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FINITE TIME STABILITY AND OPTIMAL
CONTROL OF A STOCHASTIC REACTION
DIFFUSION ECHINOCOCCOSIS MODEL
WITH IMPULSE AND TIME-VARYING

DELAY∗

Bin Liu1,3, Jing Hu1,4,† and Libo Liu2,†

Abstract This paper presents a model for echinococcosis which incorporates
stochastic reaction diffusion, impulse, and time-varying delay. First, the ex-
istence and uniqueness of global positive solution is proved through the con-
struction of a Lyapunov function. Then, by applying the bounded impulse
interval method, several sufficient conditions for finite time stability (FTS)
are obtained. Finally, from the angle of cost-benefit, the issue of optimal con-
trol of echinococcosis is presented with the aim of minimizing infection and
controlling costs. The validity of the analytical results is verified by numerical
simulations.

Keywords Finite-time stability, Lyapunov functional, optimal control, time-
varying delay.
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1. Introduction

Cystic echinococcosis, also known as hydatid disease, is a zoonotic parasitic disease
caused by infection with a species complex centred on echinococcus granulous. It is
widely distributed on all continents except Antarctica. There can be more than 50
cases of human cystic echinococcosis per 100, 000 people annually and prevalence
rates range from 5% − 10% in certain regions of Argentina, Peru, East Africa,
Central Asia. Particularly in China, cystic echinococcosis (CE) has been reported
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from 22 provinces, autonomous regions and municipalities which was caused by
echinococcus granulosus and echinococcus multilocularis [6,28]. The main endemic
areas are in the western provinces, such as Xinjiang, Qinghai and Tibet [5], where
the widely developed livestock industry has maintained a stable transmission cycle
of echinococcus granulosus. The number of domestic animals being faced with the
infection of echinococcosis is more than 108 in which the amount of dogs is at
least 5 ∗ 106 [23]. Because of its wide prevalence and serious harm, the spread of
echinococcosis has attracted extensive attention in the world. The study on the
endemic areas, influencing factors and transmission mechanism of echinococcosis
has been a hot topic in recent decades.

Various mathematical models have played an important role in exploring the
transmission of echinococcosis. Most of the work focuses on statistical models to
study the echinococcus granulosus [1, 4, 7, 12, 13, 19, 20]. For example, Gemmell et
al. [7] and Roberts et al. [19] constructed a mathematical model of the life cycle
of echinococcus granulosus in dogs and sheep in New Zealand and used it to dis-
cuss previously published experimental and survey data. Wang et al. [22] presented
a new echinococcosis model drived by ordinary differential equations for predict-
ing the epidemic trend of echinococcus in Xinjiang Uygur Autonomous Region of
China. Liu et al. [15] presented a time-delayed echinococcosis transmission model
to explore effective control and prevention strategies. Xu et al. [26] established a
reaction diffusion equation with time delay to describe the transmission mechanism
of echinococcosis. However, these papers mentioned considering constant delay. In
the reality of biology, the delay is influenced by various factors such as season and
so on. Therefore, the delay in penetration is time-dependent and the introduction
of time-varying delay makes more practical sense in the echinococcosis system. On
the other hand, the infectious disease system is often disturbed by human activities
such as vaccinations and deworming treatments. These phenomena can be more
precisely depicted using impulse differential equations. Some results were presented
on modeling impulsive infectious disease systems [11, 17, 27]. Such as zhang et
al. [27] established a mathematical model that incorporates periodic transmission
and impulse intervention to describe the transmission dynamics of echinococcosis
and explored the effectiveness of prevention and control measures.

It is well-known that various environmental factors can influence the spread of
disease. Such as extreme climate, seasonal changes, and sunshine duration can affect
the survival of parasitic eggs and the activity and efficacy involved in their dispersal.
Hot and dry weather can shorten the lifespan of the eggs but increase their chances
of dispersal. Some research has already been conducted on the impact of noise on the
spread of diseases [8,21]. For example, Tornatore et al. [21] discussed the asymptotic
stability of the disease-free equilibrium of a stochastic SIR model. Gray et al. [8]
considered a stochastic SIS model and studied the stationary distribution in the
case of disease persistence. However, there have been few studies that incorporate
stochastic factors into the analysis of the dynamic behavior of cysticercosis systems.

In recent decades, scholars have conducted research on the long-term dynamic
behavior of echinococcosis. However, when an infectious disease outbreak occurs,
our goal is to control the spread of the disease within a limited time. The study of
FTS in diseases is a very intriguing topic. Finite-time stability means that when a
disease outbreak occurs, for a finite period of time, the population size is controlled
within a certain range. The study of finite time stability helps the government and
health departments formulate targeted interventions to block the chain of disease
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transmission in a timely manner and to safeguard people’s health and safety. In
summary, the study of finite time stability is of great significance in epidemiology.
Clearly, FTS of the system does not imply asymptotic stabilization. Similarly,
if the system is asymptotically stabilised, its state value may surpass a certain
threshold within a finite time period. Moreover, for certain complex systems where
the equilibrium point is not easily determined, as a result, the asymptotic stability of
the systems cannot be ensured, despite the system can maintain a good performance
in a finite time interval. This has been explored in other areas of research [16,24,25]
but has not been specifically studied in the context of echinococcosis. Therefore, in
this paper, we considered stochastic factors based on the model proposed by Xu et
al. [26]. The existence and uniqueness of global positive solution is proved through
the construction of a Lyapunov function and the FTS of the system is discussed
using the stochastic comparison principle. From another perspective, determining
the optimal control strategy for echinococcosis to balance costs and benefits due
to limited resources is also an important and meaningful issue. To sum up, our
primary contributions are outlined as follows:

•We introduce a time-varying delay impulsive stochastic reaction-diffusion model
for echinococcosis, which extends the work in references [15,16,27].

• The theoretical results provide sufficient conditions for finite-time stability,
which reflect the effects of diffusion, delay, impulse, and noise disturbance.

• Control strategies are applied to impulse stochastic echinococcosis systems
with delay, such as vaccination, deworming therapy, and cleaning the environment.
An explicit expression for the optimal control is obtained through the principle of
minimum.

The remaining structure of this paper is organized as follows. In Sect. 2, a
stochastic reaction diffusion echinococcosis system is constructed with impulse and
time-varying delay. According to an equivalent system, Section 3 yields the well-
posedness of positive solution of the system. In Sect. 4, the sufficient conditions
associated with white noise, impulse, and time-varying delay for the FTS are pre-
sented. In Sect. 5, we investigate the optimal control problem for the echinococcosis
system using the minimum principle. In Sect. 6, the theoretical results are illus-
trated through a numerical simulation. The last section gives the conclusion of this
paper and discusses further work.

2. Model derivations

In this part, the hydatid transmission model can be descried by Xu et al. [26] as
follows:

∂S1(t, x)

∂t
= d1△S1(t, x) +A1 − β1S1(t, x)I2(t, x)− µ1S1(t, x) + γ1I1(t, x),

∂E1(t, x)

∂t
= d2△E1(t, x) + β1S1(t, x)I2(t, x)− µ1E1(t, x)− β1S1(t− τ(t), x)I2(t− τ(t), x),

∂I1(t, x)

∂t
= d3△I1(t, x) + β1S1(t− τ(t), x)I2(t− τ(t), x)− (µ1 + γ1)I1(t, x),

∂S2(t, x)

∂t
= d4△S2(t, x) +A2 − β2S2(t, x)I1(t, x)− µ2S2(t, x) + γ2I2(t, x),

∂E2(t, x)

∂t
= d5△E2(t, x) + β2S2(t, x)I1(t, x)− µ2E2(t, x)− β2S2(t− τ(t), x)I1(t− τ(t), x),

∂I2(t, x)

∂t
= d6△I2(t, x) + β2S2(t− τ(t), x)I1(t− τ(t), x)− (µ2 + γ2)I2(t, x).

