $p = \alpha = 2$ and h(x, u) = 0 was proposed by Pekar [26] to describe the quantum theory of a polaron at rest and as an approximation to Hartree-Fock theory of one component plasma by Choquard (see [19]). Many papers considered problem (1.1) with $\lambda = -1$: when V(x) = 1, $2 \le p \le \frac{N+\alpha}{N-2}$ and h(x,u) = 0, Ruiz and Van Schaftingen [27] proved that least energy nodal solutions for problem (1.1) have an odd symmetry with respect to a hyperplane when $\alpha \to 0^+$ or $\alpha \to N^-$. Based on [27], Seok [29] further studied limit profiles of ground states as $\alpha \to 0^+$ or $\alpha \to N^-$. When $N \geq 3$, V(x) = 1 and p > 1, Seok [30] considered problem (1.1) with a critical local term and showed the existence of radially symmetric nontrivial solution and concentration results as $\alpha \to 0^+$. When $N \ge 3$ and $V(x) = 1 + \mu g(x)$ is a potential well, Lü [21] obtained the existence of ground state solutions and concentration results as $\mu \to +\infty$ for problem (1.1) with subcritical exponents and h(x, u) = 0. Li et al. [15] extended the results of Lü [21] to critical case and obtained the existence of ground state solutions and concentration results as $\alpha \to 0$. Ghimenti, Moroz and Van Schaftingen [6] got the existence of least action sign-changing radial solutions for problem (1.1) with V(x) = 1, p = 2 and h(x, u) = 0. The solution is constructed as the limit of least action sign-changing radial solutions when $p \setminus 2$. When V(x) = 1, Van Schaftingen and Xia [28], Ao [1], Li and Ma [17], Li and Tang [16], Seok [31], Su and Chen [32] further investigated the existence of solutions for problem (1.1) with lower and upper critical exponents. When $V(x) = 1 + \mu g(x)$ satisfying some conditions and $\mu < 0$, Zhong and Tang [42] investigated the existence of ground state sign-changing solutions for problem (1.1) with a critical pure power nonlinearity. As for $\lambda = 1$, Mercuri et al. [23] obtained the existence and regularity of ground state solutions and radial solutions for problem (1.1) with V(x) = 0, p>1 and $h(x,u)=|u|^{q-2}u,\,q>1$. When $N\geq 3,\,p\in\left[1+\frac{\alpha}{N},\frac{N}{N-2}\right)$, Wu [36] investigated the existence, multiplicity and asymptotic behavior of positive solution for problem (1.1) with V(x) and h(x, u) satisfying some suitable conditions. Lü [22] and Li et al. [14] discussed the existence and concentration of solutions for problem (1.1) with Kirchhoff term in \mathbb{R}^3 . We [38] obtained the existence, uniqueness and asymptotical behavior of solutions to problem (1.1) with N=3 and h(x,u)= $f(x)u^{-\gamma}$ i.e. a singular nonlinearity. Mukherjee and Sreenadh [25] investigated a nonlinear Choquard equation with upper critical exponent and singularity. For more related topics, we refer to the survey paper [24] and the references therein.

On the bounded domains $\Omega \subset \mathbb{R}^N$ with $N \geq 3$, problem (1.1) without convolution term i.e. $\lambda = 0$ is related to the following equation

$$\begin{cases}
-\Delta u = \mu f(x)u^{-\gamma} + |u|^{2^*-2}u, & x \in \Omega, \\
u > 0, & x \in \Omega, \\
u = 0, & x \in \partial\Omega,
\end{cases}$$
(1.2)

where $2^* = \frac{2N}{N-2}$ is a critical Sobolev exponent. When f(x) = 1, Coclite and Palmieri [4] showed the existence of a solution of (1.2); Yang [37] improved the result of [4] and obtained multiplicity and asymptotic behavior of positive solutions for (1.2); Hirano et al. [8] further established the multiplicity and regularity of positive solutions for (1.2) with $\gamma > 0$; Giacomoni and Saoudi [7] proved a multiplicity result for a more general critical and singular problem, involving also a subcritical term and $0 < \gamma < 3$; Mukherjee and Sreenadh [25] investigated existence, multiplicity and regularity of positive solutions for a nonlinear singular Choquard equation with upper critical exponent. Consider (1.2) with parameter μ multiplying the critical term, Hirano et al. [9] studied multiplicity of positive solutions for the problem; Wang et al. [35], Sun and Wu [34] obtained existence and multiplicity of positive solutions and an exact estimate result for the problem. We [41] investigated the relation between the number of the maxima of the coefficient function of the critical term and the number of the positive solutions for elliptic equations with singularity in \mathbb{R}^3 . Both Lei et al. [12] and Liu et al. [20] got two positive solutions for problem (1.2) with Kirchhoff term. When N=3 and f(x) satisfying some suitable conditions, Lei and Liao [11] obtained two positive solutions for problem (1.2) with Poisson term i.e. a singular Schrödinger-Poisson system. Lei, Suo and Chu [13] studied a Schrödinger-Newton system with singularity and critical growth terms in \mathbb{R}^N . We [40] obtained existence, uniqueness and asymptotic behaviour of positive solutions for fractional Schrödinger-Poisson system with singularity in \mathbb{R}^3 .

To the best of our knowledge, many works which considered concentration of solutions for Choquard equations [6,14,15,21,27,29,30,36,38–40] mainly focus on convergence property of one solution such as one ground state positive or sign-changing (nodal) solution and so on, there are few papers investigated convergence property of multiple solutions. Moreover, comparing problem (P_{λ}) with the previous mentioned works, we need to overcome the lack of compactness as well as the non-differentiability of the functional of the problem and indirect availability of critical point theory due to the presence of singular term.

Define the function space $E = \{u \in L^2(\mathbb{R}^3) : \nabla u \in L^2(\mathbb{R}^3), \|u\|_E < +\infty\}$, where $\|u\|_E = \left(\int_{\mathbb{R}^3} (|\nabla u|^2 + V(x)u^2) dx\right)^{1/2}$ and $L^s(\mathbb{R}^3)$ is a Lebesgue space with the norm $\|u\|_s = \left(\int_{\mathbb{R}^3} |u|^s dx\right)^{\frac{1}{s}}$. Then E is a Hilbert space with the inner product $\langle u, \psi \rangle_E = \int_{\mathbb{R}^3} (\nabla u \nabla \psi + V(x)u\psi) dx$. Obviously, for $s \in [2, 6]$, the embedding $E \hookrightarrow L^s(\mathbb{R}^3)$ is continuous. By [2], we can further get that under assumptions (V_1) and (V_2) , the embedding $E \hookrightarrow L^s(\mathbb{R}^3)$ is compact for any $s \in [2, 6)$.

The energy functional corresponding to problem (P_{λ}) given by

$$J_{\lambda}(u) = \frac{1}{2} \|u\|_{E}^{2} + \frac{\lambda}{2p} \int_{\mathbb{R}^{3}} (I_{\alpha} * |u|^{p}) |u|^{p} dx - \frac{1}{1 - \gamma} \int_{\mathbb{R}^{3}} f(x) |u|^{1 - \gamma} dx - \frac{1}{6} \int_{\mathbb{R}^{3}} |u|^{6} dx,$$
(1.3)

and a function $u \in E$ is called a solution of problem (P_{λ}) if u > 0 in \mathbb{R}^3 and for every $\psi \in E$,

$$\langle u, \psi \rangle_E + \lambda \int_{\mathbb{R}^3} (I_\alpha * u^p) u^{p-2} u \psi dx - \int_{\mathbb{R}^3} f(x) u^{-\gamma} \psi dx - \int_{\mathbb{R}^3} u^5 \psi dx = 0.$$
 (1.4)

By using variational method and Nehari type constraint, our main results on existence, multiplicity and concentration of solutions with respect to the parameter λ for problem (P_{λ}) can be stated as follows.

Theorem 1.1. Suppose $\lambda > 0$, $0 < \gamma < 1$, $1 + \frac{\alpha}{3} \le p < 3$ and (V_1) , (V_2) , (f_1) hold, then there exists $T_0 > 0$ such that for all $0 < \|\mathring{f}\|_{\frac{6}{5+\gamma}} < T_0$, problem (P_{λ}) admits a positive ground state solution u_{λ} satisfying u_{λ} tends to u_0 in E as $\lambda \to 0^+$, where u_0 is a positive ground state solution of the limit problem

$$\begin{cases}
-\Delta u + V(x)u = f(x)u^{-\gamma} + |u|^4 u, & x \in \mathbb{R}^3, \\
u > 0, & x \in \mathbb{R}^3.
\end{cases}$$
(P₀)

Theorem 1.2. Suppose $\lambda > 0$, $0 < \gamma < 1$, $1 + \frac{\alpha}{3} \le p < 3$ and (V_1) , (V_2) , (f_1) , (f_2) hold, then there exists $0 < T_{00} < T_0$ such that for all $0 < \|f\|_{\frac{6}{5+\gamma}} < T_{00}$, problem (P_{λ}) has at least two solutions: a positive ground state solution u_{λ} and a positive solution v_{λ} . Moreover, as $\lambda \to 0^+$, these solutions have the following convergence:

- (i) u_{λ} tends to u_0 in E, where u_0 is a positive ground state solution of problem
- (ii) v_{λ} tends to v_0 in E, where v_0 is a positive solution of problem (P_0) and $||u_0||_E^2 < ||v_0||_E^2$.

Throughout the paper, we use the following notations.

- $D^{1,2}(\mathbb{R}^3)$ is the completion of $C_0^{\infty}(\mathbb{R}^3)$ with the norm $\|\cdot\|^2 = \int_{\mathbb{R}^3} |\nabla \cdot|^2 dx$. Denote $d_{\alpha} := \frac{\Gamma(\frac{3-\alpha}{2})}{2^{\alpha}\pi^{3/2}\Gamma(\frac{3+\alpha}{2})} \Big(\frac{\Gamma(\frac{3}{2})}{\Gamma(3)}\Big)^{\frac{\alpha}{3}}$ and $\mathbb{D}(u) := \int_{\mathbb{R}^3} (I_{\alpha} * |u|^p) |u|^p dx$, then it holds

$$\langle \mathbb{D}'(u), \psi \rangle = 2p \int_{\mathbb{R}^3} (I_\alpha * |u|^p) |u|^{p-2} u \psi dx, \ \forall \psi \in E.$$

- $B_r(x)$ is a ball centered at x with radius r.
- \bullet C and C_i denotes various positive constants, which may vary from line to line.
- $\bullet \to (\text{resp.} \rightharpoonup)$ denotes the strong (resp. weak) convergence.
- $u^+ = \max\{u, 0\}$ and $u^- = \max\{-u, 0\}$ for any function u.
- S is the best Sobolev constant for the embedding of $D^{1,2}(\mathbb{R}^3)$ in $L^6(\mathbb{R}^3)$, namely,

$$S := \inf_{u \in D^{1,2}(\mathbb{R}^3) \setminus \{0\}} \frac{\int_{\mathbb{R}^3} |\nabla u|^2 dx}{\left(\int_{\mathbb{R}^3} |u|^6 dx\right)^{\frac{1}{3}}} > 0.$$
 (1.5)

Hence, $\int_{\mathbb{R}^3} |u|^6 \mathrm{d} x \leq S^{-3} \|u\|^6 \leq S^{-3} \|u\|_E^6$

2. Preliminary results

In this and next section, we always assume that all assumptions in Theorem 1.1 hold. It follows from Hardy-Littlewood-Sobolev inequality (see [24]) that

$$\mathbb{D}(u) = \int_{\mathbb{R}^3} (I_\alpha * |u|^p) |u|^p \mathrm{d}x \le d_\alpha \left(\int_{\mathbb{R}^3} |u|^{\frac{6p}{3+\alpha}} \mathrm{d}x \right)^{\frac{3+\alpha}{3}}. \tag{2.1}$$

Moreover, since $0 < \gamma < 1$, by Hölder's inequality, (f_1) and (1.5), we have

$$\int_{\mathbb{R}^3} f(x)|u|^{1-\gamma} dx \le \|f\|_{\frac{6}{5+\gamma}} \left[\int_{\mathbb{R}^3} |u|^6 dx \right]^{\frac{1-\gamma}{6}} \le \|f\|_{\frac{6}{5+\gamma}} S^{\frac{\gamma-1}{2}} \|u\|_E^{1-\gamma}, \tag{2.2}$$

and for any $u, v \in E$, it holds

$$\left| \int_{\mathbb{R}^3} f(x) \left(|u|^{1-\gamma} - |v|^{1-\gamma} \right) dx \right| \le \int_{\mathbb{R}^3} f(x) |u - v|^{1-\gamma} dx$$

$$\le ||f||_{\frac{6}{5+\gamma}} \left[\int_{\mathbb{R}^3} |u - v|^6 dx \right]^{\frac{1-\gamma}{6}}. \tag{2.3}$$

In order to prove our results, we first consider the following constrained set:

$$\mathcal{N}_{\lambda} = \left\{ u \in E \setminus \{0\} \, : \, \|u\|_E^2 + \lambda \mathbb{D}(u) - \int_{\mathbb{R}^3} f(x) |u|^{1-\gamma} \mathrm{d}x - \int_{\mathbb{R}^3} |u|^6 \mathrm{d}x = 0 \right\},$$

and split \mathcal{N}_{λ} as follows

$$\mathcal{N}_{\lambda}^{+} = \left\{ u \in \mathcal{N}_{\lambda} : 2\|u\|_{E}^{2} + 2p\lambda \mathbb{D}(u) - (1 - \gamma) \int_{\mathbb{R}^{3}} f(x)|u|^{1 - \gamma} dx > 6 \int_{\mathbb{R}^{3}} |u|^{6} dx \right\},
\mathcal{N}_{\lambda}^{-} = \left\{ u \in \mathcal{N}_{\lambda} : 2\|u\|_{E}^{2} + 2p\lambda \mathbb{D}(u) - (1 - \gamma) \int_{\mathbb{R}^{3}} f(x)|u|^{1 - \gamma} dx < 6 \int_{\mathbb{R}^{3}} |u|^{6} dx \right\},
\mathcal{N}_{\lambda}^{0} = \left\{ u \in \mathcal{N}_{\lambda} : 2\|u\|_{E}^{2} + 2p\lambda \mathbb{D}(u) - (1 - \gamma) \int_{\mathbb{R}^{3}} f(x)|u|^{1 - \gamma} dx = 6 \int_{\mathbb{R}^{3}} |u|^{6} dx \right\},$$

for any $\lambda > 0$. One can easily see that for $u \in \mathcal{N}_{\lambda}$,

$$\begin{split} &2\|u\|_{E}^{2}+2p\lambda\mathbb{D}(u)-(1-\gamma)\int_{\mathbb{R}^{3}}f(x)|u|^{1-\gamma}\mathrm{d}x-6\int_{\mathbb{R}^{3}}|u|^{6}\mathrm{d}x\\ =&2\lambda(p-1)\mathbb{D}(u)+(1+\gamma)\int_{\mathbb{R}^{3}}f(x)|u|^{1-\gamma}\mathrm{d}x-4\int_{\mathbb{R}^{3}}|u|^{6}\mathrm{d}x\\ =&(2-2p)\|u\|_{E}^{2}+(2p-1+\gamma)\int_{\mathbb{R}^{3}}f(x)|u|^{1-\gamma}\mathrm{d}x-(6-2p)\int_{\mathbb{R}^{3}}|u|^{6}\mathrm{d}x\\ =&(1+\gamma)\|u\|_{E}^{2}+\lambda(2p-1+\gamma)\mathbb{D}(u)-(5+\gamma)\int_{\mathbb{R}^{3}}|u|^{6}\mathrm{d}x\\ =&-4\|u\|_{E}^{2}-(6-2p)\lambda\mathbb{D}(u)+(5+\gamma)\int_{\mathbb{R}^{3}}f(x)|u|^{1-\gamma}\mathrm{d}x. \end{split} \tag{2.4}$$

We also recall the following lemma on the properties of $\mathbb{D}(u)$ from [14, 18], etc.

Lemma 2.1. For $0 < \alpha < 3$ and $1 + \frac{\alpha}{3} \le p < 3$, assume that $u_n \rightharpoonup u$ in E, then for any $\psi \in E$, we have $\lim_{n \to \infty} \mathbb{D}(u_n) = \mathbb{D}(u)$ and $\lim_{n \to \infty} \langle \mathbb{D}'(u_n), \psi \rangle = \langle \mathbb{D}'(u), \psi \rangle$.

Set

$$T_1 = \frac{4}{5+\gamma} S^{\frac{1-\gamma}{2}} \left[\frac{(1+\gamma)S^3}{5+\gamma} \right]^{\frac{1+\gamma}{4}}.$$
 (2.5)

Lemma 2.2. Suppose $0 < \|f\|_{\frac{6}{5+\gamma}} < T_1$, where T_1 is defined in (2.5), then for any $u \in E \setminus \{0\}$, there exist unique $t_{max} = t_{max}(u) > 0$, $t^+ = t^+(u) > 0$ and $t^- = t^-(u) > 0$ with $t^+ < t_{max} < t^-$, such that $t^+u \in \mathcal{N}_{\lambda}^+$, $t^-u \in \mathcal{N}_{\lambda}^-$, $J_{\lambda}(t^+u) = \inf_{0 < t \le t^-} J_{\lambda}(tu)$ and $J_{\lambda}(t^-u) = \sup_{t \ge t_{max}} J_{\lambda}(tu)$. Furthermore, $\mathcal{N}_{\lambda}^0 = \emptyset$ for $0 < \|f\|_{\frac{6}{5+\gamma}} < T_1$.

Proof. For any $u \in E \setminus \{0\}$ and t > 0, we have

$$t \frac{\mathrm{d}J_{\lambda}(tu)}{\mathrm{d}t} = t^{2} \|u\|_{E}^{2} + \lambda t^{2p} \mathbb{D}(u) - t^{1-\gamma} \int_{\mathbb{R}^{3}} f(x) |u|^{1-\gamma} \mathrm{d}x - t^{6} \int_{\mathbb{R}^{3}} |u|^{6} \mathrm{d}x$$

$$= t^{1-\gamma} \Big[t^{1+\gamma} \|u\|_{E}^{2} - t^{5+\gamma} \int_{\mathbb{R}^{3}} |u|^{6} \mathrm{d}x + \lambda t^{2p-1+\gamma} \mathbb{D}(u) - \int_{\mathbb{R}^{3}} f(x) |u|^{1-\gamma} \mathrm{d}x \Big]$$

$$\equiv t^{1-\gamma} \Big[g(t) - \int_{\mathbb{R}^{3}} f(x) |u|^{1-\gamma} \mathrm{d}x \Big],$$
(2.6)

where $g(t) = t^{1+\gamma} ||u||_E^2 - t^{5+\gamma} \int_{\mathbb{R}^3} |u|^6 dx + \lambda t^{2p-1+\gamma} \mathbb{D}(u)$. Rewrite $g'(t) = t^{2p-2+\gamma} g_1(t)$ with

$$g_1(t) = (1+\gamma)t^{2-2p} \|u\|_E^2 - (5+\gamma)t^{6-2p} \int_{\mathbb{R}^3} |u|^6 dx + \lambda(2p-1+\gamma)\mathbb{D}(u).$$
 (2.7)

Since $\alpha \in (0,3)$ and $1 + \frac{\alpha}{3} \le p < 3$, we have $\lim_{t \to 0^+} g_1(t) = +\infty$, $\lim_{t \to +\infty} g_1(t) = -\infty$ and

$$g_1'(t) = (1+\gamma)(2-2p)t^{1-2p}||u||_E^2 - (5+\gamma)(6-2p)t^{5-2p} \int_{\mathbb{R}^3} |u|^6 dx < 0,$$

for all t>0. Thus, g(t) admits a global maximum point t_{max} which is the unique zero point of $g_1(t)$ and g(t) is increasing on $(0,t_{max})$, decreasing on $(t_{max},+\infty)$. Set $g_2(t)=t^{1+\gamma}\|u\|_E^2-t^{5+\gamma}\int_{\mathbb{R}^3}|u|^6\mathrm{d}x$. Obviously, $g_2(0)=0$, $\lim_{t\to+\infty}g_2(t)=-\infty$

and $g_2(t)$ achieves its maximum at $t_{g_2} = \left[\frac{(1+\gamma)\|u\|_E^2}{(5+\gamma)\int_{\mathbb{R}^3}|u|^6\mathrm{d}x}\right]^{\frac{1}{4}}$ with

$$\max_{t \in [0,+\infty)} g_2(t) = g_2(t_{g_2}) = \frac{4}{5+\gamma} \|u\|_E^2 \left[\frac{(1+\gamma)\|u\|_E^2}{(5+\gamma) \int_{\mathbb{R}^3} |u|^6 \mathrm{d}x} \right]^{\frac{1+\gamma}{4}}.$$

It follows from (1.5) and (2.2) that

$$g(t_{max}) - \int_{\mathbb{R}^{3}} f(x)|u|^{1-\gamma} dx$$

$$\geq \max_{t \in (0,+\infty)} g_{2}(t) - \int_{\mathbb{R}^{3}} f(x)|u|^{1-\gamma} dx$$

$$\geq \frac{4}{5+\gamma} \|u\|_{E}^{2} \left[\frac{(1+\gamma)\|u\|_{E}^{2}}{(5+\gamma)\int_{\mathbb{R}^{3}} |u|^{6} dx} \right]^{\frac{1+\gamma}{4}} - \|f\|_{\frac{6}{5+\gamma}} S^{\frac{\gamma-1}{2}} \|u\|_{E}^{1-\gamma}$$

$$\geq \left[\frac{4}{5+\gamma} \left(\frac{1+\gamma}{(5+\gamma)S^{-3}} \right)^{\frac{1+\gamma}{4}} - \|f\|_{\frac{6}{5+\gamma}} S^{\frac{\gamma-1}{2}} \right] \|u\|_{E}^{1-\gamma}$$

$$> 0.$$
(2.8)

since $0 < ||f||_{\frac{6}{5+\gamma}} < T_1$. Consequently, there exist two points $0 < t^+ < t_{max} < t^-$ such that

$$g(t^+) = g(t^-) = \int_{\mathbb{R}^3} f(x)|u|^{1-\gamma} dx$$
 and $g'(t^+) > 0 > g'(t^-)$.

That is $t^+u \in \mathcal{N}_{\lambda}^+$ and $t^-u \in \mathcal{N}_{\lambda}^-$. Hence, $\mathcal{N}_{\lambda}^{\pm} \neq \emptyset$ when $0 < \|f\|_{\frac{6}{5+\gamma}} < T_1$. We can further obtain from (2.6) that $\frac{\mathrm{d}J_{\lambda}(tu)}{\mathrm{d}t} > 0$ for all $t \in (t^+, t^-)$, $\frac{\mathrm{d}J_{\lambda}(tu)}{\mathrm{d}t} < 0$

for all $t \in (0, t^+)$ and $t \in (t^-, \infty)$. Thus, $J_{\lambda}(t^+u) = \inf_{0 < t \le t^-} J_{\lambda}(tu)$ and $J_{\lambda}(t^-u) = \sup_{t \ge t_{max}} J_{\lambda}(tu)$.

Now, we come to show that $\mathcal{N}_{\lambda}^{0} = \emptyset$ for $0 < \|f\|_{\frac{6}{5+\gamma}} < T_{1}$. By contradiction, assume that there exists $u_{0} \in \mathcal{N}_{\lambda}^{0}$ and $u_{0} \neq 0$. Similarly to (2.8), we can obtain from (2.4) that

$$0 < \frac{4}{5+\gamma} \|u_0\|_E^2 \left[\frac{(1+\gamma)\|u_0\|_E^2}{(5+\gamma)\int_{\mathbb{R}^3} |u_0|^6 dx} \right]^{\frac{1+\gamma}{4}} - \int_{\mathbb{R}^3} f(x)|u_0|^{1-\gamma} dx$$

$$\leq \frac{4}{5+\gamma} \|u_0\|_E^2 - \int_{\mathbb{R}^3} f(x)|u_0|^{1-\gamma} dx$$

$$<0,$$

which is a contradiction. Hence, $\mathcal{N}_{\lambda}^{0} = \emptyset$ for $0 < \|f\|_{\frac{6}{5+\alpha}} < T_{1}$.

Lemma 2.3. Suppose $0 < \|f\|_{\frac{6}{5+\gamma}} < T_1$, then there exists a gap structure in \mathcal{N}_{λ} :

$$||U||_E > A^* > A_* > ||u||_E, \ u \in \mathcal{N}_{\lambda}^+, \ U \in \mathcal{N}_{\lambda}^-,$$

where

$$A_* = \left(\frac{5+\gamma}{4} \|f\|_{\frac{6}{5+\gamma}} S^{\frac{\gamma-1}{2}}\right)^{\frac{1}{1+\gamma}}, \ A^* = \left[\frac{(1+\gamma)S^3}{5+\gamma}\right]^{\frac{1}{4}}.$$

Proof. Since $0 < ||f||_{\frac{6}{5+\gamma}} < T_1$, we have $\mathcal{N}_{\lambda}^{\pm} \neq \emptyset$ by Lemma 2.2. For any $u \in \mathcal{N}_{\lambda}^{+}$, it follows from (2.2) and (2.4) that

$$||u||_E^2 < \frac{5+\gamma}{4} \int_{\mathbb{D}^3} f(x)|u|^{1-\gamma} dx \le \frac{5+\gamma}{4} ||f||_{\frac{6}{5+\gamma}} S^{\frac{\gamma-1}{2}} ||u||_E^{1-\gamma},$$

which yields $||u||_E < A_*$.

For any $U \in \mathcal{N}_{\lambda}^{-}$, it follows from (1.5) and (2.4) that

$$(1+\gamma)\|U\|_E^2 < (5+\gamma)\int_{\mathbb{R}^3} |U|^6 dx \le (5+\gamma)S^{-3}\|U\|_E^6,$$

which yields $||U||_E > A^*$.

Using $0 < \|f\|_{\frac{6}{5+\gamma}} < T_1$ and the definition of T_1 , one can further obtain $A_* < \left(\frac{5+\gamma}{4}T_1S^{\frac{\gamma-1}{2}}\right)^{\frac{1}{1+\gamma}} = A^*$. So the proof is completed.

Lemma 2.4. Suppose $0 < \|f\|_{\frac{6}{5+\gamma}} < T_1$, then \mathcal{N}_{λ}^- is a closed set in E.

Proof. Since $0 < \|f\|_{\frac{6}{5+\gamma}} < T_1$, by Lemma 2.2, one has $\mathcal{N}_{\lambda}^- \neq \emptyset$ and $\mathcal{N}_{\lambda}^0 = \emptyset$. Let $\{U_n\}$ be a sequence in \mathcal{N}_{λ}^- with $U_n \to U_0$ in E, then $U_n \to U_0$ in $L^6(\mathbb{R}^3)$. Since $\mathcal{N}_{\lambda}^- \subset \mathcal{N}_{\lambda}$, one can obtain from Lemma 2.1, (2.3) and (2.4) that

$$||U_0||_E^2 = \lim_{n \to \infty} ||U_n||_E^2$$

$$= \lim_{n \to \infty} \left[\int_{\mathbb{R}^3} f(x) |U_n|^{1-\gamma} dx + \int_{\mathbb{R}^3} |U_n|^6 dx - \lambda \mathbb{D}(U_n) \right]$$

$$= \int_{\mathbb{R}^3} f(x) |U_0|^{1-\gamma} dx + \int_{\mathbb{R}^3} |U_0|^6 dx - \lambda \mathbb{D}(U_0)$$

and

$$-4\|U_0\|_E^2 - (6 - 2p)\lambda \mathbb{D}(U_0) + (5 + \gamma) \int_{\mathbb{R}^3} f(x)|U_0|^{1-\gamma} dx$$

$$= \lim_{n \to \infty} \left[-4\|U_n\|_E^2 - (6 - 2p)\lambda \mathbb{D}(U_n) + (5 + \gamma) \int_{\mathbb{R}^3} f(x)|U_n|^{1-\gamma} dx \right]$$

$$\leq 0,$$

so $U_0 \in \mathcal{N}_{\lambda}^- \cup \{0\}$. It follows from $\{U_n\} \subset \mathcal{N}_{\lambda}^-$ and Lemma 2.3 that

$$||U_0||_E^2 = \lim_{n \to \infty} ||U_n||_E^2 \ge A^* > 0,$$

that is, $U_0 \neq 0$. Hence, $U_0 \in \mathcal{N}_{\lambda}^-$ and then \mathcal{N}_{λ}^- is a closed set in E.

Lemma 2.5. Let $0 < \|f\|_{\frac{6}{5+\gamma}} < T_1$, given $u \in \mathcal{N}_{\lambda}^{\pm}$, then there exist $\varepsilon > 0$ and a continuous function H(w) > 0, $w \in E$, $\|w\|_{E} < \varepsilon$ satisfying that

$$H(0) = 1, \ H(w)(u+w) \in \mathcal{N}_{\lambda}^{\pm}, \ \forall w \in E, \|w\|_{E} < \varepsilon.$$

Proof. We only prove the case $u \in \mathcal{N}_{\lambda}^+$. Define $F: E \times \mathbb{R} \to \mathbb{R}$ by

$$F(w,t) = t^2 \|u + w\|_E^2 + \lambda t^{2p} \mathbb{D}(u + w) - t^{1-\gamma} \int_{\mathbb{R}^3} f(x) |u + w|^{1-\gamma} dx - t^6 \int_{\mathbb{R}^3} |u + w|^6 dx.$$

In view of $u \in \mathcal{N}_{\lambda}^+ \subset \mathcal{N}_{\lambda}$, we obtain F(0,1) = 0 and

$$F_t(0,1) = 2\|u\|_E^2 + 2p\lambda \mathbb{D}(u) - (1-\gamma) \int_{\mathbb{R}^3} f(x)|u|^{1-\gamma} dx - 6 \int_{\Omega} |u|^6 dx > 0.$$

By applying Implicit function Theorem for F at the point (0,1), we get that there exists $\bar{\varepsilon} > 0$ such that for $w \in E$, $||w||_E < \bar{\varepsilon}$, the equation F(w,t) = 0 has a unique continuous solution t = H(w) > 0 satisfying that H(0) = 1 and F(w, H(w)) = 0 i.e. $H(w)(u+w) \in \mathcal{N}_{\lambda}$. Moreover, since $F_t(0,1) > 0$ and

$$\begin{split} F_t(w,H(w)) = & 2H(w)\|u+w\|_E^2 + 2p\lambda H^{2p-1}(w)\mathbb{D}(u+w) \\ & - (1-\gamma)H^{-\gamma}(w)\int_{\mathbb{R}^3} f(x)|u+w|^{1-\gamma}\mathrm{d}x - 6H^5(w)\int_{\mathbb{R}^3} |u+w|^6\mathrm{d}x \\ = & H^{-1}(w)\Big[2H^2(w)\|u+w\|_E^2 + 2p\lambda H^{2p}(w)\mathbb{D}(u+w) \\ & - (1-\gamma)H^{1-\gamma}(w)\int_{\mathbb{R}^3} f(x)|u+w|^{1-\gamma}\mathrm{d}x - 6H^6(w)\int_{\mathbb{R}^3} |u+w|^6\mathrm{d}x\Big], \end{split}$$

we can choose $\varepsilon > 0$ possibly small $(\varepsilon < \bar{\varepsilon})$ such that for $w \in E$ and $||w||_E < \varepsilon$,

$$2H^{2}(w)\|u+w\|_{E}^{2} + 2p\lambda H^{2p}(w)\mathbb{D}(u+w) - (1-\gamma)H^{1-\gamma}(w)\int_{\mathbb{R}^{3}} f(x)|u+w|^{1-\gamma}dx$$
$$-6H^{6}(w)\int_{\mathbb{R}^{3}} |u+w|^{6}dx > 0,$$

that is

$$H(w)(u+w) \in \mathcal{N}_{\lambda}^{+}$$
, for any $w \in E$, $||w||_{E} < \varepsilon$.