(2.1)
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All parameters are assumed nonnegative. For the definitive hosts population (mainly
the dogs), A1 describes the menstrual recruitment rate; µ1 is the death rate of the
definitive hosts; γ1 denotes the recovery rate of transition from infected to sus-
ceptible definitive hosts, including the natural recovery rate and recovery due to
anthelmintic treatment; β1S1(t)I2(t) describes the transmission of echinococcosis
between susceptible definitive hosts and infectious intermediate hosts after the in-
gestion of cyst containing organs of the infected intermediate hosts. For the in-
termediate hosts, A2 is the menstrual recruitment rate; µ2 is the death rate of
the intermediate hosts; γ2 denotes the recovery rate of transition from infected to
susceptible intermediate hosts; β2S2(t)I1(t) describes the transmission of echinococ-
cosis to intermediate hosts by the ingestion of echinococcus eggs in the environment.
τ(t) is the time needed for eggs to develop into adult worms. S1(t, x), E1(t, x) and
I1(t, x) represent the densities of the subpopulations of the susceptible, exposed
and infected definitive hosts individuals at time t and position x ∈ Ω, respectively.
S2(t, x), E2(t, x) and I2(t, x) represent the densities of the subpopulations of sus-
ceptible, exposed and infected intermediate hosts individuals at time t and position
x ∈ Ω, respectively. The positive constants di(i = 1, 2, 3, 4, 5, 6) are diffusion coeffi-
cient. ∆ is the Laplacian operator and ∂Ω is the boundary of Ω ∈ R2.

In this paper, that System (2.1) satisfies the following initial value conditions:

S1(s, x) = ϕS1
(s, x), E1(s, x) = ϕE1

(s, x), I1(s, x) = ϕI1(s, x),

S2(s, x) = ϕS2
(s, x), E2(s, x) = ϕE2

(s, x), I2(t, s) = ϕI2(s, x), (2.2)

where ϕi(s, x), i = S1, E1, I1, S2, E2, I2, are bounded and continuous on [−τ̂ , 0]×Ω,
the Neumann boundary condition

∂S1(t, x)

∂n
=

∂E1(t, x)

∂n
=

∂I1(t, x)

∂n
=

∂S2(t, x)

∂n
=

∂E2(t, x)

∂n
=

∂I2(t, x)

∂n
= 0, (2.3)

for all (s, x) ∈ (0,+∞)×∂Ω, ∂
∂n denotes the outward normal derivative on ∂Ω. The

Neumann boundary conditions (2.3) imply that the diseases do not move across the
boundary ∂Ω.

In real life, the incidence of echinococcosis is often influenced by environmen-
tal factors such as seasons and climate change. In some regions, the incidence of
echinococcosis may be related to specific seasons, for example, during certain sea-
sons, the number of echinococcosis eggs increases, making it easier to spread the
disease between susceptible individuals and infected individuals. Therefore, consid-
ering the disturbance of incidence rates can enhance the authenticity of models, we
assume the incidence rate is stochastic perturbed. That is βi → βi+σiḂi(t), i = 1, 2,
where Bi(t) is standard Brownian motion and σ2

i > 0 represents the intensity of
Bi(t). By this way, the model (2.1) will be deduced to the form:

dS1(t, x) = [d1△S1(t, x) +A1 − β1S1(t, x)I2(t, x)− µ1S1(t, x) + γ1I1(t, x)]dt

− σ1S1(t, x)I2(t, x)dB1(t),

dE1(t, x) = [d2△E1(t, x) + β1S1(t, x)I2(t, x)− µ1E1(t, x)

− β1S1(t− τ(t), x)I2(t− τ(t), x)]dt

+ [σ1S1(t, x)I2(t, x)− σ1S1(t− τ(t), x)I2(t− τ(t), x)]dB1(t),

dI1(t, x) = [d3△I1(t, x) + β1S1(t− τ(t), x)I2(t− τ(t), x)− (µ1 + γ1)I1(t, x)]dt

σ1S1(t− τ(t), x)I2(t− τ(t), x)]dB1(t),
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dS2(t, x) = [d4△S2(t, x) +A2 − β2S2(t, x)I1(t, x)− µ2S2(t, x) + γ2I2(t, x)]dt

− σ2S2(t, x)I1(t, x)dB2(t),

dE2(t, x) = [d5△E2(t, x) + β2S2(t, x)I1(t, x)− µ2E2(t, x)

− β2S2(t− τ(t), x)I1(t− τ(t), x)]dt+ [σ2S2(t, x)I1(t, x)

− σ2S2(t− τ(t), x)I1(t− τ(t), x)]dB2(t),

dI2(t, x) = [d6△I2(t, x) + β2S2(t− τ(t), x)I1(t− τ(t), x)− (µ2 + γ2)I2(t, x)]dt

σ2S2(t− τ(t), x)I1(t− τ(t), x)dB2(t). (2.4)

To account for the effect of impulsive, we regularly vaccinate the susceptible
population of intermediate hosts and the susceptible population of the final host
in the echinococcosis system, while administering deworming treatment to the la-
tent population. Vaccination and deworming treatment are considered as impulsive
perturbation and incorporate it into System (2.4) and derive the follow system,

dS1(t, x) = [d1△S1(t, x) +A1 − β1S1(t, x)I2(t, x)− µ1S1(t, x) + γ1I1(t, x)]dt

− σ1S1(t, x)I2(t, x)dB1(t),

dE1(t, x) = [d2△E1(t, x) + β1S1(t, x)I2(t, x)− µ1E1(t, x)

− β1S1(t− τ(t), x)I2(t− τ(t), x)]dt+ [σ1S1(t, x)I2(t, x)

− σ1S1(t− τ(t), x)I2(t− τ(t), x)]dB1(t),

dI1(t, x) = [d3△I1(t, x) + β1S1(t− τ(t), x)I2(t− τ(t), x)− (µ1 + γ1)I1(t, x)]dt

σ1S1(t− τ(t), x)I2(t− τ(t), x)]dB1(t),

dS2(t, x) = [d4△S2(t, x) +A2 − β2S2(t, x)I1(t, x)− µ2S2(t, x) + γ2I2(t, x)]dt

− σ2S2(t, x)I1(t, x)dB2(t),

dE2(t, x) = [d5△E2(t, x) + β2S2(t, x)I1(t, x)− µ2E2(t, x)

− β2S2(t− τ(t), x)I1(t− τ(t), x)]dt+ [σ2S2(t, x)I1(t, x)

− σ2S2(t− τ(t), x)I1(t− τ(t), x)]dB2(t),

dI2(t, x) = [d6△I2(t, x) + β2S2(t− τ(t), x)I1(t− τ(t), x)− (µ2 + γ2)I2(t, x)]dt

σ2S2(t− τ(t), x)I1(t− τ(t), x)dB2(t),



t ̸= tk,

t > 0,

x ∈ Ω,

S1(t
+
k , x) = (1− ρ1k)S1(tk, x),

E1(t
+
k , x) = (1− ρ2k)E1(tk, x),

S2(t
+
k , x) = (1− ρ3k)S2(tk, x),

E2(t
+
k , x) = (1− ρ4k)E2(tk, x),


t = tk,

(2.5)
where {tk}(k ∈ N) is impulsive sequence satisfies 0 = t0 < t1 < t2 < · · · <
ti < · · ·, as well as limk→+∞ tk = +∞ and z(t+k , x) = limt→t+k

z(t, x). z(t, x) =

(S1(t, x), E1(t, x), I1(t, x), S2(t, x), E2(t, x), I2(t, x)) is a solution of System (2.5).
Assign H = H1(Ω) ≡ {φ|φ ∈ L2(Ω), ∂φ

∂xi
∈ L2(Ω), i = 1, 2, 3, 4, 5, 6, where

∂φ
∂xi

are generalized partial derivative}, where H−1 = H−1(Ω) denotes the dual

space of H. The bracket⟨·, ·⟩ signifies the duality product between H and H−1.
M+ = L2([0,+∞) × Ω, R6

+) represents the set of square integrable functions de-



Finite time stability and optimal control of... 165

fined on [0,+∞) × Ω, which is equipped with the norm ∥ · ∥, where ∥z(t, x)∥ =

(
∫
Ω
zT (t, x)z(t, x)dx)

1
2 . z(t, x)=(S1(t, x), E1(t, x), I1(t, x), S2(t, x), E2(t, x), I2(t, x)).

Let (Ω,F , {Ft}0≤t≤T , P ) be a complete filtered probability apace with a filtration
{Ft}0≤t≤T satisfying the usual conditions of completeness and right-continuity. E
denotes the probability expectation corresponding to P.