This ends the proof of Lemma 2.5.

Lemma 2.6. J_{λ} is coercive and bounded below on \mathcal{N}_{λ} . Moreover,

(i) if $0 < \|f\|_{\frac{6}{5+\gamma}} < T_1$, then $\inf_{\mathcal{N}_{\lambda}^+ \cup \{0\}} J_{\lambda} = \inf_{\mathcal{N}_{\lambda}^+} J_{\lambda} < 0$;

(ii) if
$$0 < \|f\|_{\frac{6}{5+\gamma}} < \frac{1-\gamma}{2}T_1$$
, then $\inf_{\mathcal{N}_{\lambda}^-} J_{\lambda} \ge \beta_0 > 0$ for some constant $\beta_0 = \beta_0(\gamma, S, \|f\|_{\frac{6}{5+\gamma}})$.

Proof. For any $u \in \mathcal{N}_{\lambda}$, we can obtain from (1.3), $\lambda > 0$, $0 < \gamma < 1$, $1 + \frac{\alpha}{3} \le p < 3$ and (2.2) that

$$J_{\lambda}(u) = \left(\frac{1}{2} - \frac{1}{6}\right) \|u\|_{E}^{2} + \lambda \left(\frac{1}{2p} - \frac{1}{6}\right) \mathbb{D}(u) - \left(\frac{1}{1 - \gamma} - \frac{1}{6}\right) \int_{\mathbb{R}^{3}} f(x) |u|^{1 - \gamma} dx$$

$$\geq \frac{1}{3} \|u\|_{E}^{2} - \frac{5 + \gamma}{6(1 - \gamma)} \|f\|_{\frac{6}{5 + \gamma}} S^{\frac{\gamma - 1}{2}} \|u\|_{E}^{1 - \gamma}$$

$$\geq \frac{1 + \gamma}{3(\gamma - 1)} A_{*}^{2}, \tag{2.9}$$

where A_* is defined in Lemma 2.3. Due to $0 < \gamma < 1$, J_{λ} is coercive and bounded from below on \mathcal{N}_{λ} .

(i) When $0 < \|f\|_{\frac{6}{5+\gamma}} < T_1$, $\mathcal{N}_{\lambda}^{\pm} \neq \emptyset$ from Lemma 2.2, also $\mathcal{N}_{\lambda}^{-}$ and $\mathcal{N}_{\lambda}^{+} \cup \{0\}$ are two closed sets in E from Lemma 2.4. Hence, $\inf_{\mathcal{N}_{\lambda}^{-}} J_{\lambda}$ and $\inf_{\mathcal{N}_{\lambda}^{+} \cup \{0\}} J_{\lambda}$ are well defined. For any $u \in \mathcal{N}_{\lambda}^{+} \subset \mathcal{N}_{\lambda}$, we can get from $0 < \gamma < 1$, $1 + \frac{\alpha}{3} \leq p < 3$, (2.4) and (2.9) that

$$J_{\lambda}(u) = \frac{1}{3} \|u\|_{E}^{2} + \lambda \frac{3-p}{6p} \mathbb{D}(u) - \frac{5+\gamma}{6(1-\gamma)} \int_{\mathbb{R}^{3}} f(x) |u|^{1-\gamma} dx$$

$$< \frac{1}{3} \|u\|_{E}^{2} - \frac{2}{3(1-\gamma)} \|u\|_{E}^{2} + \lambda (3-p) \left(\frac{1}{6p} - \frac{1}{3(1-\gamma)}\right) \mathbb{D}(u)$$

$$= -\frac{1+\gamma}{3(1-\gamma)} \|u\|_{E}^{2} + \lambda (3-p) \frac{1-\gamma-2p}{6p(1-\gamma)} \mathbb{D}(u)$$

$$< 0.$$
(2.10)

which yields $\inf_{\mathcal{N}_{\lambda}^{+}} J_{\lambda} < 0$. Since $J_{\lambda}(0) = 0$, we can further get $\inf_{\mathcal{N}_{\lambda}^{+} \cup \{0\}} J_{\lambda} = \inf_{\mathcal{N}_{\lambda}^{+}} J_{\lambda} < 0$.

(ii) Let $u \in \mathcal{N}_{\lambda}^-$, it follows from Lemma 2.3 that $||u||_E > A^*$. Using this and (2.9), $||f||_{\frac{6}{5+\gamma}} \in (0, \frac{1-\gamma}{2}T_1)$, we can obtain that

$$\begin{split} J_{\lambda}(u) \geq & \|u\|_{E}^{1-\gamma} \Big[\frac{1}{3} \|u\|_{E}^{1+\gamma} - \frac{5+\gamma}{6(1-\gamma)} \|f\|_{\frac{6}{5+\gamma}} S^{\frac{\gamma-1}{2}} \Big] \\ \geq & \Big[\frac{(1+\gamma)S^{3}}{5+\gamma}\Big]^{\frac{1-\gamma}{4}} \Big\{\frac{1}{3} \Big[\frac{(1+\gamma)S^{3}}{5+\gamma}\Big]^{\frac{1+\gamma}{4}} - \frac{5+\gamma}{6(1-\gamma)} \|f\|_{\frac{6}{5+\gamma}} S^{\frac{\gamma-1}{2}} \Big\} \\ > & 0 \end{split}$$

which implies that there exists a constant $\beta_0 = \beta_0(\gamma, S, \|f\|_{\frac{6}{5+\gamma}})$ such that $\inf_{\mathcal{N}_{\lambda}^-} J_{\lambda} \geq \beta_0 > 0$ for $\|f\|_{\frac{6}{5+\gamma}} \in (0, \frac{1-\gamma}{2}T_1)$.

According to Lemma 2.2 and Lemma 2.4, for $0 < \|f\|_{\frac{6}{5+\gamma}} < T_1$, $\mathcal{V}_{\lambda}^- := \mathcal{N}_{\lambda}^-$ and $\mathcal{V}_{\lambda}^+ := \mathcal{N}_{\lambda}^+ \cup \{0\}$ are two closed sets in E, then we can apply Ekeland variational

principle to find the minimums of functional J_{λ} on both $\mathcal{V}_{\lambda}^{+}$ and $\mathcal{V}_{\lambda}^{-}$. Let $\{u_{n}\}\subset\mathcal{V}_{\lambda}^{\pm}$ be a minimizing sequence for J_{λ} on $\mathcal{V}_{\lambda}^{\pm}$. That is, $\{u_{n}\}\subset\mathcal{V}_{\lambda}^{\pm}$ satisfy

$$\tau_{\lambda}^{\pm} < J_{\lambda}(u_n) < \tau_{\lambda}^{\pm} + \frac{1}{n} \tag{2.11}$$

and

$$J_{\lambda}(z) \ge J_{\lambda}(u_n) - \frac{1}{n} \|u_n - z\|_E, \forall z \in \mathcal{V}_{\lambda}^{\pm}, \tag{2.12}$$

where

$$\tau_{\lambda}^{+} = \inf_{u \in \mathcal{V}_{\lambda}^{+}} J_{\lambda}(u) = \inf_{u \in \mathcal{N}_{\lambda}^{+}} J_{\lambda}(u), \ \tau_{\lambda}^{-} = \inf_{u \in \mathcal{N}_{\lambda}^{-}} J_{\lambda}(u) \text{ and } \tau_{\lambda} = \inf_{u \in \mathcal{N}_{\lambda}} J_{\lambda}(u).$$

From $J_{\lambda}(|u_n|) = J_{\lambda}(u_n)$, we could assume that $u_n \geq 0$. Moreover, Lemma 2.6 shows that $||u_n||_E \leq C_0$ for some suitable positive constant C_0 , so there exists a nonnegative function $u_{\lambda} \in E$ such that

$$u_n \to u_\lambda$$
, in E ,
 $u_n \to u_\lambda$, in $L^s(\mathbb{R}^3)$, $s \in [2, 6)$, (2.13)
 $u_n \to u_\lambda$, a.e. in \mathbb{R}^3 .

By Vitali Convergence Theorem, similarly to the proof of [13, Lemma 2.7], we have

$$\lim_{n \to \infty} \int_{\mathbb{R}^3} f(x) |u_n|^{1-\gamma} dx = \int_{\mathbb{R}^3} f(x) |u_\lambda|^{1-\gamma} dx, \tag{2.14}$$

when $\{u_n\}$ is bounded in E. In order to show that all convergence in (2.13) hold true on a strong sense, inspired by [5,34], we need following Lemmas.

Lemma 2.7. Assume $0 < \|f\|_{\frac{6}{5+\gamma}} < T_1$. Suppose $\{u_n\} \subset \mathcal{N}_{\lambda}^{\pm}$ satisfy (2.13) with $u_{\lambda} \not\equiv 0$, then there exists a constant $C_1 > 0$ such that for n large enough, the following alternative holds true:

(i) if $\{u_n\} \subset \mathcal{N}_{\lambda}^+$, we have

$$(1+\gamma)\|u_n\|_E^2 + \lambda(2p-1+\gamma)\mathbb{D}(u_n) - (5+\gamma)\int_{\mathbb{D}^3} |u_n|^6 dx \ge C_1;$$

(ii) if $\{u_n\} \subset \mathcal{N}_{\lambda}^-$, we have

$$(1+\gamma)\|u_n\|_E^2 + \lambda(2p-1+\gamma)\mathbb{D}(u_n) - (5+\gamma)\int_{\mathbb{R}^3} |u_n|^6 dx \le -C_1.$$

Proof. We only prove (i), since (ii) follows similarly. Using $u_n \in \mathcal{N}_{\lambda}^+$, (2.4), Lemma 2.1, (2.14) and $u_{\lambda} \not\equiv 0$, it is enough to show that

$$(5+\gamma) \int_{\mathbb{D}^3} f(x) |u_{\lambda}|^{1-\gamma} dx - (6-2p)\lambda \mathbb{D}(u_{\lambda}) > \liminf_{n \to \infty} \left[4||u_n||_E^2 \right]. \tag{2.15}$$

Arguing by contradiction, assume that

$$(5+\gamma) \int_{\mathbb{R}^3} f(x) |u_{\lambda}|^{1-\gamma} dx - (6-2p)\lambda \mathbb{D}(u_{\lambda}) = \liminf_{n \to \infty} \left[4||u_n||_E^2 \right]. \tag{2.16}$$

Since $u_n \in \mathcal{N}_{\lambda}^+$, one has

$$(5+\gamma) \int_{\mathbb{R}^3} f(x) |u_n|^{1-\gamma} dx - (6-2p)\lambda \mathbb{D}(u_n) > 4||u_n||_E^2.$$

According to (2.14) and Lemma 2.1, we can further obtain

$$(5+\gamma)\int_{\mathbb{R}^3} f(x)|u_{\lambda}|^{1-\gamma} dx - (6-2p)\lambda \mathbb{D}(u_{\lambda}) \ge \limsup_{n \to \infty} \left[4\|u_n\|_E^2\right] \ge \liminf_{n \to \infty} \left[4\|u_n\|_E^2\right].$$
(2.17)

It follows from (2.16) and (2.17) that

$$(5+\gamma) \int_{\mathbb{R}^3} f(x) |u_{\lambda}|^{1-\gamma} dx - (6-2p)\lambda \mathbb{D}(u_{\lambda}) = \lim_{n \to \infty} \left[4||u_n||_E^2 \right]. \tag{2.18}$$

Since $u_n \in \mathcal{N}_{\lambda}^+ \subset \mathcal{N}_{\lambda}$, i.e. $\int_{\mathbb{R}^3} |u_n|^6 dx = ||u_n||_E^2 + \lambda \mathbb{D}(u_n) - \int_{\mathbb{R}^3} f(x) |u_n|^{1-\gamma} dx$, passing to the limit as $n \to \infty$ and using (2.14), (2.18) and Lemma 2.1 lead to

$$\lim_{n \to \infty} \int_{\mathbb{R}^3} |u_n|^6 dx = \frac{1+\gamma}{4} \int_{\mathbb{R}^3} f(x) |u_\lambda|^{1-\gamma} dx + \frac{p-1}{2} \lambda \mathbb{D}(u_\lambda). \tag{2.19}$$

Therefore, it follows from (2.18), (2.19), $\lambda > 0$ and $u_{\lambda} \not\equiv 0$ that

$$\lim_{n \to \infty} \frac{(1+\gamma)\|u_n\|_E^2}{(5+\gamma)\int_{\mathbb{D}^3} |u_n|^6 \mathrm{d}x} < 1. \tag{2.20}$$

Similarly to (2.8), for $0 < ||f||_{\frac{6}{5+\gamma}} < T_1$, one can get from (2.2), (2.14), (2.18) and (2.20) that

$$0 \leq \left[\frac{4}{5+\gamma} \left(\frac{1+\gamma}{(5+\gamma)S^{-3}} \right)^{\frac{1+\gamma}{4}} - \|f\|_{\frac{6}{5+\gamma}} S^{\frac{\gamma-1}{2}} \right] \lim_{n \to \infty} \|u_n\|_E^{1-\gamma}$$

$$\leq \lim_{n \to \infty} \frac{4}{5+\gamma} \|u_n\|_E^2 \left(\frac{(1+\gamma)\|u_n\|_E^2}{(5+\gamma)\int_{\mathbb{R}^3} |u_n|^6 dx} \right)^{\frac{1+\gamma}{4}} - \lim_{n \to \infty} \int_{\mathbb{R}^3} f(x) u_n^{1-\gamma} dx$$

$$\leq \frac{4}{5+\gamma} \lim_{n \to \infty} \|u_n\|_E^2 - \int_{\mathbb{R}^3} f(x) |u_\lambda|^{1-\gamma} dx$$

$$= -\frac{6-2p}{5+\gamma} \lambda \mathbb{D}(u_\lambda)$$

$$\leq 0.$$

which is clearly impossible. So (2.15) holds and this ends the proof.