Additionally, there are some hypothesis that needs to be given.
(H1) τ(t) is a continuously differentiable time-varying delay with 0 ≤ τ(t) ≤ τ̂ ,

τ
′
(t) ≤ τ̃ ≤ 1 for t ∈ R, τ̂ and τ̃ are constants.
(H2) ρik(i = 1, 2, 3, 4) is impulsive strength. 0 ≤ ρik < 1, the impulse interfer-

ence indicates the proportion of susceptible populations vaccinated and the propor-
tion of latent populations treated with anthelmintic. We suppose that 1− ρik > 0.

Remark 2.1. (H1) implies that echinococcus granulosus eggs have a limited growth
cycle in the host, thus delay is bounded. (H2) is based on the inability of existing
treatments to completely eliminate echinococcosis.

3. Well-posedness

In this section, the well-posedness of the global positive solution (S1(t, x), E1(t, x),
I1(t, x), S2(t, x), E2(t, x), I2(t, x)) to the System (2.5) can be proved. To get the
conclusion, we first give some lemmas and take a close look at the ensuing system:

dy1(t, x) = [d1△y1(t, x) +A1h
−1
1 (t)− β1y1(t, x)h6(t)y6(t, x)− (µ1 − ln(1 + ρ1k))y1(t, x)

+ γ1h
−1
1 (t)h3(t)y3(t, x)]dt− σ1y1(t, x)h6(t)y6(t, x)dB1(t),

dy2(t, x) = [d2△y2(t, x) + β1h
−1
2 (t)h1(t)y1(t, x)h6(t)y6(t, x)− (µ1 − ln(1 + ρ2k))y2(t, x)

− β1h
−1
2 (t)h1(t− τ(t))y1(t− τ(t), x)h6(t− τ(t))y6(t− τ(t), x)]dt

+ [σ1h
−1
2 (t)h1(t)y1(t, x)h6(t)y6(t, x)

− σ1h
−1
2 (t)h1(t− τ(t))y1(t− τ(t), x)h6(t−τ(t))y6(t− τ(t), x)]dB1(t),

dy3(t, x) = [d3△y3(t, x) + β1h
−1
3 (t)h1(t− τ(t))y1(t− τ(t), x)h6(t− τ(t))y6(t− τ(t), x)

− (µ1 + γ1)y3(t, x)]dt

+ σ1h
−1
3 (t)h1(t− τ(t))y1(t− τ(t), x)h6(t− τ(t))y6(t− τ(t), x)dB1(t),

dy4(t, x) = [d4△y4(t, x) +A2h
−1
4 (t)− β2y4(t, x)h3(t)y3(t, x)

− (µ2 − ln(1 + ρ3k))y4(t, x) + γ2h
−1
4 (t)h6(t)y6(t, x)]dt

− σ2y4(t, x)h3(t)y3(t, x)dB2(t),

dy5(t, x) = [d5△y5(t, x) + β2h
−1
5 (t)h4(t)y4(t, x)h3(t)y3(t, x)− (µ2 − ln(1 + ρ4k))y5(t, x)

− β2h
−1
5 (t)h4(t− τ(t))y4(t− τ(t), x)h3(t− τ(t))y3(t− τ(t), x)]dt

+ [σ2h
−1
5 (t)h4(t)y4(t, x)h3(t)y3(t, x)

− σ2h
−1
5 (t)h4(t− τ(t))y4(t− τ(t), x)h3(t−τ(t))y3(t− τ(t), x)]dB2(t),

dy6(t, x) = [d6△y6(t, x) + β2h
−1
6 (t)h4(t− τ(t))y4(t− τ(t), x)h3(t− τ(t))y3(t− τ(t), x)

− (µ2 + γ2)y6(t, x)]dt

+ σ2h
−1
6 (t)h4(t− τ(t))y4(t− τ(t), x)h3(t− τ(t))y3(t− τ(t), x)dB2(t),

(3.1)
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with initial value

(y1(0, x), y2(0, x), y3(0, x), y4(0, x), y5(0, x), y6(0, x))

=(S1,0(x), E1,0(x), I1,0(x), S2,0(x), E2,0(x), I2,0(x)), (3.2)

and boundary condition

∂y1(t, x)

∂n
=

∂y2(t, x)

∂n
=

∂y3(t, x)

∂n
=

∂y4(t, x)

∂n
=

∂y5(t, x)

∂n
=

∂y6(t, x)

∂n
= 0,

x ∈ ∂Ω, t > 0, (3.3)

where

hi(t) =


1, t ∈ [−τ̂ , 0],

(1− ρik)
[t]−t, t ̸= tk, t > 0,

(1− ρik)
−1, t = tk, i = 1, 2, 3, 4.

Obviously, hi(t) are left continuous. In order to study well-posedness of the solution
of System (2.5), the following lemmas are proposed.

Lemma 3.1. The System (3.1) described by initial value (3.2) and boundary condi-
tion (3.3) can be transformed into an equivalent System (2.5) represented by bound-
ary condition (2.3). The proof of Lemma 3.1 is shown in Appendix A.

Lemma 3.2. For any initial data (S1,0, E1,0, I1,0, S2,0, E2,0, I2,0), the solution
z(t, x) = S1(t, x), E1(t, x), I1(t, x), S2(t, x), E2(t, x), I2(t, x)) of System (2.5), sat-
isfies that

lim sup
t→∞

(S1(t, x) + E1(t, x) + I1(t, x) + S2(t, x) + E2(t, x) + I2(t, x)) < B,

where B = (A1+A2)|Ω|
Λ and |Ω| represents the volume of Ω.

The proof of Lemma 3.2 is shown in Appendix B.

Theorem 3.1. For any initial value (3.2) and t ≥ 0, System (2.5) has a unique
positive solution z(t, x).

The proof is given in the Appendix C. This is the basis of the whole paper,
which makes the subsequent analysis meaningful.

4. Finite-time stability

Before giving sufficient conditions to ensure FTS, the following necessary lemma is
introduced.

Lemma 4.1. [24] Assume that there are positive constants mi, i = 1, 2, · · ·, r, such
that x ∈ Ω and |xi| < mi. Given a function z(x) ∈ Rn which belongs to C2(Ω) and
vanishes on ∂Ω, has∫

Ω

zT (x)
∂2z(x)

∂x2
dx ≤ −

r∑
i=1

1

m2
i

∫
Ω

zT (x)z(x)dx.

For ease of further research, alternative ways to express the definitions of FTS
and bounded impulsive interval mentioned in Ref [25] and Ref [16] can be provided.
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The bounded impulse interval method restricts the duration and intensity of impulse
disturbances within a certain range, allowing for precise stability analysis of the
system under these limitations.

Definition 4.1. Given positive numbers T,B1 and B2 with B1 < B2, System (2.5)
is guaranteed to be finite time stable concerning (T,B1, B2), if for any t ∈ [0, T ],

sup
−τ̂≤s≤0

(

∫
Ω

S2
1(s, x)dx+

∫
Ω

E2
1(s, x)dx+

∫
Ω

I21 (s, x)dx+

∫
Ω

S2
2(s, x)dx

+

∫
Ω

E2
2(s, x)dx+

∫
Ω

I22 (s, x)dx) ≤ B1,

it can be known that

E(

∫
Ω

S2
1(s, x)dx+

∫
Ω

E2
1(s, x)dx+

∫
Ω

I21 (s, x)dx+

∫
Ω

S2
2(s, x)dx

+

∫
Ω

E2
2(s, x)dx+

∫
Ω

I22 (s, x)dx) ≤ B2. (4.1)

With the utilization of the bounded impulsive interval method, the research aims
to establish the sufficient conditions of FTS with respect to (T,B1, B2). These
sufficient conditions show the effects of spatial diffusion, impulsive effect, delay and
white noise on the FTS of System (2.5). Assign

D1 = (A2
1 +A2

2 + 2σ2
1B

4 + 2σ2
2B

4),

D2 = max{1+γ1+2σ2
1B

2+γ2+2σ2
2B

2+β2
2B

2−2

r∑
i=1

1

m2
i

dj}, i = j = 1, 2, 3, 4, 5, 6,

D3 = 2C(β1 + β2), ω = lnB2 − ln(B1 +
D1

|D2|
)(D2 ̸= 0), µ = max{(1− ρik)

2},

θ =


1

(1− τ̃)
, 0 < τ̃ < 1,

1, τ̃ < 0.