For any $0 \le \psi \in E$, we apply Lemma 2.5 with $u = u_n \in \mathcal{N}_{\lambda}^{\pm}$ (n large enough such that $\frac{(1-\gamma)C_0}{n} < C_1$) and $w = \eta \psi$, $\eta > 0$ small enough, we can find $h_{n,\psi}(\eta) = H(\eta \psi)$ such that $h_{n,\psi}(0) = 1$ and $h_{n,\psi}(\eta)(u_n + \eta \psi) \in \mathcal{N}_{\lambda}^{\pm}$. However, we have no idea whether or not $h_{n,\psi}(\eta)$ is differentiable. For the sake of proof, we set

$$h'_{n,\psi}(0) = \lim_{\eta \to 0^+} \frac{h_{n,\psi}(\eta) - 1}{\eta} \in [-\infty, +\infty].$$

If the above limit does not exist, we choose $\eta_k \to 0$ (instead of $\eta \to 0$) with $\eta_k > 0$ such that $h'_{n,\psi}(0) = \lim_{k \to \infty} \frac{h_{n,\psi}(\eta_k) - 1}{\eta_k} \in [-\infty, +\infty].$

Lemma 2.8. Assume $0 < ||f||_{\frac{6}{5+\gamma}} < T_1$. Suppose $\{u_n\} \subset \mathcal{N}_{\lambda}^{\pm}$ satisfy (2.12) and (2.13) with $u_{\lambda} \not\equiv 0$, then $h'_{n,\psi}(0)$ is uniformly bounded for any $0 \le \psi \in E$ and n large enough.

Proof. We only consider that u_n , $h_{n,\psi}(\eta)(u_n + \eta\psi) \in \mathcal{N}_{\lambda}^+$ since the situation on \mathcal{N}_{λ}^- can be proved similarly. By u_n , $h_{n,\psi}(\eta)(u_n + \eta\psi) \in \mathcal{N}_{\lambda}^+ \subset \mathcal{N}_{\lambda}$, we have

$$||u_n||_E^2 + \lambda \mathbb{D}(u_n) - \int_{\mathbb{R}^3} f(x) u_n^{1-\gamma} dx = \int_{\mathbb{R}^3} u_n^6 dx,$$

$$h_{n,\psi}^2(\eta) ||u_n + \eta \psi||_E^2 + \lambda h_{n,\psi}^{2p} \mathbb{D}(u_n + \eta \psi) - h_{n,\psi}^{1-\gamma}(\eta) \int_{\mathbb{R}^3} f(x) (u_n + \eta \psi)^{1-\gamma} dx$$

$$= h_{n,\psi}^6(\eta) \int_{\mathbb{R}^3} (u_n + \eta \psi)^6 dx.$$

Using $0 < \gamma < 1$ and $\lambda > 0$, the above two equalities yield

$$0 = \left[h_{n,\psi}^{2}(\eta) - 1\right] \|u_{n} + \eta\psi\|_{E}^{2} + \lambda \left[h_{n,\psi}^{2p}(\eta) - 1\right] \mathbb{D}(u_{n} + \eta\psi)$$

$$- \left[h_{n,\psi}^{1-\gamma}(\eta) - 1\right] \int_{\mathbb{R}^{3}} f(x)(u_{n} + \eta\psi)^{1-\gamma} dx - \left[h_{n,\psi}^{6}(\eta) - 1\right] \int_{\mathbb{R}^{3}} (u_{n} + \eta\psi)^{6} dx$$

$$+ \left[\|u_{n} + \eta\psi\|_{E}^{2} - \|u_{n}\|_{E}^{2}\right] + \lambda \left[\mathbb{D}(u_{n} + \eta\psi) - \mathbb{D}(u_{n})\right]$$

$$- \int_{\mathbb{R}^{3}} f(x) \left[(u_{n} + \eta\psi)^{1-\gamma} - u_{n}^{1-\gamma}\right] dx - \int_{\mathbb{R}^{3}} \left[(u_{n} + \eta\psi)^{6} - u_{n}^{6}\right] dx$$

$$\leq \left[h_{n,\psi}(\eta) - 1\right] \left\{\left[h_{n,\psi}(\eta) + 1\right] \|u_{n} + \eta\psi\|_{E}^{2} + \lambda \frac{h_{n,\psi}^{2p}(\eta) - 1}{h_{n,\psi}(\eta) - 1} \mathbb{D}(u_{n} + \eta\psi)$$

$$- \frac{h_{n,\psi}^{1-\gamma}(\eta) - 1}{h_{n,\psi}(\eta) - 1} \int_{\mathbb{R}^{3}} f(x)(u_{n} + \eta\psi)^{1-\gamma} dx - \frac{h_{n,\psi}^{6}(\eta) - 1}{h_{n,\psi}(\eta) - 1} \int_{\mathbb{R}^{3}} (u_{n} + \eta\psi)^{6} dx\right\}$$

$$+ \left[\|u_{n} + \eta\psi\|_{E}^{2} - \|u_{n}\|_{E}^{2}\right] + \lambda \left[\mathbb{D}(u_{n} + \eta\psi) - \mathbb{D}(u_{n})\right].$$

Dividing by $\eta > 0$ and passing to the limit as $\eta \to 0^+$, it follows from (2.4) and the continuity of $h_{n,\psi}(\eta)$ that

$$0 \leq h'_{n,\psi}(0) \Big\{ 2\|u_n\|_E^2 + 2p\lambda \mathbb{D}(u_n) - (1-\gamma) \int_{\mathbb{R}^3} f(x) u_n^{1-\gamma} dx - 6 \int_{\mathbb{R}^3} u_n^6 dx \Big\}$$

$$+ 2\langle u_n, \psi \rangle_E + \lambda \langle \mathbb{D}'(u_n), \psi \rangle$$

$$= h'_{n,\psi}(0) \Big\{ (1+\gamma)\|u_n\|_E^2 + \lambda (2p-1+\gamma) \mathbb{D}(u_n) - (5+\gamma) \int_{\mathbb{R}^3} |u_n|^6 dx \Big\}$$

$$+ 2\langle u_n, \psi \rangle_E + \lambda \langle \mathbb{D}'(u_n), \psi \rangle,$$

$$(2.21)$$

which implies that $h'_{n,\psi}(0) \neq -\infty$ according to Lemma 2.7 and the boundedness of $\{u_n\}$. Now we show that $h'_{n,\psi}(0) \neq +\infty$. Arguing by contradiction, we assume that $h'_{n,\psi}(0) = +\infty$ and so $h_{n,\psi}(\eta) > 1$ for n sufficiently large and $\eta > 0$ small. Applying condition (2.12) with $z = h_{n,\psi}(\eta)(u_n + \eta\psi)$ leads to

$$\frac{1}{n}[h_{n,\psi}(\eta) - 1]\|u_n\|_E + \frac{\eta}{n}h_{n,\psi}(\eta)\|\psi\|_E \ge \frac{1}{n}\|u_n - h_{n,\psi}(\eta)(u_n + \eta\psi)\|_E
\ge J_{\lambda}(u_n) - J_{\lambda}[h_{n,\psi}(\eta)(u_n + \eta\psi)].$$
(2.22)

Since $u_n \in \mathcal{N}_{\lambda}^+ \subset \mathcal{N}_{\lambda}$, then one can get from (1.3) and (2.22) that

$$\begin{split} \frac{\|\psi\|_E}{n} h_{n,\psi}(\eta) &\geq \frac{h_{n,\psi}(\eta) - 1}{\eta} \Big\{ - \frac{\|u_n\|_E}{n} - \Big(\frac{1}{2} - \frac{1}{1 - \gamma}\Big) [h_{n,\psi}(\eta) + 1] \|u_n + \eta\psi\|_E^2 \\ &- \lambda \Big(\frac{1}{2p} - \frac{1}{1 - \gamma}\Big) \frac{h_{n,\psi}^{2p}(\eta) - 1}{h_{n,\psi}(\eta) - 1} \mathbb{D}(u_n + \eta\psi) \\ &+ \Big(\frac{1}{6} - \frac{1}{1 - \gamma}\Big) \frac{h_{n,\psi}^{6}(\eta) - 1}{h_{n,\psi}(\eta) - 1} \int_{\mathbb{R}^3} (u_n + \eta\psi)^6 \mathrm{d}x \Big\} \\ &- \Big(\frac{1}{2} - \frac{1}{1 - \gamma}\Big) \frac{\|u_n + \eta\psi\|^2 - \|u_n\|^2}{\eta} \\ &+ \Big(\frac{1}{6} - \frac{1}{1 - \gamma}\Big) \int_{\mathbb{R}^3} \frac{(u_n + \eta\psi)^6 - u_n^6}{\eta} \mathrm{d}x \\ &- \lambda \Big(\frac{1}{2p} - \frac{1}{1 - \gamma}\Big) \frac{\mathbb{D}(u_n + \eta\psi) - \mathbb{D}(u_n)}{\eta}. \end{split}$$

Letting $\eta \to 0^+$, using the continuity of $h_{n,\psi}(\eta)$, Lemma 2.7 and $||u_n||_E \le C_0$, we obtain

$$\frac{\|\psi\|_{E}}{n} \geq h'_{n,\psi}(0) \left\{ -\frac{\|u_{n}\|_{E}}{n} - \left(1 - \frac{2}{1 - \gamma}\right) \|u_{n}\|_{E}^{2} - \lambda \left(1 - \frac{2p}{1 - \gamma}\right) \mathbb{D}(u_{n}) \right. \\
+ \left(1 - \frac{6}{1 - \gamma}\right) \int_{\mathbb{R}^{3}} u_{n}^{6} dx \right\} - \left(1 - \frac{2}{1 - \gamma}\right) \langle u_{n}, \psi \rangle_{E} \\
+ \left(1 - \frac{6}{1 - \gamma}\right) \int_{\mathbb{R}^{3}} u_{n}^{5} \psi dx - \lambda \left(\frac{1}{2p} - \frac{1}{1 - \gamma}\right) \langle \mathbb{D}'(u_{n}), \psi \rangle \\
= h'_{n,\psi}(0) \left\{ -\frac{\|u_{n}\|_{E}}{n} + \frac{1}{1 - \gamma} \left[(\gamma + 1) \|u_{n}\|_{E}^{2} + \lambda (2p - 1 + \gamma) \mathbb{D}(u_{n}) \right] \right. \\
- \left. (5 + \gamma) \int_{\mathbb{R}^{3}} u_{n}^{6} dx \right] \right\} - \left(1 - \frac{2}{1 - \gamma}\right) \langle u_{n}, \psi \rangle_{E} \\
+ \left(1 - \frac{6}{1 - \gamma}\right) \int_{\mathbb{R}^{3}} u_{n}^{5} \psi dx - \lambda \left(\frac{1}{2p} - \frac{1}{1 - \gamma}\right) \langle \mathbb{D}'(u_{n}), \psi \rangle \\
\geq h'_{n,\psi}(0) \left(-\frac{C_{0}}{n} + \frac{C_{1}}{1 - \gamma}\right) - \left(1 - \frac{2}{1 - \gamma}\right) \langle u_{n}, \psi \rangle_{E} \\
+ \left(1 - \frac{6}{1 - \gamma}\right) \int_{\mathbb{R}^{3}} u_{n}^{5} \psi dx - \lambda \left(\frac{1}{2p} - \frac{1}{1 - \gamma}\right) \langle \mathbb{D}'(u_{n}), \psi \rangle$$

which is impossible because $h'_{n,\psi}(0)=+\infty$ and $-\frac{C_0}{n}+\frac{C_1}{1-\gamma}>0$ for n large enough. Hence, $h'_{n,\psi}(0)\neq+\infty$. To sum up, $|h'_{n,\psi}(0)|<+\infty$. Moreover, Lemma 2.7, (2.21) and (2.23) with $||u_n||\leq C_0$ also imply that

$$|h'_{n,\psi}(0)| \le C_2, \tag{2.24}$$

for n sufficiently large and a suitable positive constant C_2 .

Lemma 2.9. Assume $0 < \|f\|_{\frac{6}{5+\gamma}} < T_1$. Suppose $\{u_n\} \subset \mathcal{N}_{\lambda}^{\pm}$ satisfy (2.12) and (2.13) with $u_{\lambda} \not\equiv 0$, then for any $\psi \in E$, we have as $n \to \infty$,

$$\langle u_n, \psi \rangle_E + \frac{\lambda}{2p} \langle \mathbb{D}'(u_n), \psi \rangle - \int_{\mathbb{R}^3} f(x) u_n^{-\gamma} \psi dx - \int_{\mathbb{R}^3} u_n^5 \psi dx = o(1).$$
 (2.25)

Proof. For any $0 \le \psi \in E$, applying condition (2.12) with $z = h_{n,\psi}(\eta)(u_n + \eta\psi)$ leads to

$$\begin{split} &\frac{|1-h_{n,\psi}(\eta)|}{\eta}\frac{\|u_n\|_E}{n} + \frac{\|\psi\|_E}{n}h_{n,\psi}(\eta) \\ &\geq \frac{1}{n\eta}\|u_n - h_{n,\psi}(\eta)(u_n + \eta\psi)\|_E \\ &\geq \frac{1}{\eta}\big\{J_{\lambda}(u_n) - J_{\lambda}[h_{n,\psi}(\eta)(u_n + \eta\psi)]\big\} \\ &= \frac{h_{n,\psi}(\eta) - 1}{\eta}\Big\{-\frac{h_{n,\psi}(\eta) + 1}{2}\|u_n + \eta\psi\|_E^2 - \frac{\lambda[h_{n,\psi}^{2p}(\eta) - 1]}{2p[h_{n,\psi}(\eta) - 1]}\mathbb{D}(u_n + \eta\psi) \\ &+ \frac{h_{n,\psi}^{1-\gamma}(\eta) - 1}{(1-\gamma)[h_{n,\psi}(\eta) - 1]}\int_{\mathbb{R}^3}f(x)(u_n + \eta\psi)^{1-\gamma}\mathrm{d}x \\ &+ \frac{h_{n,\psi}^6(\eta) - 1}{6[h_{n,\psi}(\eta) - 1]}\int_{\mathbb{R}^3}(u_n + \eta\psi)^6\mathrm{d}x\Big\} \\ &- \frac{1}{2}\frac{\|u_n + \eta\psi\|_E^2 - \|u_n\|_E^2}{\eta} - \frac{\lambda[\mathbb{D}(u_n + \eta\psi) - \mathbb{D}(u_n)]}{2p\eta} \\ &+ \frac{1}{6}\int_{\mathbb{R}^3}\frac{(u_n + \eta\psi)^6 - u_n^6}{\eta}\mathrm{d}x + \frac{1}{1-\gamma}\int_{\mathbb{R}^3}f(x)\frac{(u_n + \eta\psi)^{1-\gamma} - u_n^{1-\gamma}}{\eta}\mathrm{d}x. \end{split}$$

Passing to the liminf as $\eta \to 0^+$ and using the continuity of $h_{n,\psi}(\eta)$, Fatou's Lemma, $0 < \gamma < 1$ lead to

$$\begin{split} &\frac{|h'_{n,\psi}(0)|\cdot\|u_n\|_E}{n} + \frac{\|\psi\|_E}{n} \\ &\geq h'_{n,\psi}(0) \Big\{ - \|u_n\|_E^2 + \int_{\mathbb{R}^3} f(x) u_n^{1-\gamma} \mathrm{d}x - \lambda \mathbb{D}(u_n) + \int_{\mathbb{R}^3} u_n^6 \mathrm{d}x \Big\} - \langle u_n, \psi \rangle_E \\ &- \frac{\lambda}{2p} \langle \mathbb{D}'(u_n), \psi \rangle + \int_{\mathbb{R}^3} u_n^5 \psi \mathrm{d}x + \liminf_{\eta \to 0^+} \frac{1}{1-\gamma} \int_{\mathbb{R}^3} f(x) \frac{(u_n + \eta \psi)^{1-\gamma} - u_n^{1-\gamma}}{\eta} \mathrm{d}x \\ &\geq - \langle u_n, \psi \rangle_E - \frac{\lambda}{2p} \langle \mathbb{D}'(u_n), \psi \rangle + \int_{\mathbb{R}^3} u_n^5 \psi \mathrm{d}x \\ &+ \int_{\mathbb{R}^3} \frac{f(x)}{1-\gamma} \liminf_{\eta \to 0^+} \frac{(u_n + \eta \psi)^{1-\gamma} - u_n^{1-\gamma}}{\eta} \mathrm{d}x \\ &= - \langle u_n, \psi \rangle_E - \frac{\lambda}{2p} \langle \mathbb{D}'(u_n), \psi \rangle + \int_{\mathbb{R}^3} u_n^5 \psi \mathrm{d}x + \int_{\mathbb{R}^3} f(x) u_n^{-\gamma} \psi \mathrm{d}x, \end{split}$$

since $u_n \in \mathcal{N}_{\lambda}^{\pm} \subset \mathcal{N}_{\lambda}$. Hence, for n large, we have

$$\begin{split} \int_{\mathbb{R}^3} f(x) u_n^{-\gamma} \psi \mathrm{d}x &\leq \frac{|h'_{n,\psi}(0)| \cdot \|u_n\|_E}{n} + \frac{\|\psi\|_E}{n} \\ &+ \langle u_n, \psi \rangle_E + \frac{\lambda}{2p} \langle \mathbb{D}'(u_n), \psi \rangle - \int_{\mathbb{R}^3} u_n^5 \psi \mathrm{d}x \\ &\leq \frac{C_0 \cdot C_2 + \|\psi\|_E}{n} + \langle u_n, \psi \rangle_E + \frac{\lambda}{2p} \langle \mathbb{D}'(u_n), \psi \rangle - \int_{\mathbb{R}^3} u_n^5 \psi \mathrm{d}x, \end{split}$$

thanks to $||u_n||_E \leq C_0$ and $|h'_{n,\varphi}(0)| \leq C_2$ by (2.24). Thus, for any $0 \leq \psi \in E$, we

can get as $n \to \infty$,

$$\langle u_n, \psi \rangle_E + \frac{\lambda}{2p} \langle \mathbb{D}'(u_n), \psi \rangle - \int_{\mathbb{R}^3} f(x) u_n^{-\gamma} \psi dx - \int_{\mathbb{R}^3} u_n^5 \psi dx \ge o(1).$$
 (2.26)

Now, we come to show that (2.26) holds for every $\psi \in E$. For any $\psi \in E$ and $\varepsilon > 0$, set $\psi_{\varepsilon} = u_n + \varepsilon \psi$ and $\Omega_{\varepsilon} = \{x \in \mathbb{R}^3 : \psi_{\varepsilon} \leq 0\}$. Since $u_n \in \mathcal{N}_{\lambda}$, by applying inequality (2.26) with $\psi = \psi_{\varepsilon}^+$, we have

$$\begin{split} o(1) &\leq \frac{1}{\varepsilon} \Big\{ \langle u_n, \psi_{\varepsilon}^+ \rangle_E + \frac{\lambda}{2p} \langle \mathbb{D}'(u_n), \psi_{\varepsilon}^+ \rangle - \int_{\mathbb{R}^3} f(x) u_n^{-\gamma} \psi_{\varepsilon}^+ \mathrm{d}x - \int_{\mathbb{R}^3} u_n^5 \psi_{\varepsilon}^+ \mathrm{d}x \Big\} \\ &= \frac{1}{\varepsilon} \int_{\mathbb{R}^3 \backslash \Omega_{\varepsilon}} \Big\{ \nabla u_n \nabla \psi_{\varepsilon} + V(x) u_n \psi_{\varepsilon} \\ &\quad + \lambda (I_{\alpha} * u_n^p) u_n^{p-2} u_n \psi_{\varepsilon} - f(x) u_n^{-\gamma} \psi_{\varepsilon} - u_n^5 \psi_{\varepsilon} \Big\} \, \mathrm{d}x \\ &= \frac{1}{\varepsilon} \Big\{ \|u_n\|_E^2 + \lambda \mathbb{D}(u_n) - \int_{\mathbb{R}^3} f(x) u_n^{1-\gamma} \mathrm{d}x - \int_{\mathbb{R}^3} u_n^6 \mathrm{d}x \Big\} \\ &\quad + \Big\{ \langle u_n, \psi \rangle_E + \frac{\lambda}{2p} \langle \mathbb{D}'(u_n), \psi \rangle - \int_{\mathbb{R}^3} f(x) u_n^{-\gamma} \psi \mathrm{d}x - \int_{\mathbb{R}^3} u_n^5 \psi \mathrm{d}x \Big\} \\ &\quad - \frac{1}{\varepsilon} \int_{\Omega_{\varepsilon}} \Big\{ \nabla u_n \nabla \psi_{\varepsilon} + V(x) u_n \psi_{\varepsilon} + \lambda (I_{\alpha} * u_n^p) u_n^{p-2} u_n \psi_{\varepsilon} \\ &\quad - f(x) u_n^{-\gamma} \psi_{\varepsilon} - u_n^5 \psi_{\varepsilon} \Big\} \, \mathrm{d}x \\ &= \Big\{ \langle u_n, \psi \rangle_E + \frac{\lambda}{2p} \langle \mathbb{D}'(u_n), \psi \rangle - \int_{\mathbb{R}^3} f(x) u_n^{-\gamma} \psi \mathrm{d}x - \int_{\mathbb{R}^3} u_n^5 \psi \mathrm{d}x \Big\} \\ &\quad - \frac{1}{\varepsilon} \int_{\Omega_{\varepsilon}} \Big[|\nabla u_n|^2 + V(x) u_n^2 + \lambda (I_{\alpha} * u_n^p) u_n^{p-2} u_n \psi \Big] \, \mathrm{d}x \\ &\quad - \int_{\Omega_{\varepsilon}} \Big[\nabla u_n \nabla \psi + V(x) u_n \psi + \lambda (I_{\alpha} * u_n^p) u_n^{p-2} u_n \psi \Big] \, \mathrm{d}x \\ &\quad + \frac{1}{\varepsilon} \int_{\Omega_{\varepsilon}} \Big[f(x) u_n^{-\gamma} \psi_{\varepsilon} + u_n^5 \psi_{\varepsilon} \Big] \, \mathrm{d}x \\ &\leq \Big\{ \langle u_n, \psi \rangle_E + \frac{\lambda}{2p} \langle \mathbb{D}'(u_n), \psi \rangle - \int_{\mathbb{R}^3} f(x) u_n^{-\gamma} \psi \mathrm{d}x - \int_{\mathbb{R}^3} u_n^5 \psi \mathrm{d}x \Big\} \\ &\quad - \int_{\Omega_{\varepsilon}} \Big[\nabla u_n \nabla \psi + V(x) u_n \psi + \lambda (I_{\alpha} * u_n^p) u_n^{p-2} u_n \psi \Big] \, \mathrm{d}x. \end{aligned}$$

Letting $\varepsilon \to 0^+$ to the above inequality and using the fact that $|\Omega_{\varepsilon}| \to 0$ as $\varepsilon \to 0^+$, we have

$$\langle u_n, \psi \rangle_E + \frac{\lambda}{2p} \langle \mathbb{D}'(u_n), \psi \rangle - \int_{\mathbb{R}^3} f(x) u_n^{-\gamma} \psi dx - \int_{\mathbb{R}^3} u_n^5 \psi dx \ge o(1), \ \forall \psi \in E.$$

This inequality also holds for $-\psi$, hence we conclude that (2.25) holds for every $\psi \in E$.

Lemma 2.10. Assume $0 < \|f\|_{\frac{6}{5+\gamma}} < T_1$. Suppose $\{u_n\} \subset \mathcal{N}_{\lambda}^{\pm}$ satisfy (2.12), (2.13) and

$$J_{\lambda}(u_n) \to c < c_*, \text{ as } n \to \infty,$$
 (2.28)

 $\begin{aligned} & \textit{where } c \neq 0 \textit{ and } c_* = \frac{1}{3} S^{\frac{3}{2}} - D_* \|f\|_{\frac{6}{5+\gamma}}^{\frac{2}{\gamma+1}} \textit{ with } D_* = \frac{1+\gamma}{2} \left[\frac{2S}{3(1-\gamma)} \right]^{\frac{\gamma-1}{\gamma+1}} \left[\frac{5+\gamma}{6(1-\gamma)} \right]^{\frac{2}{\gamma+1}}, \\ & \textit{then } u_\lambda \not\equiv 0 \textit{ and } \{u_n\} \textit{ possesses a subsequence strongly convergent to } u_\lambda \textit{ in } E. \end{aligned}$

Proof. We claim that $u_{\lambda} \not\equiv 0$. Arguing by contradiction, $u_{\lambda} \equiv 0$. Then, by $u_n \in \mathcal{N}_{\lambda}^{\pm} \subset \mathcal{N}_{\lambda}$, Lemma 2.1 and (2.14), we have

$$||u_n||_E^2 = \int_{\mathbb{R}^3} |u_n|^6 dx + o(1).$$
 (2.29)

It follows from (2.29) and $J_{\lambda}(u_n) \to c \neq 0$ that

$$c = J_{\lambda}(u_n) + o(1) = \frac{1}{3} ||u_n||_E^2 + o(1).$$
 (2.30)

If c < 0, we get a contradiction from the last relation. If c > 0, there exists $n_0 \in \mathbb{N}$ such that $||u_n||_E^2 \ge c$ for $n \ge n_0$. This together with (1.5) and (2.29) leads to $\lim_{n \to \infty} ||u_n||_E^2 \ge S^{\frac{3}{2}}$. Then, by (2.28), (2.30) and the fact of the above relation, we obtain that

$$c < c_* = \frac{1}{3}S^{\frac{3}{2}} - D_* \|f\|_{\frac{6}{5+\gamma}}^{\frac{2}{\gamma+1}} < \frac{1}{3}S^{\frac{3}{2}} \le \frac{1}{3} \lim_{n \to \infty} \|u_n\|_E^2 = c,$$

which is a contradiction. Therefore $u_{\lambda} \not\equiv 0$. By Brézis-Lieb's Lemma, we have

$$||u_n||_E^2 = ||u_\lambda||_E^2 + ||u_n - u_\lambda||_E^2 + o(1),$$

$$\int_{\mathbb{R}^3} |u_n|^6 dx = \int_{\mathbb{R}^3} |u_\lambda|^6 dx + \int_{\mathbb{R}^3} |u_n - u_\lambda|^6 dx + o(1).$$
(2.31)

For any $\psi \in E$, set

$$Q(u_n, \psi) = (u_n, \psi)_E + \frac{\lambda}{2p} \langle \mathbb{D}'(u_n), \psi \rangle - \int_{\mathbb{R}^3} f(x) u_n^{-\gamma} \psi dx - \int_{\mathbb{R}^3} u_n^5 \psi dx.$$

Then,

$$J_{\lambda}(u_n) - \frac{1}{6}Q(u_n, u_n) = \frac{1}{3}\|u_n\|_E^2 + \lambda(\frac{1}{2p} - \frac{1}{6})\mathbb{D}(u_n) - (\frac{1}{1-\gamma} - \frac{1}{6})\int_{\mathbb{R}^3} f(x)u_n^{1-\gamma} dx$$

$$= \frac{1}{3}\|u_n - u_{\lambda}\|_E^2 + \frac{1}{3}\|u_{\lambda}\|_E^2 + \lambda(\frac{1}{2p} - \frac{1}{6})\mathbb{D}(u_n)$$

$$- (\frac{1}{1-\gamma} - \frac{1}{6})\int_{\mathbb{R}^3} f(x)u_n^{1-\gamma} dx + o(1).$$
(2.32)

Applying (2.25) with $\psi = u_{\lambda}$ and using $u_n \in \mathcal{N}_{\lambda}^{\pm} \subset \mathcal{N}_{\lambda}$, (2.13), (2.14), (2.31), Lemma 2.1 lead to

$$\begin{split} o(1) &= -\langle u_n, u_\lambda \rangle_E - \frac{\lambda}{2p} \langle \mathbb{D}'(u_n), u_\lambda \rangle + \int_{\mathbb{R}^3} f(x) u_n^{-\gamma} u_\lambda \mathrm{d}x + \int_{\mathbb{R}^3} u_n^5 u_\lambda \mathrm{d}x \\ &= \|u_n\|_E^2 - \langle u_n, u_\lambda \rangle_E + \lambda \mathbb{D}(u_n) - \frac{\lambda}{2p} \langle \mathbb{D}'(u_n), u_\lambda \rangle - \int_{\mathbb{R}^3} f(x) u_n^{1-\gamma} \mathrm{d}x \\ &+ \int_{\mathbb{R}^3} f(x) u_n^{-\gamma} u_\lambda \mathrm{d}x - \int_{\mathbb{R}^3} u_n^6 \mathrm{d}x + \int_{\mathbb{R}^3} u_n^5 u_\lambda \mathrm{d}x \end{split}$$

$$\begin{split} & = \|u_n\|_E^2 - \|u_\lambda\|_E^2 - \int_{\mathbb{R}^3} f(x) u_\lambda^{1-\gamma} \mathrm{d}x + \int_{\mathbb{R}^3} f(x) u_n^{-\gamma} u_\lambda \mathrm{d}x - \int_{\mathbb{R}^3} u_n^6 \mathrm{d}x \\ & + \int_{\mathbb{R}^3} u_\lambda^6 \mathrm{d}x + o(1) \\ & = \|u_n - u_\lambda\|_E^2 - \int_{\mathbb{R}^3} f(x) u_\lambda^{1-\gamma} \mathrm{d}x + \int_{\mathbb{R}^3} f(x) u_n^{-\gamma} u_\lambda \mathrm{d}x \\ & - \int_{\mathbb{R}^3} |u_n - u_\lambda|^6 \mathrm{d}x + o(1). \end{split}$$

Therefore,

$$\lim_{n \to \infty} \|u_n - u_\lambda\|_E^2 - \int_{\mathbb{R}^3} f(x) u_\lambda^{1-\gamma} dx + \lim_{n \to \infty} \int_{\mathbb{R}^3} f(x) u_n^{-\gamma} u_\lambda dx = \lim_{n \to \infty} \int_{\mathbb{R}^3} |u_n - u_\lambda|^6 dx.$$
(2.33)

By Fatou's Lemma, we can obtain

$$\int_{\mathbb{R}^3} f(x) u_{\lambda}^{1-\gamma} \mathrm{d}x \le \liminf_{n \to \infty} \int_{\mathbb{R}^3} f(x) u_n^{-\gamma} u_{\lambda} \mathrm{d}x. \tag{2.34}$$

We can get from (2.33) and (2.34) that

$$\lim_{n \to \infty} \|u_n - u_\lambda\|_E^2 \le \lim_{n \to \infty} \int_{\mathbb{R}^3} |u_n - u_\lambda|^6 dx. \tag{2.35}$$

Set $\lim_{n\to\infty} \|u_n - u_\lambda\|_E^2 = l$, then it follows from (1.5) and (2.35) that $l \leq S^{-3}l^3$, which implies that either l = 0 or $l \geq S^{\frac{3}{2}}$. Suppose $l \geq S^{\frac{3}{2}}$, then one can obtain from (2.28), (2.32), (2.25), (2.14), (2.2), Lemma 2.1 and Young inequalities that

$$\begin{split} c_* > c \\ &= \frac{l}{3} + \frac{1}{3} \|u_\lambda\|_E^2 + \lambda (\frac{1}{2p} - \frac{1}{6}) \mathbb{D}(u_\lambda) - (\frac{1}{1 - \gamma} - \frac{1}{6}) \int_{\mathbb{R}^3} f(x) u_\lambda^{1 - \gamma} \mathrm{d}x \\ &\geq \frac{1}{3} S^{\frac{3}{2}} + \frac{1}{3} \|u_\lambda\|_E^2 - (\frac{1}{1 - \gamma} - \frac{1}{6}) \|f\|_{\frac{6}{5 + \gamma}} S^{\frac{\gamma - 1}{2}} \|u_\lambda\|^{1 - \gamma} \\ &\geq \frac{1}{3} S^{\frac{3}{2}} - \frac{1 + \gamma}{2} \left[\frac{2S}{3(1 - \gamma)} \right]^{\frac{\gamma - 1}{\gamma + 1}} \left[\frac{5 + \gamma}{6(1 - \gamma)} \right]^{\frac{2}{\gamma + 1}} \|f\|_{\frac{6}{5 + \gamma}}^{\frac{2}{\gamma + 1}} \\ &= c_*, \end{split}$$

which is a contradiction. So l = 0 and $u_n \to u_\lambda$ strongly in E.