Theorem 4.2. Assume that H(1) and H(2) are valid, System (2.5) is FTS with

respect to (T,B1, B2), if any of the following conditions is met

(C1) 0 < µ < 1,
lnµ

hM
+ |D2| ≤ −D3

µ
e
− lnµ

hM
τ̂
< 0,−lnµ ≤ ω,

(C2) 0 < µ < 1,−D3

µ
e
−( lnµ

hM
+|D2|)τ̂ <

lnµ

hM
< 0,

(
D3θ

µ
e
− lnµ

hM
τ̂
+

lnµ

hM
+ |D2|)T +

D3τ̂ θ

µ
e
− lnµ

hM
τ̂ − lnµ ≤ ω,

(C3) 0 < µ < 1,
lnµ

hM
+ |D2| > 0, (

D3

µ
+

lnµ

hM
+ |D2|)T − lnµ ≤ ω.

Proof. Define

sup
−τ̂≤s≤0

(

∫
Ω

ϕ2
S1
(s, x)dx+

∫
Ω

ϕ2
E1

(s, x)dx+

∫
Ω

ϕ2
I1(s, x)dx+

∫
Ω

ϕ2
S2
(s, x)dx

+

∫
Ω

ϕ2
E2

(s, x)dx+

∫
Ω

ϕ2
I2(s, x)dx) ≤ B1.
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Choose

U(t) =

∫
Ω

S2
1(t, x)dx+

∫
Ω

E2
1(t, x)dx+

∫
Ω

I21 (t, x)dx+

∫
Ω

S2
2(t, x)dx

+

∫
Ω

E2
2(t, x)dx+

∫
Ω

I22 (t, x)dx).
(4.2)

For t ̸= tk, taking the differential of U(t) along System (2.5)

dU1(t) ≤ −2d1

r∑
i=1

1

m2
i

∫
Ω

S2
1(t, x)dxdt+

∫
Ω

[2A1S1(t, x)− 2β1S
2
1(t, x)I2(t, x)

−2µ1S
2
1(t, x) + 2γ1S1(t, x)I1(t, x) + σ2

1S
2
1(t, x)I

2
2 (t, x)]dxdt

−2

∫
Ω

σ1S
2
1(t, x)I2(t, x)dxdB1(t),

(4.3)
and

dU2(t)≤−2d2

r∑
i=1

1

m2
i

∫
Ω

E2
1(t, x)dxdt+

∫
Ω

[2β1S1(t, x)E1(t, x)I2(t, x)−2µ1E
2
1(t, x)

+β1E1(t, x)(S
2
1(t− τ(t), x) + I22 (t− τ(t), x) + σ2

1S
2
1(t, x)I

2
2 (t, x)

+σ2
1S

2
1(t− τ(t), x)I22 (t− τ(t), x)]dxdt+ 2

∫
Ω

[σ1S1(t, x)E1(t, x)I2(t, x)

−σ1E1(t, x)S1(t− τ(t), x)I2(t− τ(t), x)]dxdB1(t),

(4.4)
further

dU3(t)

≤ −2d3

r∑
i=1

1

m2
i

∫
Ω

I21 (t, x)dxdt+

∫
Ω

β1I1(t, x)(S
2
1(t− τ(t), x) + I22 (t− τ(t), x)

−2(µ1 + γ1)I
2
1 (t, x) + σ2

1S
2
1(t− τ(t), x)I22 (t− τ(t), x)]dxdt

+2

∫
Ω

σ1I1(t, x)S1(t− τ(t), x)I2(t− τ(t), x)dxdB1(t),

(4.5)
also

dU4(t) ≤ −2d4

r∑
i=1

1

m2
i

∫
Ω

S2
2(t, x)dxdt+

∫
Ω

[2A2S2(t, x)− 2β2S
2
2(t, x)I1(t, x)

−2µ2S
2
2(t, x) + 2γ2S2(t, x)I2(t, x) + σ2

2S
2
2(t, x)I

2
1 (t, x)]dxdt

−2

∫
Ω

σ2S
2
2(t, x)I1(t, x)dxdB2(t),

(4.6)
likewise

dU5(t)≤− 2d5

r∑
i=1

1

m2
i

∫
Ω

E2
2(t, x)dxdt+

∫
Ω

[2β2S2(t, x)E2(t, x)I1(t, x)−2µ2E
2
2(t, x)



Finite time stability and optimal control of... 169

+ β2E2(t, x)(S
2
2(t− τ(t), x) + I21 (t− τ(t), x)) + σ2

2S
2
2(t, x)I

2
1 (t, x)

+ σ2
2S

2
2(t− τ(t), x)I21 (t− τ(t), x)]dxdt+ 2

∫
Ω

[σ2S2(t, x)E2(t, x)I1(t, x)

− σ2E2(t, x)S2(t− τ(t), x)I1(t− τ(t), x)]dxdB2(t), (4.7)

moreover

dU6(t)

≤− 2d6

r∑
i=1

1

m2
i

∫
Ω

I22 (t, x)dxdt+

∫
Ω

β2I2(t, x)(S
2
2(t− τ(t), x) + I21 (t− τ(t), x)

− 2(µ2 + γ2)I
2
2 (t, x) + σ2

2S
2
2(t− τ(t), x)I21 (t− τ(t), x)]dxdt (4.8)

+ 2

∫
Ω

σ2I2(t, x)S2(t− τ(t), x)I1(t− τ(t), x)dxdB2(t).

Then, let’s substitute equations (4.3) to (4.8) into equation (4.2) and arrange it

dU(t)

≤− 2

r∑
i=1

1

m2
i

∫
Ω

[d1S
2
1(t, x) + d2E

2
1(t, x) + d3I

2
1 (t, x) + d4S

2
2(t, x) + d5E

2
2(t, x)

+ d6I
2
2 (t, x)]dxdt+

∫
Ω

[2A1S1(t, x) + 2γ1S1(t, x)I1(t, x) + 2σ2
1S

2
1(t, x)I

2
2 (t, x)

+ 2β1S1(t, x)E1(t, x)I2(t, x) + 2σ2
2S

2
2(t, x)I

2
1 (t, x) + 2β2S2(t, x)E2(t, x)I1(t, x)

+ 2σ2
1S

2
1(t− τ(t), x)I22 (t− τ(t), x) + 2A2S2(t, x) + 2γ2S2(t, x)I2(t, x)

+ β1(E1(t, x) + I1(t, x))(S
2
1(t− τ(t), x) + I22 (t− τ(t), x))

+ β2(E2(t, x) + I2(t, x))(S
2
2(t− τ(t), x) + I21 (t− τ(t), x))

+ 2σ2
2S

2
2(t− τ(t), x)I21 (t− τ(t), x)]dxdt− 2

∫
Ω

σ1S
2
1(t, x)I2(t, x)dxdB1(t)

+ 2

∫
Ω

[σ1S1(t, x)E1(t, x)I2(t, x)

− σ1E1(t, x)S1(t− τ(t), x)I2(t− τ(t), x)]dxdB1(t)

+ 2

∫
Ω

σ1I1(t, x)S1(t− τ(t), x)I2(t− τ(t), x)dxdB1(t)

− 2

∫
Ω

σ2S
2
2(t, x)I1(t, x)dxdB2(t) + 2

∫
Ω

[σ2S2(t, x)E2(t, x)I1(t, x)

− σ2E2(t, x)S2(t− τ(t), x)I1(t− τ(t), x)]dxdB2(t)

+ 2

∫
Ω

σ2I2(t, x)S2(t− τ(t), x)I1(t− τ(t), x)dxdB2(t). (4.9)

According to Lemma 3.2, Theorem 3.1 and fundamental inequality, for t ̸= tk,

dU(t) ≤− 2

r∑
i=1

1

m2
i

∫
Ω

[d1S
2
1(t, x) + d2E

2
1(t, x) + d3I

2
1 (t, x) + d4S

2
2(t, x)

+ d5E
2
2(t, x) + d6I

2
2 (t, x)]dxdt

+

∫
Ω

[A2
1 +A2

2 + 2σ2
1B

4 + 2σ2
2B

4 + (1 + γ1 + 2σ2
1B

2
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+ β2
1B

2)S2
1(t, x) + (1 + γ1)I

2
1 (t, x) + (1 + γ2 + 2σ2

2B
2 + β2

2B
2)S2

2(t, x)