3. Existence of a first solution in $\mathcal{N}_{\lambda}^{+}$

In this section, we want to prove Theorem 1.1 by a minimization argument on \mathcal{N}_{λ}^+ . **Proof of Theorem 1.1.** Fix $0 < \|f\|_{\frac{6}{5+\gamma}} < T_0 = \min\{T_1, T_2\}$, where T_1 is defined in (2.5) and $T_2 = \frac{4}{(5+\gamma)S^{\frac{\gamma-1}{2}}} \left[\frac{S^{\frac{3}{2}}(1-\gamma)}{1+\gamma} \right]^{\frac{\gamma+1}{2}}$, then $c_* > 0$. Due to Lemma 2.2, Lemma 2.4 and Ekeland variational principle, we can obtain a minimizing sequence

 $\{u_n\}\subset \mathcal{V}_{\lambda}^+ = \mathcal{N}_{\lambda}^+ \cup \{0\} \text{ satisfying } (2.11)^+, (2.12)^+ \text{ and } (2.13). \text{ According to } (2.11)^+$ and Lemma 2.6 (i), we have

$$J_{\lambda}(u_n) \to \tau_{\lambda}^+ < 0 < c_*,$$

so $\{u_n\} \subset \mathcal{N}_{\lambda}^+$ and applying Lemma 2.10 with $c = \tau_{\lambda}^+$ results in $u_{\lambda} \not\equiv 0$ and $u_n \to u_{\lambda}$ in E, up to a subsequence.

Step 1. u_{λ} is a solution of problem (P_{λ}) .

One can further obtain from the above relation, $u_n \in \mathcal{N}_{\lambda}^+ \subset \mathcal{N}_{\lambda}$, Lemma 2.1 and Lemma 2.7 (i) that $u_{\lambda} \in \mathcal{N}_{\lambda}$ and

$$(1+\gamma)\|u_{\lambda}\|_{E}^{2} + \lambda(2p-1+\gamma)\mathbb{D}(u_{\lambda}) - (5+\gamma)\int_{\mathbb{R}^{3}}|u_{\lambda}|^{6}dx > 0.$$

Hence, $u_{\lambda} \in \mathcal{N}_{\lambda}^{+}$. Furthermore, passing to the limit as $n \to \infty$ in (2.25) and using Fatou's Lemma, Lemma 2.1 and (2.13) lead to

$$\int_{\mathbb{R}^3} f(x) u_{\lambda}^{-\gamma} \psi dx \le \liminf_{n \to \infty} \int_{\mathbb{R}^3} f(x) u_n^{-\gamma} \psi dx = \langle u_{\lambda}, \psi \rangle_E + \frac{\lambda}{2p} \langle \mathbb{D}'(u_{\lambda}), \psi \rangle - \int_{\mathbb{R}^3} u_{\lambda}^5 \psi dx,$$
(3.1)

for any $0 \le \psi \in E$. We can repeat the arguments used in (2.26)-(2.27) to derive that (3.1) holds for any $\psi \in E$. Thus, u_{λ} verifies (1.4) by the arbitrariness of $\psi \in E$ in (3.1). Similar to the proof of [33, Theorem 1], we have $u_{\lambda} \in C^{2}_{loc}(\mathbb{R}^{3})$. Since $u_{\lambda} \geq 0$, $u_{\lambda} \not\equiv 0$ and u_{λ} satisfies (1.4), the strong maximum principle implies $u_{\lambda} > 0$ in \mathbb{R}^3 and then u_{λ} is a solution of problem (P_{λ}) .

Step 2. u_{λ} is a ground state solution of problem (P_{λ}) .

For any $u \in \mathcal{N}_{\lambda}^{-}$, according to Lemma 2.2, there exists unique $0 < t^{+}(u) < t_{max} < t^{-}(u)$ such that $t^{+}(u)u \in \mathcal{N}_{\lambda}^{+}$, $t^{-}(u)u \in \mathcal{N}_{\lambda}^{-}$, $J_{\lambda}(t^{+}(u)u) = \inf_{0 < t \le t^{-}(u)} J_{\lambda}(tu)$ and $J_{\lambda}(t^{-}(u)u) = \sup_{t \geq t_{max}} J_{\lambda}(tu)$. Then $t^{-}(u) = 1$ and there exists $\bar{t}(u) \in (t_{max}, t^{-}(u))$ such that $J_{\lambda}(t^{+}(u)u) < J_{\lambda}(\bar{t}(u)u)$. So

$$\tau_{\lambda}^{+} \leq J_{\lambda}(t^{+}(u)u) < J_{\lambda}(\overline{t}(u)u) \leq J_{\lambda}(t^{-}(u)u) = J_{\lambda}(u).$$

By the arbitrariness of $u \in \mathcal{N}_{\lambda}^{-}$ and the definition of τ_{λ}^{\pm} and τ_{λ} , we have $\tau_{\lambda}^{+} < \tau_{\lambda}^{-}$ and so $\tau_{\lambda} = \tau_{\lambda}^{+}$ thanks to $\mathcal{N}_{\lambda} = \mathcal{N}_{\lambda}^{+} \cup \mathcal{N}_{\lambda}^{-}$ by Lemma 2.2. Therefore, $J_{\lambda}(u_{\lambda}) = \tau_{\lambda}^{+} = \tau_{\lambda}$ and thus u_{λ} is a ground state solution of problem (P_{λ}) .

Step 3. For any vanishing sequence $\{\lambda_n\}\subset (0,1),\ u_{\lambda_n}\to u_0$ strongly in E where u_0 is a positive solution of problem (P_0) .

For any vanishing sequence $\{\lambda_n\} \subset (0,1)$, since $\{u_{\lambda_n}\} \subset \mathcal{N}_{\lambda_n}^+$ is a ground state solution sequence to problem (P_{λ_n}) provided by Step 2, then $J_{\lambda_n}(u_{\lambda_n}) = \tau_{\lambda_n}^+ = \tau_{\lambda_n}$ and

$$\langle u_{\lambda_n}, \psi \rangle_E + \frac{\lambda_n}{2p} \langle \mathbb{D}'(u_{\lambda_n}), \psi \rangle = \int_{\mathbb{R}^3} f(x) u_{\lambda_n}^{-\gamma} \psi dx + \int_{\mathbb{R}^3} u_{\lambda_n}^5 \psi dx, \qquad (3.2)$$

for every $\psi \in E$ and $n \in \mathbb{N}$. By Lemma 2.3, (2.9) and (2.10), we have $||u_{\lambda_n}||_E < A_*$ and $\frac{1+\gamma}{3(\gamma-1)}A_*^2 \leq \tau_{\lambda_n} < 0$. Thus, there exists a subsequence of $\{\lambda_n\}$, still denoted by $\{\lambda_n\}$, such that as $n \to \infty$, $\tau_{\lambda_n} \to \mu_1 \le 0$ and

$$u_{\lambda_n} \rightharpoonup u_0$$
, in E ,

$$u_{\lambda_n} \to u_0$$
, in $L^s(\mathbb{R}^3)$, $s \in [2, 6)$,
 $u_{\lambda_n} \to u_0$, a.e. in \mathbb{R}^3 , (3.3)

where u_0 is a nonnegative function in E. According to (2.10), Lemma 2.1 and weak lower semicontinuity of the norm, we can further get

$$\mu_{1} = \liminf_{n \to \infty} J_{\lambda_{n}}(u_{\lambda_{n}})
\leq \liminf_{n \to \infty} \left[-\frac{1+\gamma}{3(1-\gamma)} \|u_{\lambda_{n}}\|_{E}^{2} + \lambda_{n}(3-p) \frac{1-\gamma-2p}{6p(1-\gamma)} \mathbb{D}(u_{\lambda_{n}}) \right]
\leq -\frac{1+\gamma}{3(1-\gamma)} \|u_{0}\|_{E}^{2}
< 0.$$
(3.4)

This together with $c_* > 0$ leads to $J_{\lambda_n}(u_{\lambda_n}) \to \mu_1 < 0 < c_*$. Using (3.2) and the statement in the proof of Lemma 2.10, one can similarly obtain that $u_0 \not\equiv 0$ and $u_{\lambda_n} \to u_0$ strongly in E. Then, according to $||u_{\lambda_n}||_E < A_*$ and $\{u_{\lambda_n}\} \subset \mathcal{N}_{\lambda_n}^+ \subset \mathcal{N}_{\lambda_n}$, we have $||u_0||_E \leq A_*$ and $u_0 \in \mathcal{N}_0$. Passing to the lim as $n \to \infty$ in (3.2) and repeating the arguments used in Step 1, for every $\psi \in E$, we have

$$\langle u_0, \psi \rangle_E = \int_{\mathbb{R}^3} f(x) u_0^{-\gamma} \psi dx + \int_{\mathbb{R}^3} u_0^5 \psi dx, \qquad (3.5)$$

and u_0 is a positive solution of problem (P_0) . Hence, $J_0(u_0) = \mu_1 \ge \tau_0$ where $\tau_0 = \inf_{u \in \mathcal{N}_0} J_0(u)$.

Step 4. u_0 is a ground state solution of problem (P_0) .

In order to show u_0 is a ground state solution of problem (P_0) , it is enough to prove that $J_0(u_0) = \tau_0$. Noticing that $\lambda = 0$ is allowed in Step 1 and Step 2, then problem (P_0) admits a ground state solution w_0 satisfying $0 < w_0 \in \mathcal{N}_0$ and $J_0(w_0) = \tau_0$. By Lemma 2.2, for all $n \in \mathbb{N}$, there exists $0 < t_{\lambda_n}^+ < t_{\lambda_n}^-$ such that $t_{\lambda_n}^{\pm} w_0 \in \mathcal{N}_{\lambda_n}^{\pm} \subset \mathcal{N}_{\lambda_n}$ and $J_{\lambda_n}(t_{\lambda_n}^+ w_0) = \inf_{0 < t \le t_{\lambda_n}^-} J_{\lambda_n}(tw_0)$. We claim that $\{t_{\lambda_n}^-\}$ is

bounded. Suppose to the contrary that there exists a subsequence of $\{t_{\lambda_n}^-\}$, still denoted by $\{t_{\lambda_n}^-\}$ such that $t_{\lambda_n}^- \to +\infty$ as $n \to \infty$. Then, by $t_{\lambda_n}^- w_0 \in \mathcal{N}_{\lambda_n}^- \subset \mathcal{N}_{\lambda_n}$ and (2.4), we have

$$\frac{1}{(t_{\lambda_n}^-)^4} \|w_0\|_E^2 + \frac{\lambda_n}{(t_{\lambda_n}^-)^{6-2p}} \mathbb{D}(w_0) = \frac{1}{(t_{\lambda_n}^-)^{5+\gamma}} \int_{\mathbb{R}^3} f(x) |w_0|^{1-\gamma} dx + \int_{\mathbb{R}^3} |w_0|^6 dx, \quad (3.6)$$

and

$$-(6-2p)(t_{\lambda_n}^-)^{2p}\lambda_n \mathbb{D}(w_0) + (5+\gamma)(t_{\lambda_n}^-)^{1-\gamma} \int_{\mathbb{R}^3} f(x)|w_0|^{1-\gamma} dx < 4(t_{\lambda_n}^-)^2 ||w_0||_E^2.$$
(3.7)

Moreover, $w_0 \in \mathcal{N}_0$ means

$$||w_0||_E^2 = \int_{\mathbb{R}^3} f(x)|w_0|^{1-\gamma} dx + \int_{\mathbb{R}^3} |w_0|^6 dx.$$
 (3.8)

Subtracting (3.6) with (3.8) provides

$$\left[1 - \frac{1}{(t_{\lambda_n}^-)^4}\right] \|w_0\|_E^2 - \frac{\lambda_n}{(t_{\lambda_n}^-)^{6-2p}} \mathbb{D}(w_0) = \left[1 - \frac{1}{(t_{\lambda_n}^-)^{5+\gamma}}\right] \int_{\mathbb{R}^3} f(x) |w_0|^{1-\gamma} dx.$$
 (3.9)

Passing to the limit in the above equality, we have

$$||w_0||_E^2 = \int_{\mathbb{R}^3} f(x)|w_0|^{1-\gamma} dx,$$

a contradiction to (3.8). Therefore, $\{t_{\lambda_n}^-\}$ is bounded. Up to a subsequence, suppose that $t_{\lambda_n}^- \to t_0^-$. We claim that $t_0^- \ge 1$. Arguing by contradiction suppose that $0 < t_0^- < 1$, then it follows from (3.9) and (3.7) that

$$\left[1 - \frac{1}{(t_0^-)^4}\right] \|w_0\|_E^2 = \left[1 - \frac{1}{(t_0^-)^{5+\gamma}}\right] \int_{\mathbb{R}^3} f(x) |w_0|^{1-\gamma} dx, \tag{3.10}$$

and

$$(5+\gamma)(t_0^-)^{1-\gamma} \int_{\mathbb{R}^3} f(x) |w_0|^{1-\gamma} dx \le 4(t_0^-)^2 ||w_0||_E^2.$$
 (3.11)