+ (1 + γ2)I
2
2 (t, x) + Cβ1(S

2
1(t− τ(t), x) + I22 (t− τ(t), x))

+ Cβ2(S
2
2(t− τ(t), x) + I21 (t− τ(t), x))]dxdt

− 2

∫
Ω

σ1S
2
1(t, x)I2(t, x)dxdB1(t) + 2

∫
Ω

[σ1S1(t, x)E1(t, x)I2(t, x)

− σ1E1(t, x)S1(t− τ(t), x)I2(t− τ(t), x)]dxdB1(t)

+ 2

∫
Ω

σ1I1(t, x)S1(t− τ(t), x)I2(t− τ(t), x)dxdB1(t)

− 2

∫
Ω

σ2S
2
2(t, x)I1(t, x)dxdB2(t) + 2

∫
Ω

[σ2S2(t, x)E2(t, x)I1(t, x)

− σ2E2(t, x)S2(t− τ(t), x)I1(t− τ(t), x)]dxdB2(t)

+ 2

∫
Ω

σ2I2(t, x)S2(t− τ(t), x)I1(t− τ(t), x)dxdB2(t)

where

D1 = (A2
1 +A2

2 + 2σ2
1B

4 + 2σ2
2B

4),

D2 = max{2 + γ1 + 2σ2
1B

2 + γ2 + 2σ2
2B

2 + β2
2B

2 − 2

r∑
i=1

1

m2
i

dj},

i =j =1, 2, 3, 4, 5, 6,

D3 = 2C(β1 + β2),

dU(t) ≤(

∫
Ω

D1dxdt+D2

∫
Ω

[S2
1(t, x) + E2

1(t, x) + I21 (t, x) + S2
2(t, x) + E2

2(t, x)

+ I22 (t, x)]dxdt+D3

∫
Ω

[S2
1(t− τ(t), x) + E2

1(t, x) + I21 (t− τ(t), x)

+ S2
2(t− τ(t), x) + E2

2(t, x) + I22 (t− τ(t), x)]dxdt

− 2

∫
Ω

σ1S
2
1(t, x)I2(t, x)dxdB1(t) + 2

∫
Ω

[σ1S1(t, x)E1(t, x)I2(t, x)

− σ1E1(t, x)S1(t− τ(t), x)I2(t− τ(t), x)]dxdB1(t)

+ 2

∫
Ω

σ1I1(t, x)S1(t− τ(t), x)I2(t− τ(t), x)dxdB1(t)

− 2

∫
Ω

σ2S
2
2(t, x)I1(t, x)dxdB2(t) + 2

∫
Ω

[σ2S2(t, x)E2(t, x)I1(t, x)

− σ2E2(t, x)S2(t− τ(t), x)I1(t− τ(t), x)]dxdB2(t)

+ 2

∫
Ω

σ2I2(t, x)S2(t− τ(t), x)I1(t− τ(t), x)dxdB2(t). (4.10)

For t = tk, obviously

U(t+k ) =

∫
Ω

S2
1(t

+
k , x)dx+

∫
Ω

E2
1(t

+
k , x)dx+

∫
Ω

I21 (tk, x)dx+

∫
Ω

S2
2(t

+
k , x)dx

+

∫
Ω

E2
2(t

+
k , x)dx+

∫
Ω

I22 (tk, x)dx

=

∫
Ω

(1− ρ1k)
2S2

1(tk, x)dx+

∫
Ω

(1− ρ2k)
2E2

1(tk, x)dx+

∫
Ω

I21 (tk, x)dx
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+

∫
Ω

(1− ρ3k)
2S2

2(tk, x)dx+

∫
Ω

(1− ρ4k)
2E2

2(tk, x)dx+

∫
Ω

I22 (tk, x)dx

≤max{(1− ρik)
2}(

∫
Ω

S2
1(tk, x)dx+

∫
Ω

E2
1(tk, x)dx+

∫
Ω

I21 (tk, x)dx

+

∫
Ω

S2
2(tk, x)dx+

∫
Ω

E2
2(tk, x) +

∫
Ω

I22 (tk, x)dx)

=µU(tk). (4.11)

The solution X(t) satisfies the following system

dX(t) = [D1 +D2X(t) +D3X(t− τ(t))]dt− 2

∫
Ω

σ1S
2
1(t, x)I2(t, x)dxdB1(t)

+2

∫
Ω

[σ1S1(t, x)E1(t, x)I2(t, x)

−σ1E1(t, x)S1(t− τ(t), x)I2(t− τ(t), x)]dxdB1(t)

+2

∫
Ω

σ1I1(t, x)S1(t− τ(t), x)I2(t− τ(t), x)dxdB1(t)

−2

∫
Ω

σ2S
2
2(t, x)I1(t, x)dxdB2(t) + 2

∫
Ω

[σ2S2(t, x)E2(t, x)I1(t, x)

−σ2E2(t, x)S2(t− τ(t), x)I1(t− τ(t), x)]dxdB2(t)

+2

∫
Ω

σ2I2(t, x)S2(t− τ(t), x)I1(t− τ(t), x)dxdB2(t),

X(t+k ) = µX(tk),

X(s) =

∫
Ω

ϕ2
S1
(s, x)dx+

∫
Ω

ϕ2
E1

(s, x)dx+

∫
Ω

ϕ2
I1(s, x)dx+

∫
Ω

ϕ2
S2
(s, x)dx

+

∫
Ω

ϕ2
E2

(s, x)dx+

∫
Ω

ϕ2
I2(s, x)dx,−τ̂ ≤ s ≤ 0.

(4.12)
Due to

U(s) =

∫
Ω

ϕ2
S1
(s, x)dx+

∫
Ω

ϕ2
E1

(s, x)dx+

∫
Ω

ϕ2
I1(s, x)dx+

∫
Ω

ϕ2
S2
(s, x)dx

+

∫
Ω

ϕ2
E2

(s, x)dx+

∫
Ω

ϕ2
I2(s, x)dx

=X(s),−τ̂ ≤ s ≤ 0.

This can be derived from equations (4.10) and (4.11), as well as the comparison
theorem, resulting in

U(t) ≤ X(t).

From another aspect, the method of variation of constants suggests that the solution
of the System (4.12) takes the form

X(t) = −D1

D2
µY (t,0) + (X(0) +

D1

D2
)β(t, 0) +

∫ t

0

β(t, s)D3X(s− τ(s))ds+ Z(s), a.s
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where β(t, s) = µY (t,s)eD2(t−s), t > s ≥ 0,

Z(s) =− 2

∫ t

0

β(t, s)

∫
Ω

σ1S
2
1(s, x)I2(s, x)dxdB1(s)

+ 2

∫ t

0

β(t, s)

∫
Ω

[σ1S1(s, x)E1(s, x)I2(s, x)

− σ1E1(s, x)S1(s− τ(s), x)I2(s− τ(s), x)]dxdB1(s)

+ 2

∫ t

0

β(t, s)

∫
Ω

σ1I1(s, x)S1(s− τ(s), x)I2(s− τ(s), x)dxdB1(s)

− 2

∫ t

0

β(t, s)

∫
Ω

σ2S
2
2(s, x)I1(s, x)dxdB2(s)

+ 2

∫ t

0

β(t, s)

∫
Ω

[σ2S2(s, x)E2(s, x)I1(s, x)

− σ2E2(s, x)S2(s− τ(s), x)I1(s− τ(s), x)]dxdB2(s)

+ 2

∫ t

0

β(t, s)

∫
Ω

σ2I2(s, x)S2(s− τ(s), x)I1(s− τ(s), x)dxdB2(s).

For all t ≥ s within the interval [0, T ], it can be easily inferred that

β(t, s) = µY (t,s)eD2(t−s) = eY (t,s)lnµ+D2(t−s).

Let Y (T, t) denote the number of impulsive moments in the time sequence tk during
the interval (t, T ]. Then, we have

t− s− hM

hM
≤ Y (t, s) ≤ t− s

hm
,

where hM = maxk∈K(tk − tk−1) and hm = mink∈K(tk − tk−1), k ∈ K = 1, 2, ...,
Y (T, 0). When 0 < µ < 1, in the following, two important cases will be considered
for our analysis.

Due to

β(t, s) = eY (t,s)lnµ+D2(t−s) ≤ e
t−s−hM

hM
lnµ+D2(t−s)

= e
( lnµ
hM

+D2)(t−s)−lnµ
,

µY (t,0) = eY (t,0)lnµ ≤ e
t−hM
hM

lnµ
= e

lnµ
hM

t−lnµ
.

Thus, we have

E(

∫
Ω

S2
1(t, x)dx+

∫
Ω

E2
1(t, x)dx+

∫
Ω

I21 (t, x)dx+

∫
Ω

S2
2(t, x)dx

+

∫
Ω

E2
2(t, x)dx+

∫
Ω

I22 (t, x)dx)

≤EX(t)

≤− D1

D2
µY (t,0) + (X(0) +

D1

D2
)β(t, 0) + E

∫ t

0

β(t, s)D3X(s− τ(s))ds

≤− D1

µD2
e

lnµ
hM

t
+

1

µ
(X(0) +

D1

D2
)e

( lnµ
hM

+D2)t

+
D3

µ
E

∫ t

0

e
( lnµ
hM

+D2)(t−s)
X(s− τ(s))ds. (4.13)
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Case 1. D2 > 0. Then

E(

∫
Ω

S2
1(t, x)dx+

∫
Ω

E2
1(t, x)dx+

∫
Ω

I21 (t, x)dx+

∫
Ω

S2
2(t, x)dx

+

∫
Ω

E2
2(t, x)dx+

∫
Ω

I22 (t, x)dx)

≤ 1

µ
(X(0) +

D1

D2
)e

( lnµ
hM

+D2)t +
D3

µ
E

∫ t

0

e
( lnµ
hM

+D2)(t−s)
X(s− τ(s))ds. (4.14)

Case 1.1. lnµ
hM

+D2 ≤ 0. In this scenario, for −τ̂ ≤ t ≤ 0, it is evident that

E(

∫
Ω

S2
1(t, x)dx+

∫
Ω

E2
1(t, x)dx+

∫
Ω

I21 (t, x)dx+

∫
Ω

S2
2(t, x)dx

+

∫
Ω

E2
2(t, x)dx+

∫
Ω

I22 (t, x)dx)

≤ 1

µ
( sup
−τ̂≤s≤0

X(s) +
D1

D2
)eλt. (4.15)

Subsequently, we aim to validate that, for t ≥ 0, equation (4.15) holds. If the
statement is incorrect, then there exists a t∗ such that

E(

∫
Ω

S2
1(t

∗, x)dx+

∫
Ω

E2
1(t

∗, x)dx+

∫
Ω

I21 (t
∗, x)dx+

∫
Ω

S2
2(t

∗, x)dx

+

∫
Ω

E2
2(t

∗, x)dx+

∫
Ω

I22 (t
∗, x)dx)

≥ 1

µ
( sup
−τ̂≤s≤0

X(s) +
D1

D2
)eλt

∗
, (4.16)

moreover, for t < t∗

E(

∫
Ω

S2
1(t, x)dx+

∫
Ω

E2
1(t, x)dx+

∫
Ω

I21 (t, x)dx+

∫
Ω

S2
2(t, x)dx

+

∫
Ω

E2
2(t, x)dx+

∫
Ω

I22 (t, x)dx)

≤ 1

µ
( sup
−τ̂≤s≤0

X(s) +
D1

D2
)eλt, (4.17)

therefore, we can deduce from (4.17) and (4.14) that

E(

∫
Ω

S2
1(t

∗, x)dx+

∫
Ω

E2
1(t

∗, x)dx+

∫
Ω

I21 (t
∗, x)dx+

∫
Ω

S2
2(t

∗, x)dx

+

∫
Ω

E2
2(t

∗, x)dx+

∫
Ω

I22 (t
∗, x)dx)

≤ 1

µ
( sup
−τ̂≤s≤0

X(s) +
D1

D2
)e

( lnµ
hM

+D2)t
∗
+

D3

µ
E

∫ t∗

0

e
( lnµ
hM

+D2)(t
∗−s)

X(s− τ(s))ds

≤e
( lnµ
hM

+D2)t
∗
[
1

µ
( sup
−τ̂≤s≤0

X(s) +
D1

D2
) +

D3

µ

∫ t∗

0

e
−( lnµ

hM
+D2)s(

1

µ
( sup
−τ̂≤s≤0

X(s)

+
D1

D2
)eλ(s−τ(s)))ds]
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≤e
( lnµ
hM

+D2)t
∗ 1

µ
[( sup
−τ̂≤s≤0

X(s) +
D1

D2
) +

D3

µ
( sup
−τ̂≤s≤0

X(s)

+
D1

D2
)e−λτ̂

∫ t∗

0

e
[λ−( lnµ

hM
+D2)]s)ds]

≤e
( lnµ
hM

+D2)t
∗ 1

µ
[( sup
−τ̂≤s≤0

X(s) +
D1

D2
)

+

D3

µ ( sup
−τ̂≤s≤0

X(s) +
D1

D2
)e−λτ̂

λ− ( lnµhM
+D2)

(e
[λ−( lnµ

hM
+D2)]t

∗
− 1)]. (4.18)

Case 1.1.1. From (C1), lnµ
hM

+ D2 ≤ −D3

µ e
−( lnµ

hM
+D2)τ̂ < 0,−( lnµhM

+ D2) > D3

µ ,
assign

h(θ) = −θ + (
lnµ

hM
+D2) +

D3

µ
e−θτ̂ ,

we can directly derive that h(0) = ( lnµhM
+ D2) +

D3

µ < 0 and h(−∞) = +∞.

From h
′
(θ) = −1 − D3τ̂

µ e−θτ̂ < 0, there exists a unique λ < 0 that h(λ) = 0 ⇔
λ− ( lnµhM

+D2) =
D3

µ e−λτ̂ .

It can be deduced follows from (4.18),

E(

∫
Ω

S2
1(t

∗, x)dx+

∫
Ω

E2
1(t

∗, x)dx+

∫
Ω

I21 (t
∗, x)dx+

∫
Ω

S2
2(t

∗, x)dx

+

∫
Ω

E2
2(t

∗, x)dx+

∫
Ω

I22 (t
∗, x)dx)

≤ 1

µ
( sup
−τ̂≤s≤0

X(s) +
D1

D2
)eλt

∗
, (4.19)

which contradicts (4.16), then

E(

∫
Ω

S2
1(t, x)dx+

∫
Ω

E2
1(t, x)dx+

∫
Ω

I21 (t, x)dx+

∫
Ω

S2
2(t, x)dx

+

∫
Ω

E2
2(t, x)dx+

∫
Ω

I22 (t, x)dx)

≤ 1

µ
( sup
−τ̂≤s≤0

X(s) +
D1

D2
)eλt

≤ 1

µ
( sup
−τ̂≤s≤0

X(s) +
D1

D2
)

≤ 1

µ
(B1 +

D1

D2
). (4.20)

For ω = lnB2 − ln(B1 +
D1

|D2| ), and −lnµ ≤ ω,

E(

∫
Ω

S2
1(s, x)dx+

∫
Ω

E2
1(s, x)dx+

∫
Ω

I21 (s, x)dx+

∫
Ω

S2
2(s, x)dx

+

∫
Ω

E2
2(s, x)dx+

∫
Ω

I22 (s, x)dx) ≤ B2. (4.21)
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Case 1.1.2. If condition (C2) is valid, it results in−D3

µ e
−( lnµ

hM
+D2)τ̂ ≤ lnµ

hM
+D2 ≤ 0,

from (4.14),

E[e
−( lnµ

hM
+D2)tX(t)]

≤ 1

µ
( sup
−τ̂≤s≤0

X(s) +
D1

D2
) +

D3

µ
E

∫ t

0

e
−( lnµ

hM
+D2)sX(s− τ(s))ds

≤ 1

µ
( sup
−τ̂≤s≤0

X(s) +
D1

D2
) +

D3

µ
e
−( lnµ

hM
+D2)τ̂E

∫ t

0

e
−( lnµ

hM
+D2)(s−τ(s))

X(s− τ(s))ds

≤ 1

µ
( sup
−τ̂≤s≤0

X(s) +
D1

D2
) +

D3

µ
e
−( lnµ

hM
+D2)τ̂ 1

1− τ̃
E

∫ t

−τ̂

e
−( lnµ

hM
+D2)sX(s)ds.