Combining (3.10) with (3.11), we can deduce that

$$4(t_0^-)^{5+\gamma} - (5+\gamma)(t_0^-)^4 + 1 + \gamma \le 0,$$

which is impossible since $4t^{5+\gamma}-(5+\gamma)t^4+1+\gamma>0$ for all $t\in(0,1)$. Therefore, $t_0^-\geq 1$. If $t_0^->1$, then $t_{\lambda_n}^->1$ for some n large enough. This together with $J_{\lambda_n}(t_{\lambda_n}^+w_0)=\inf_{0< t\leq t_{\lambda_n}^-}J_{\lambda_n}(tw_0)$ leads to $J_{\lambda_n}(w_0)\geq J_{\lambda_n}(t_{\lambda_n}^+w_0)$ for some n large

enough. If $t_0^- = 1$, then $t_{\lambda_n}^- \to 1$. For some n large enough with $t_{\lambda_n}^- \ge 1$, we have $J_{\lambda_n}(w_0) \ge J_{\lambda_n}(t_{\lambda_n}^+ w_0)$ by the similar statement above. For some n large enough with $t_{\lambda_n}^- < 1$, according to Lemma 2.2, there exists $t_{\lambda_n} \in (t_{\lambda_n}^+, t_{\lambda_n}^-)$ such that $J_{\lambda_n}(w_0) = J_{\lambda_n}(t_{\lambda_n} w_0) \ge J_{\lambda_n}(t_{\lambda_n}^+ w_0)$. Follows from above two cases, we get $J_{\lambda_n}(w_0) \ge J_{\lambda_n}(t_{\lambda_n}^+ w_0)$ for some n large enough when $t_0^- = 1$. To sum up, $J_{\lambda_n}(w_0) \ge J_{\lambda_n}(t_{\lambda_n}^+ w_0)$ for some n large enough. Hence, we can obtain from $t_{\lambda_n}^+ w_0 \in \mathcal{N}_{\lambda_n}^+$ and $t_{\lambda_n}^+ = t_{\lambda_n}$ that

$$\tau_0 = J_0(w_0)$$

$$= J_{\lambda_n}(w_0) - \frac{\lambda_n}{2p} \mathbb{D}(w_0)$$

$$\geq J_{\lambda_n}(t_{\lambda_n}^+ w_0) - \frac{\lambda_n}{2p} \mathbb{D}(w_0)$$

$$\geq \tau_{\lambda_n}^+ - \frac{\lambda_n}{2p} \mathbb{D}(w_0)$$

$$= \tau_{\lambda_n} - \frac{\lambda_n}{2p} \mathbb{D}(w_0),$$

for some n large enough and so

$$\limsup_{n \to +\infty} \tau_{\lambda_n} \le \tau_0.$$
(3.12)

Using (3.12), one can further get

$$\tau_0 \leq J_0(u_0) = \limsup_{n \to +\infty} J_{\lambda_n}(u_{\lambda_n}) = \limsup_{n \to +\infty} \tau_{\lambda_n} \leq \tau_0.$$

This shows that $J_0(u_0) = \tau_0$ and so u_0 is a ground state solution of problem (P_0) . The proof is completed.

4. Existence of a second solution in $\mathcal{N}_{\lambda}^{-}$

It is well known that S can be attained by the function

$$U_{\varepsilon}(x) = \frac{(3\varepsilon)^{\frac{1}{4}}}{(\varepsilon + |x|^2)^{\frac{1}{2}}}, \ \varepsilon > 0, \ x \in \mathbb{R}^3, \tag{4.1}$$

and $||U_{\varepsilon}||^2 = ||U_{\varepsilon}||_6^6 = S^{\frac{3}{2}}$. Let $\eta(x) \in C_0^{\infty}(\mathbb{R}^3)$ be a radially symmetric function such that $0 \leq \eta \leq 1$, $\eta|_{B_{\frac{\delta}{2}}}(0) \equiv 1$ and $\operatorname{supp} \eta \subset B_{\delta}(0)$ for some $\delta > 2\delta_1$ where δ_1 is given in (f_2) . Moreover, set $w_{\varepsilon}(x) = \eta(x)U_{\varepsilon}(x)$, then for $\varepsilon > 0$ small enough, we have (see [3])

$$\int_{\mathbb{R}^3} |\nabla w_{\varepsilon}|^2 dx = K_1 + O(\varepsilon^{\frac{1}{2}}), \ \int_{\mathbb{R}^3} |w_{\varepsilon}|^6 dx = K_2 + O(\varepsilon^{\frac{3}{2}}), \tag{4.2}$$

and

$$\int_{\mathbb{R}^3} |w_{\varepsilon}|^s dx = \begin{cases}
O(\varepsilon^{\frac{s}{4}}), & s \in [2, 3), \\
O(\varepsilon^{\frac{s}{4}} |\ln \varepsilon|), & s = 3, \\
O(\varepsilon^{\frac{6-s}{4}}), & s \in (3, 6),
\end{cases}$$
(4.3)

where K_1 , K_2 are positive constants and $\frac{K_1}{K_2^{\frac{1}{3}}} = S$. Using (4.2), we can further get

$$\frac{\int_{\mathbb{R}^3} |\nabla w_{\varepsilon}|^2 dx}{\left(\int_{\mathbb{R}^3} |w_{\varepsilon}|^6 dx\right)^{\frac{1}{3}}} = S + O(\varepsilon^{\frac{1}{2}}). \tag{4.4}$$

Lemma 4.1. Assume (V_1) , (V_2) , (f_1) and (f_2) hold, then there exists $0 < T_{00} < T_0$ where T_0 is defined in proof of Theorem 1.1, such that for $0 < ||f||_{\frac{6}{5+\gamma}} < T_{00}$ and $\varepsilon > 0$ small, we have

$$\tau_{\lambda}^{-} \leq \sup_{t>0} J_{\lambda}(tw_{\varepsilon}) < c_{*}, \ \forall \lambda > 0,$$

where c_* is given in Lemma 2.10.

Proof. For $0 < \|f\|_{\frac{6}{5+\gamma}} < \frac{1-\gamma}{2} T_1$, by Lemma 2.2 and Lemma 2.6 (ii), there exists $t_{\varepsilon} > t_{max} > 0$ such that $t_{\varepsilon} w_{\varepsilon} \in \mathcal{N}_{\lambda}^{-}$ and $J_{\lambda}(t_{\varepsilon} w_{\varepsilon}) = \sup_{t \geq 0} J_{\lambda}(tw_{\varepsilon}) \geq \beta_{0} > 0$. We can get from this and $J_{\lambda}(tw_{\varepsilon}) \to -\infty$ as $t \to +\infty$ that there exist positive constants t_{00}, t_{0} independent of ε such that $t_{00} \leq t_{\varepsilon} \leq t_{0}$. Motivated by [10, 42], let $J_{\lambda}(t_{\varepsilon}w_{\varepsilon}) = A(\varepsilon) + B(\varepsilon) + C(\varepsilon) - D(\varepsilon)$, where

$$A(\varepsilon) = \frac{t_{\varepsilon}^2}{2} \int_{\mathbb{R}^3} |\nabla w_{\varepsilon}|^2 dx - \frac{t_{\varepsilon}^6}{6} \int_{\mathbb{R}^3} |w_{\varepsilon}|^6 dx, \ B(\varepsilon) = \frac{t_{\varepsilon}^2}{2} \int_{\mathbb{R}^3} V(x) |w_{\varepsilon}|^2 dx,$$
$$C(\varepsilon) = \lambda \frac{t_{\varepsilon}^{2p}}{2p} \mathbb{D}(w_{\varepsilon}), \ D(\varepsilon) = \frac{t_{\varepsilon}^{1-\gamma}}{1-\gamma} \int_{\mathbb{R}^3} f(x) |w_{\varepsilon}|^{1-\gamma} dx.$$

For the purpose of proof, set $g_3(t) = \frac{t^2}{2} \int_{\mathbb{R}^3} |\nabla w_{\varepsilon}|^2 dx - \frac{t^6}{6} \int_{\mathbb{R}^3} |w_{\varepsilon}|^6 dx$, then one can easily get that $g_3(t)$ achieves its maximum at T_{max} with $T_{max} = \left(\frac{\int_{\mathbb{R}^3} |\nabla w_{\varepsilon}|^2 dx}{\int_{\mathbb{R}^3} |w_{\varepsilon}|^6 dx}\right)^{\frac{1}{4}}$.

Thus, it follows from (4.4) that

$$A(\varepsilon) = g_3(t_{\varepsilon}) \le g_3(T_{max}) = \frac{1}{3} \frac{\left(\int_{\mathbb{R}^3} |\nabla w_{\varepsilon}|^2 dx\right)^{\frac{3}{2}}}{\left(\int_{\mathbb{R}^3} |w_{\varepsilon}|^6 dx\right)^{\frac{1}{2}}} = \frac{1}{3} S^{\frac{3}{2}} + O(\varepsilon^{\frac{1}{2}}). \tag{4.5}$$

Since $t_{00} \le t_{\varepsilon} \le t_0$, one can get from $V \in C(\mathbb{R}^3)$, the definition of w_{ε} and (4.3) that

$$B(\varepsilon) = \frac{t_{\varepsilon}^2}{2} \int_{B_{\delta}(0)} V(x) |w_{\varepsilon}|^2 dx \le \max_{x \in B_{\delta}(0)} V(x) \cdot \frac{t_0^2}{2} \int_{B_{\delta}(0)} |w_{\varepsilon}|^2 dx = O(\varepsilon^{\frac{1}{2}}). \tag{4.6}$$

By (2.1), (4.3) and $1 + \frac{\alpha}{3} \le p < 3$, we also have

$$C(\varepsilon) \le \lambda \frac{t_0^{2p}}{2p} d_{\alpha} \left(\int_{\mathbb{R}^3} |w_{\varepsilon}|^{\frac{6p}{3+\alpha}} dx \right)^{\frac{3+\alpha}{3}} = \begin{cases} O(\varepsilon^{\frac{p}{2}}), & \frac{3+\alpha}{3} \le p < \frac{3+\alpha}{2}, \\ O(\varepsilon^{\frac{p}{2}} |\ln \varepsilon|^{\frac{3+\alpha}{3}}), & p = \frac{3+\alpha}{2}, \\ O(\varepsilon^{\frac{3+\alpha-p}{2}}), & \frac{3+\alpha}{2} < p < 3, \end{cases}$$

$$(4.7)$$

Similarly, by (f_2) and $\frac{3+\gamma}{2} < \beta_1 < \frac{5+\gamma}{2} < 3$, for any ε satisfying $0 < \varepsilon \le \delta_1^2$, we

$$D(\varepsilon) = \frac{t_{\varepsilon}^{1-\gamma}}{1-\gamma} \int_{|x|<\delta} f(x) |w_{\varepsilon}|^{1-\gamma} dx$$

$$= \frac{t_{\varepsilon}^{1-\gamma}}{1-\gamma} \left[\int_{|x|<\delta_{1}} f(x) |w_{\varepsilon}|^{1-\gamma} dx + \int_{\delta_{1} \leq |x|<\delta} f(x) |w_{\varepsilon}|^{1-\gamma} dx \right]$$

$$\geq \frac{t_{00}^{1-\gamma}}{1-\gamma} \int_{|x|<\delta_{1}} \frac{\rho_{1} |x|^{-\beta_{1}} (3\varepsilon)^{\frac{1-\gamma}{4}}}{(\varepsilon+|x|^{2})^{\frac{1-\gamma}{2}}} dx$$

$$= C_{3} \varepsilon^{\frac{1-\gamma}{4}} \int_{0}^{\delta_{1}} \frac{r^{2}}{r^{\beta_{1}} (\varepsilon+r^{2})^{\frac{1-\gamma}{2}}} dr$$

$$= C_{3} \varepsilon^{\frac{\gamma+5-2\beta_{1}}{4}} \int_{0}^{\frac{\delta_{1}}{\sqrt{\varepsilon}}} \frac{r^{2}}{r^{\beta_{1}} (1+r^{2})^{\frac{1-\gamma}{2}}} dr$$

$$\geq C_{3} \varepsilon^{\frac{\gamma+5-2\beta_{1}}{4}} \int_{0}^{1} \frac{r^{2}}{2^{\frac{1-\gamma}{2}} r^{\beta_{1}}} dr$$

$$= C_{4} \varepsilon^{\frac{\gamma+5-2\beta_{1}}{4}}.$$

$$(4.8)$$

 $\begin{array}{l} \textbf{Case 1.} \ \ \frac{3+\alpha}{3} \leq p \leq \frac{3+\alpha}{2}. \\ \text{For } \frac{3+\alpha}{3} \leq p \leq \frac{3+\alpha}{2}, \text{ using the fact that } \lim_{\varepsilon \to 0^+} \varepsilon^{\frac{p-1}{2}} |\mathrm{ln}\varepsilon|^{\frac{3+\alpha}{3}} = 0 \text{ and } \frac{p}{2} \geq \frac{3+\alpha}{6} > \frac{1}{2}, \end{array}$ we can obtain from (4.7) that $C(\varepsilon) = O(\varepsilon^{\frac{\varepsilon}{2}})$. Combining this with (4.5), (4.6) and

$$J_{\lambda}(t_{\varepsilon}w_{\varepsilon}) \leq \frac{1}{3}S^{\frac{3}{2}} + O(\varepsilon^{\frac{1}{2}}) - C_{4}\varepsilon^{\frac{\gamma+5-2\beta_{1}}{4}} \leq \frac{1}{3}S^{\frac{3}{2}} + C_{5}\varepsilon^{\frac{1}{2}} - C_{4}\varepsilon^{\frac{\gamma+5-2\beta_{1}}{4}}.$$

Set $\varepsilon = \|f\|_{\frac{6}{5+\gamma}}^{\frac{4}{1+\lambda}}$ and $T_* = \left(\frac{C_4}{C_5+D_*}\right)^{\frac{1+\gamma}{2\beta_1-3-\gamma}}$ where D_* is given in Lemma 2.10, since $\frac{3+\gamma}{2} < \beta_1 < \frac{5+\gamma}{2}$, we have

$$C_5 \varepsilon^{\frac{1}{2}} - C_4 \varepsilon^{\frac{\gamma + 5 - 2\beta_1}{4}} = \|f\|_{\frac{6}{5 + \gamma}}^{\frac{2}{\gamma + 1}} \left(C_5 - C_4 \|f\|_{\frac{6}{5 + \gamma}}^{\frac{\gamma + 3 - 2\beta_1}{1 + \gamma}} \right) < -D_* \|f\|_{\frac{6}{5 + \gamma}}^{\frac{2}{\gamma + 1}},$$

and so

$$\sup_{t\geq 0} J_{\lambda}(tw_{\varepsilon}) = J_{\lambda}(t_{\varepsilon}w_{\varepsilon}) < \frac{1}{3}S^{\frac{3}{2}} - D_{*}\|f\|_{\frac{6}{5+\gamma}}^{\frac{2}{\gamma+1}} = c_{*},$$

for all $||f||_{\frac{6}{5+\gamma}}$ sufficiently small with $||f||_{\frac{6}{5+\gamma}} < T_3 = \min\{\frac{1-\gamma}{2}T_1, T_2, T_*\}.$

Case 2. $\frac{3+\alpha}{2} .$

When $p-\alpha \leq 2$ i.e. $\frac{3+\alpha-p}{2} \geq \frac{1}{2}$, similarly to Case 1, we can obtain $\sup_{t\geq 0} J_{\lambda}(tw_{\varepsilon}) < c_*$. Hence, we only consider the situation when $p-\alpha > 2$. It follows from $p-\alpha > 2$ and $\frac{3+\alpha}{2} that <math>\frac{\alpha}{2} < \frac{3+\alpha-p}{2} < \frac{1}{2}$. Hence, one can get from (4.5)-(4.8) that

$$J_{\lambda}(t_{\varepsilon}w_{\varepsilon}) \leq \frac{1}{3}S^{\frac{3}{2}} + O(\varepsilon^{\frac{1}{2}}) + O(\varepsilon^{\frac{3+\alpha-p}{2}}) - C_{4}\varepsilon^{\frac{\gamma+5-2\beta_{1}}{4}} \leq \frac{1}{3}S^{\frac{3}{2}} + C_{6}\varepsilon^{\frac{\alpha}{2}} - C_{4}\varepsilon^{\frac{\gamma+5-2\beta_{1}}{4}}.$$

Set
$$\varepsilon = ||f||_{\frac{6}{5+\gamma}}^{\frac{4}{\alpha(1+\gamma)}}$$
 and $T_{**} = \left(\frac{C_4}{C_6+D_*}\right)^{\frac{\alpha(1+\gamma)}{2\beta_1+2\alpha-5-\gamma}}$, since $\frac{5+\gamma-2\alpha}{2} < \beta_1 < \frac{5+\gamma}{2}$, we have

$$C_6 \varepsilon^{\frac{\alpha}{2}} - C_4 \varepsilon^{\frac{\gamma + 5 - 2\beta_1}{4}} = \|f\|_{\frac{6}{5 + \gamma}}^{\frac{2}{\gamma + 1}} \Big(C_6 - C_4 \|f\|_{\frac{6}{5 + \gamma}}^{\frac{\gamma + 5 - 2\beta_1 - 2\alpha}{\alpha(1 + \gamma)}} \Big) < -D_* \|f\|_{\frac{6}{5 + \gamma}}^{\frac{2}{\gamma + 1}},$$

and so for all $||f||_{\frac{6}{5+\gamma}}$ sufficiently small with $||f||_{\frac{6}{5+\gamma}} < T_4 = \min\{\frac{1-\gamma}{2}T_1, T_2, T_{**}\},$ we have

$$\sup_{t\geq 0}J_{\lambda}(tw_{\varepsilon})=J_{\lambda}(t_{\varepsilon}w_{\varepsilon})<\frac{1}{3}S^{\frac{3}{2}}-D_{*}\|f\|_{\frac{6}{5+\gamma}}^{\frac{2}{\gamma+1}}=c_{*}.$$

To sum up, set $T_{00} = \min\{T_3, T_4\}$, then for all $||f||_{\frac{6}{5+\gamma}}$ sufficiently small with $||f||_{\frac{6}{5+\gamma}} < T_{00}$, we have

$$\tau_{\lambda}^{-} \leq J_{\lambda}(t_{\varepsilon}w_{\varepsilon}) = \sup_{t \geq 0} J_{\lambda}(tw_{\varepsilon}) < c_{*},$$

since $t_{\varepsilon}w_{\varepsilon}\in\mathcal{N}_{\lambda}^{-}$ and this ends the proof.

Proof of Theorem 1.2. Fix $0 < \|f\|_{\frac{6}{5+\gamma}} < T_{00}$, according to Theorem 1.1, we only need to show the existence and asymptotic behavior of another solution v_{λ} which is different with the first solution u_{λ} . Since $\mathcal{N}_{\lambda}^{-}$ is a closed set in E by Lemma 2.4, applying the Ekeland variational principle to construct a minimizing sequence $\{u_n\} \subset \mathcal{N}_{\lambda}^{-}$ satisfying $(2.11)^{-}$, $(2.12)^{-}$ and (2.13) with weak limit v_{λ} , to not confuse with u_{λ} obtained in Section 2 and Section 3.

Step 1. v_{λ} is a solution of problem (P_{λ}) .

We can get from (2.11)⁻, Lemma 2.6 (ii) and Lemma 4.1 that

$$\tau_{\lambda}^- \geq \beta_0 > 0$$
 and $J_{\lambda}(u_n) \to \tau_{\lambda}^- < c_*$,

so Lemma 2.10 with $c=\tau_{\lambda}^-$ results in $v_{\lambda} \not\equiv 0$ and $u_n \to v_{\lambda}$ in E, up to a subsequence. Then, $J_{\lambda}(v_{\lambda}) = \tau_{\lambda}^-$. Moreover, $u_n \in \mathcal{N}_{\lambda}^- \subset \mathcal{N}_{\lambda}$ and $u_n \to v_{\lambda}$ further lead to $v_{\lambda} \in \mathcal{N}_{\lambda}$. Similarly, one can get from Lemma 2.1 and Lemma 2.7 (ii) that

$$(1+\gamma)\|v_{\lambda}\|_{E}^{2} + \lambda(2p-1+\gamma)\mathbb{D}(v_{\lambda}) - (5+\gamma)\int_{\mathbb{D}^{3}}|v_{\lambda}|^{6}\mathrm{d}x < 0,$$

therefore, $v_{\lambda} \in \mathcal{N}_{\lambda}^{-}$. Following the argument used for the first solution u_{λ} in Section 3, we see that v_{λ} is also a positive solution of problem (P_{λ}) . Moreover, since $u_{\lambda} \in \mathcal{N}_{\lambda}^{+}$ and $v_{\lambda} \in \mathcal{N}_{\lambda}^{-}$, we get from Lemma 2.3 that $||v_{\lambda}||_{E} > ||u_{\lambda}||_{E}$. So u_{λ} and v_{λ} are distinct.

Step 2. For any vanishing sequence $\{\lambda_n\} \subset (0,1)$, $v_{\lambda_n} \to v_0$ strongly in E where v_0 is a positive solution of problem (P_0) .

For any vanishing sequence $\{\lambda_n\} \subset (0,1)$, since $\{v_{\lambda_n}\} \subset \mathcal{N}_{\lambda_n}^-$ is a positive solution sequence to problem (P_{λ_n}) provided by Step 1, then $\beta_0 \leq J_{\lambda_n}(v_{\lambda_n}) = \tau_{\lambda_n}^- < c_*$, $\|v_{\lambda_n}\|_E > A^* > 0$ and

$$(v_{\lambda_n}, \psi)_E + \frac{\lambda_n}{2p} \langle \mathbb{D}'(v_{\lambda_n}), \psi \rangle = \int_{\mathbb{R}^3} f(x) v_{\lambda_n}^{-\gamma} \psi dx + \int_{\mathbb{R}^3} v_{\lambda_n}^5 \psi dx, \tag{4.9}$$

for every $\psi \in E$ and $n \in \mathbb{N}$. Since $v_{\lambda_n} \in \mathcal{N}_{\lambda_n}$ and $J_{\lambda_n}(v_{\lambda_n}) < c_*$, then $\{v_{\lambda_n}\}$ is bounded in E by (2.9). Thus, there exists a subsequence of $\{\lambda_n\}$, still denoted by $\{\lambda_n\}$, such that as $n \to \infty$, $\tau_{\lambda_n}^- \to \mu_2$ and

$$v_{\lambda_n} \rightharpoonup v_0$$
, in E ,
 $v_{\lambda_n} \to v_0$, in $L^s(\mathbb{R}^3)$, $s \in [2, 6)$,
 $v_{\lambda_n} \to v_0$, a.e. in \mathbb{R}^3 , (4.10)

where v_0 is nonnegative in E. Hence, $\mu_2 \geq \beta_0 > 0$ and $J_{\lambda_n}(v_{\lambda_n}) \to \mu_2 < c_*$. Using (4.9) and the statement in the proof of Lemma 2.10, one can similarly obtain that $v_0 \not\equiv 0$ and $v_{\lambda_n} \to v_0$ strongly in E. Then, $||v_0||_E \geq A^*$ follows from $||v_{\lambda_n}||_E > A^*$. Passing to the lim as $n \to \infty$ in (4.9) and repeating the arguments used in Step 1 in the proof of Theorem 1.1, we have that v_0 is a positive solution of problem (P_0) . It follows from $||u_0||_E \leq A_*$, $||v_0||_E \geq A^*$ and $A_* < A^*$ in Lemma 2.3 that $||u_0||_E < ||v_0||_E$. The proof is completed.

Acknowledgements

The authors appreciate the reviewers for valuable comments which improve the paper.

References

- [1] Y. Ao, Existence of solutions for a class of nonlinear Choquard equations with critical growth, Appl. Anal., 2021, 100(3), 465–481.
- [2] T. Bartsch and Z. Wang, Existence and multiplicity results for some superlinear elliptic problems on \mathbb{R}^N , Comm. Partial Differential Equations, 1995, 20(9–10), 1725–1741.

[3] H. Brézis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math., 1983, 36(4), 437–477.

- [4] M. Coclite and G. Palmieri, On a singular nonlinear Dirichlet problem, Comm. Partial Differential Equations, 1989, 14(10), 1315–1327.
- [5] A. Fiscella and P. Mishra, The Nehari manifold for fractional Kirchhoff problems involving singular and critical terms, Nonlinear Anal., 2019, 186, 6–32.
- [6] M. Ghimenti, V. Moroz and J. Schaftingen, Least action nodal solutions for the quadratic Choquard equation, Proc. Amer. Math. Soc., 2017, 145, 737–747.
- [7] J. Giacomoni and K. Saoudi, Multiplicity of positive solutions for a singular and critical problem, Nonlinear Anal., 2009, 71(9), 4060–4077.
- [8] N. Hirano, C. Saccon and N. Shioji, Existence of multiple positive solutions for singular elliptic problems with concave and convex nonlinearities, Adv. Differential Equations, 2004, 9(1–2), 197–220.
- [9] N. Hirano, C. Saccon and N. Shioji, Brezis-Nirenberg type theorems and multiplicity of positive solutions for a singular elliptic problem, J. Differential Equations, 2008, 245(8), 1997–2037.
- [10] L. Huang, E. Rocha and J. Chen, Positive and sign-changing solutions of a Schrödinger-Poisson system involving a critical nonlinearity, J. Math. Anal. Appl., 2013, 408(1), 55–69.
- [11] C. Lei and J. Liao, Multiple positive solutions for Schrödinger-Poisson system involving singularity and critical exponent, Math. Meth. Appl. Sci., 2019, 42(7), 2417–2430.
- [12] C. Lei, J. Liao and C. Tang, Multiple positive solutions for Kirchhoff type of problems with singularity and critical exponents, J. Math. Anal. Appl., 2015, 421(1), 521–538.
- [13] C. Lei, H. Suo and C. Chu, Multiple positive solutions for a Schrödinger-Newton system with singularity and critical growth, Electron. J. Differential Equations, 2018, 86, 1–15.
- [14] F. Li, C. Gao and X. Zhu, Existence and concentration of sign-changing solutions to Kirchhoff-type system with Hartree-type nonlinearity, J. Math. Anal. Appl., 2017, 448(1), 60–80.
- [15] G. Li, Y. Li, C. Tang and L. Yin, Existence and concentrate behavior of ground state solutions for critical Choquard equations, Appl. Math. Lett., 2019, 96, 101–107.
- [16] G. Li and C. Tang, Existence of a ground state solution for Choquard equation with the upper critical exponent, Comput. Math. Appl., 2018, 76(11–12), 2635–2647.
- [17] X. Li and S. Ma, Choquard equations with critical nonlinearities, Commun. Contemp. Math., 2020, 22(4), 1950023.
- [18] X. Li, S. Ma and G. Zhang, Existence and qualitative properties of solutions for Choquard equations with a local term, Nonlinear Anal. Real World Appl., 2019, 45, 1–25.
- [19] E. Lieb, Existence and uniqueness of the minimizing solution of Choquard's nonlinear equation, Stud. Appl. Math., 1977, 57(2), 93–105.

- [20] J. Liu, A. Hou and J. Liao, Multiplicity of positive solutions for a class of singular elliptic equations with critical Sobolev exponent and Kirchhoff-type nonlocal term, Electron. J. Qual. Theory Differ. Equ., 2018, 100, 1–20.
- [21] D. Lü, Existence and concentration of solutions for a nonlinear Choquard equation, Mediterr. J. Math., 2015, 12(3), 839–850.
- [22] D. Lü, A note on Kirchhoff-type equations with Hartree-type nonlinearities, Nonlinear Anal., 2014, 99, 35–48.
- [23] C. Mercuri, V. Moroz and J. Schaftingen, Groundstates and radial solutions to nonlinear Schrödinger-Poisson-Slater equations at the critical frequency, Calc. Var. Partial Differ. Equ., 2016, 55, 146.
- [24] V. Moroz and J. Schaftingen, A guide to the Choquard equation, J. Fixed Point Theory Appl., 2017, 19, 773–813.
- [25] T. Mukherjee and K. Sreenadh, Positive solutions for nonlinear Choquard equation with singular nonlinearity, Complex Var. Elliptic Equ., 2017, 62(8), 1044–1071.
- [26] S. Pekar, Untersuchungen über Die Elektronentheorie Der Kristalle, Akademie Verlag, Berlin, 1954.
- [27] D. Ruiz amd J. Schaftingen, Odd symmetry of least energy nodal solutions for the Choquard equation, J. Differential Equations, 2018, 264(2), 1231–1262.
- [28] J. Schaftingen and J. Xia, Groundstates for a local nonlinear perturbation of the Choquard equations with lower critical exponent, J. Math. Anal. Appl., 2018, 464(2), 1184–1202.
- [29] J. Seok, Limit profiles and uniqueness of ground states to the nonlinear Choquard equations, Adv. Nonlinear Anal., 2019, 8(1), 1083–1098.
- [30] J. Seok, Nonlinear Choquard equations involving a critical local term, Appl. Math. Lett., 2017, 63, 77–87.
- [31] J. Seok, Nonlinear Choquard equations: Doubly critical case, Appl. Math. Lett., 2018, 76, 148–156.
- [32] Y. Su and H. Chen, Existence of nontrivial solutions for a perturbation of Choquard equation with Hardy-Littlewood-Sobolev upper critical exponent, Electron. J. Differential Equations, 2018, 123, 1–25.
- [33] Y. Sun and S. Li, Structure of ground state solutions of singular semilinear elliptic equations, Nonlinear Anal., 2003, 55(4), 399–417.
- [34] Y. Sun and S. Wu, An exact estimate result for a class of singular equations with critical exponents, J. Funct. Anal., 2011, 260(5), 1257–1284.
- [35] X. Wang, L. Zhao and P. Zhao, Combined effects of singular and critical non-linearities in elliptic problems, Nonlinear Anal., 2013, 87, 1–10.
- [36] T. Wu, On a class of nonlocal nonlinear Schrödinger equations with potential well, Adv. Nonlinear Anal., 2020, 9(1), 665–689.
- [37] H. Yang, Multiplicity and asymptotic behavior of positive solutions for a singular semilinear elliptic problem, J. Differential Equations, 2003, 189(2), 487–512.
- [38] S. Yu and J. Chen, Uniqueness and asymptotical behavior of solutions to a Choquard equation with singularity, Appl. Math. Lett., 2020, 102, 106099.

[39] S. Yu and J. Chen, Multiple and asymptotical behavior of solutions to a Choquard equation with singularity, J. Math. Anal. Appl., 2022, 511, 126047.

- [40] S. Yu and J. Chen, Fractional Schrödinger-Poisson system with singularity: Existence, uniqueness and asymptotic behaviour, Glasgow Math. J., 2021, 63(1), 179–192.
- [41] S. Yu and J. Chen, Multiple positive solutions for critical elliptic problem with singularity, Monatsh. Math., 2021, 194, 395–423.
- [42] X. Zhong and C. Tang, Ground state sign-changing solutions for a class of subcritical Choquard equations with a critical pure power nonlinearity in \mathbb{R}^N , Comput. Math. Appl., 2018, 76(1), 23–34.