(4.22)
By applying the Gronwall inequality, we obtain

E[e
−( lnµ

hM
+D2)tX(t)] ≤ 1

µ
( sup
−τ̂≤s≤0

X(s) +
D1

D2
)exp[

D3

µ(1− τ̃)
e
−( lnµ

hM
+D2)τ̂ (t+ τ̂)].

(4.23)
Then

E(

∫
Ω

S2
1(t, x)dx+

∫
Ω

E2
1(t, x)dx

+

∫
Ω

I21 (t, x)dx+

∫
Ω

S2
2(t, x)dx+

∫
Ω

E2
2(t, x)dx+

∫
Ω

I22 (t, x)dx)

≤EX(t)

≤



1

µ
( sup
−τ̂≤s≤0

X(s) +
D1

D2
)exp[(

D3

µ(1− τ̃)
e
−( lnµ

hM
+D2)τ̂ +

lnµ

hM
+D2)t

+
D3τ̂

µ(1− τ̃)
e
−( lnµ

hM
+D2)τ̂ ], 0 < τ̃ < 1,

1

µ
( sup
−τ̂≤s≤0

X(s) +
D1

D2
)exp[(

D3

µ
e
−( lnµ

hM
+D2)τ̂ +

lnµ

hM
+D2)t

+
D3τ̂

µ
e
−( lnµ

hM
+D2)τ̂ ], τ̃ < 0.

(4.24)

It can be obtained by (C2) that

E(

∫
Ω

S2
1(t, x)dx+

∫
Ω

E2
1(t, x)dx+

∫
Ω

I21 (t, x)dx+

∫
Ω

S2
2(t, x)dx

+

∫
Ω

E2
2(t, x)dx+

∫
Ω

I22 (t, x)dx) ≤ B2.

Case 1.2. lnµ
hM

+D2 > 0. Let X(t) be the solution to the following system

P (t) =
1

µ
( sup
−τ̂≤s≤0

P (s) +
D1

D2
)e

( lnµ
hM

+D2)t

+
D3

µ

∫ t

0

e
( lnµ
hM

+D2)(t−s)
P (s− τ(s))ds, t > 0,
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P (s) =

∫
Ω

ϕ2
S1
(s, x)dx+

∫
Ω

ϕ2
E1

(s, x)dx+

∫
Ω

ϕ2
I1(s, x)dx+

∫
Ω

ϕ2
S2
(s, x)dx

+

∫
Ω

ϕ2
E2

(s, x)dx+

∫
Ω

ϕ2
I2(s, x)dx,−τ̂ ≤ s ≤ 0. (4.25)

From (4.14),

0 <E(

∫
Ω

S2
1(t, x)dx+

∫
Ω

E2
1(t, x)dx+

∫
Ω

I21 (t, x)dx+

∫
Ω

S2
2(t, x)dx

+

∫
Ω

E2
2(t, x)dx+

∫
Ω

I22 (t, x)dx)

≤EX(t), for t > −τ̂ .

For 0 < t < τ(t), τ(t) ∈ [0, τ̂ ],

P (t)− P (t− τ(t))

≥P (t)− 1

µ
( sup
−τ̂≤s≤0

P (s) +
D1

D2
)

=
1

µ
sup

−τ̂≤s≤0
P (s)(e

( lnµ
hM

+D2)t − 1) +
D3

µ

∫ t

0

e
( lnµ
hM

+D2)(t−s)
P (s− τ(s))ds

≥0. (4.26)

For t > τ(t), τ(t) ∈ [0, τ̂ ], and t ∈ (τ̂ , T ],

P (t)− P (t− τ(t)) =
1

µ
( sup
−τ̂≤s≤0

P (s)(e
( lnµ
hM

+D2)t − e
( lnµ
hM

+D2)(t−τ(t))
)

+
D3

µ

∫ t

0

e
( lnµ
hM

+D2)(t−s)
P (s− τ(s))ds

−D3

µ

∫ t−τ(t)

0

e
( lnµ
hM

+D2)(t−τ(t)−s)
P (s− τ(s))ds

=
1

µ
( sup
−τ̂≤s≤0

P (s)(e
( lnµ
hM

+D2)t(1− e−τ(t))

+
D3

µ
e
( lnµ
hM

+D2)(t−τ(t))
∫ t

t−τ(t)

e
−( lnµ

hM
+D2)sP (s− τ(s))ds

≥ 0.

(4.27)
Then P (t) ≥ P (t− τ(t)), when t > 0. This is deduced from (4.25) that

P (t) ≤ 1

µ
( sup
−τ̂≤s≤0

P (s) +
D1

D2
)e

( lnµ
hM

+D2)t +
D3

µ

∫ t

0

e
( lnµ
hM

+D2)(t−s)
P (s)ds, for t > 0.

(4.28)
According to the Gronwall inequality, it can be get

P (t)e
−( lnµ

hM
+D2)t ≤ 1

µ
( sup
−τ̂≤s≤0

P (s) +
D1

D2
)exp(

D3

µ
t), for t > 0.

This implies that

E(

∫
Ω

S2
1(t, x)dx+

∫
Ω

E2
1(t, x)dx+

∫
Ω

I21 (t, x)dx+

∫
Ω

S2
2(t, x)dx
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+

∫
Ω

E2
2(t, x)dx+

∫
Ω

I22 (t, x)dx) (4.29)

≤ 1

µ
( sup
−τ̂≤s≤0

P (s) +
D1

D2
)exp[(

D3

µ
+

lnµ

hM
+D2)t].

For (C3) holds, it can be known that

E(

∫
Ω

S2
1(t, x)dx+

∫
Ω

E2
1(t, x)dx+

∫
Ω

I21 (t, x)dx+

∫
Ω

S2
2(t, x)dx

+

∫
Ω

E2
2(t, x)dx+

∫
Ω

I22 (t, x)dx) ≤ B2.

Case 2. D2 < 0. It can be deduced

EX(t) ≤ −D1

D2
µY (t,0) + (X(0) +

D1

D2
)µY (t,0)eD2t + E

∫ t

0

β(t, s)D3X(s− τ(s))ds

≤ 1
µ ( sup

0≤s≤τ̂
X(s)− D1

D2
)e

lnµ
hM

t
+

D3

µ
E

∫ t

0

e
lnµ
hM

(t−s)
X(s− τ(s))ds.

(4.30)

Case 2.1.1. For (C1), if lnµ
hM

≤ −D3

µ e
lnµ
hM

τ̂
< 0, i.e. − lnµ

hM
> D3

µ . Similar to the
discussions in case 1.1.1, when −lnµ ≤ ω, we obtain

E(

∫
Ω

S2
1(t, x)dx+

∫
Ω

E2
1(t, x)dx+

∫
Ω

I21 (t, x)dx+

∫
Ω

S2
2(t, x)dx

+

∫
Ω

E2
2(t, x)dx+

∫
Ω

I22 (t, x)dx) ≤ B2. (4.31)

Case 2.1.2. For (C1), if −D3

µ e
− lnµ

hM
τ̂
< lnµ

hM
< 0, 0 < τ̃ < 1, and

(
D3

µ(1− τ̃)
e
− lnµ

hM
τ̂
+

lnµ

hM
)T +

D3τ̃

µ(1− τ̃)
e
− lnµ

hM
τ̂ − lnµ ≤ ω,

or τ̂ < 0, and

(
D3T

µ
e
− lnµ

hM
τ̂
+

lnµ

hM
)T +

D3τ̂

µ
e
− lnµ

hM
τ̂ − lnµ ≤ ω.

Similar discussions as case 1.1.2, yield

E(

∫
Ω

S2
1(t, x)dx+

∫
Ω

E2
1(t, x)dx+

∫
Ω

I21 (t, x)dx+

∫
Ω

S2
2(t, x)dx

+

∫
Ω

E2
2(t, x)dx+

∫
Ω

I22 (t, x)dx) ≤ B2.

Remark 4.2. This theorem provides criteria for the FTS of System (2.5). Based
on the sufficient conditions given in the theorem, it can be seen that impulsive dis-
turbance, spatial diffusion, environmental noise, and time delay all have an impact
on the FTS of echinococcosis system. Later, we will provide detailed explanations
through numerical simulations.
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5. Optimal control strategies

To achieve the optimal control strategy, we consider the control of echinococcosis
from a cost effectiveness point of view. The goal of the optimal control problem is to
determine a control set that minimizes the infected dogs and the infected livestock
when minimizing the control costs. Therefore, the following strategy is proposed.

(i) v1(t, x) denotes the reduction in the number of infections in the final host
(dogs, etc.) by preventing herders from feeding the organs of intermediate hosts
(cows, sheep, etc.) to domestic dogs through hygiene education for herders, as well
as trapping and killing stray dogs.

(ii) v2(t, x) denotes the reduction of the number of eggs of the echinococcosis
pathogen in the environment through proper sanitation, which prevents the inges-
tion of eggs by intermediate hosts and thus reduces the number of infections in
intermediate hosts.

(iii) v1(tk, x), v3(tk, x) denote the enhancement of immunity of susceptible pop-
ulations against infection through human intervention by vaccinating the final host
susceptible population and the intermediate host susceptible population, respec-
tively. v2(tk, x), v4(tk, x) denote the reduction in the number of population infec-
tions by deworming the final host-exposed population and the intermediate host-
exposed population, respectively.

Considering the above control strategy, the following control model is developed

dS1(t, x) = [d1△S1(t, x) +A1 − β1S1(t, x)I2(t, x)− µ1S1(t, x) + γ1I1(t, x)]dt

− σ1S1(t, x)I2(t, x)dB1(t),

dE1(t, x) = [d2△E1(t, x) + β1S1(t, x)I2(t, x)− µ1E1(t, x)

− β1S1(t− τ(t), x)I2(t− τ(t), x)]dt+ [σ1S1(t, x)I2(t, x)

− σ1S1(t− τ(t), x)I2(t− τ(t), x)]dB1(t),

dI1(t, x) = [d3△I1(t, x) + β1S1(t− τ(t), x)I2(t− τ(t), x)− (µ1 + γ1)I1(t, x)

− v1(t, x)I1(t, x)]dt+ σ1S1(t− τ(t), x)I2(t− τ(t), x)]dB1(t),

dS2(t, x) = [d4△S2(t, x) +A2 − β2S2(t, x)I1(t, x)− µ2S2(t, x) + γ2I2(t, x)]dt

− σ2S2(t, x)I1(t, x)dB2(t),

dE2(t, x) = [d5△E2(t, x) + β2S2(t, x)I1(t, x)− µ2E2(t, x)

− β2S2(t− τ(t), x)I1(t− τ(t), x)]dt+ [σ2S2(t, x)I1(t, x)

− σ2S2(t− τ(t), x)I1(t− τ(t), x)]dB2(t),

dI2(t, x) = [d6△I2(t, x) + β2S2(t− τ(t), x)I1(t− τ(t), x)− (µ2 + γ2)I2(t, x)

− v2(t, x)I2(t, x)]dt+ σ2S2(t− τ(t), x)I1(t− τ(t), x)dB2(t),



t ̸= tk,

t > 0,

x ∈ Ω,

S1(t
+
k , x) = (1− ρ1k(v1(tk, x)))S1(tk, x),

E1(t
+
k , x) = (1− ρ2k(v2(tk, x)))E1(tk, x),

S2(t
+
k , x) = (1− ρ3k(v3(tk, x)))S2(tk, x),

E2(t
+
k , x) = (1− ρ4k(v4(tk, x)))E2(tk, x),


t = tk, k ∈ 1, 2, ..., N.

(5.1)
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Where y(t, x) = (S1(t, x), E1(t, x), I1(t, x), S2(t, x), E2(t, x), I2(t, x))
T is the solution

of model (5.1) with positive initial values for the control. v(t, x) = (v1(t, x), v2(t, x))
T

is an ordinary control variable and v(tk, x) = (v1(tk, x), v2(tk, x), v3(tk, x), v4(tk, x))
T

is an impulse control variable. The admissible control sets κv and κvk
are bounded

and convex, defined as follows,

κv = {v(t, x) ∈ L∞(Ω× [0, T ];R2)|0 ≤ vi(t, x) ≤ vimax,∀t ∈ [0, T ], x ∈ Ω},
κvk = {v(tk, x) ∈ L∞(Ω× [t1, ..., tN ];R4)|0 ≤ vi(tk, x) ≤ vikmax,

∀t ∈ [t1, ..., tN ], x ∈ Ω},
ρik(v(tk, x)) = vi(tk, x)ρik, i = 1, 2, 3, 4.

The aim is to reduce the number of infected populations of echinococcus granulosus
through minimal control efforts.

Therefore, we define an objective functional:

J(u(t, x)) = E[

∫ T

0

∫
Θ

L(t, y(t, x), v(t, x))dxdt+

N∑
k=1

∫
Θ

G(tk, y(tk, x), (v(tk, x))dx

+

∫
Θ

h(y(t, x))dx],

with

L(t, y(t, x), v(t, x)) = O1I1(t, x) +O2I2(t, x) +

2∑
i=1

Ri

2
v2i (t, x),

G(tk, y(tk, x), (v(tk, x)) =

4∑
i=1

R̃i

2
v2i (tk, x).

Where L(t, y(t, x), v(t, x)) denotes the cost at moment t(t ̸= tk), G(tk, y(tk, x),
(v(tk, x)) is the cost associated with the k − th impulse jump, and h(y(T, x) is a
function of the y(t, x) at time T . The positive parameters O1, O2, R1 and R2 are
weight constants of the final host infected population, intermediate host infected
population and control strategies, respectively; R̃i(i = 1, 2, 3, 4) are positive weight
constants of impulse control of the k − th jump, respectively.

Theorem 5.1. Assume that J(u(t, x)) is subject to model (5.1) with positive ini-
tial conditions. Then there exist an optimal control u and the corresponding state
solution ȳ(t, x) such that J(u) is minimized.

See Ref. [2] for the similar proof. So, the proof for Theorem 5.1 is omitted for
simplicity.

Further, Pontryagin’s Maximum Principle [14] transforms the optimal control
problem into minimizing the Hamiltonian function from the objective functional
subject to the state System (5.1), define the following Hamiltonian function:

H(y(t, x), v(t, x), p(t, x), q(t, x))

=p1(t, x)[d1△S1(t, x) +A1 − β1S1(t, x)I2(t, x)− µ1S1(t, x) + γ1I1(t, x)]

+ p2(t, x)[d2△E1(t, x) + β1S1(t, x)I2(t, x)− µ1E1(t, x)

− β1S1(t− τ(t), x)I2(t− τ(t), x)]

+ p3(t, x)[d3△I1(t, x) + β1S1(t− τ(t), x)I2(t− τ(t), x)
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− (µ1 + γ1)I1(t, x)− v1(t, x)I1(t, x)]

+ p4(t, x)[d4△S2(t, x) +A2 − β2S2(t, x)I1(t, x)− µ2S2(t, x) + γ2I2(t, x)]

+ p5(t, x)[d5△E2(t, x) + β2S2(t, x)I1(t, x)− µ2E2(t, x)

− β2S2(t− τ(t), x)I1(t− τ(t), x)]

+ p6(t, x)[d6△I2(t, x) + β2S2(t− τ(t), x)I1(t− τ(t), x)

− (µ2 + γ2)I2(t, x)− v2(t, x)I2(t, x)]

− q1(t, x)σ1S1(t, x)I2(t, x) + q2(t, x)[σ1S1(t, x)I2(t, x)

− σ1S1(t− τ(t), x)I2(t− τ(t), x)]

+ q3(t, x)σ1S1(t− τ(t), x)I2(t− τ(t), x)− q4(t, x)σ2S2(t, x)I1(t, x)

+ q5(t, x)[σ2S2(t, x)I1(t, x)− σ2S2(t− τ(t), x)I1(t− τ(t), x)]

+ q6(t, x)σ2S2(t− τ(t), x)I1(t− τ(t), x) + L(t, y(t, x), v(t, x)),

and an impulse Hamiltonian:

HI(y(tk, x), v(tk, x), p(tk, x), q(tk, x))

=p1(tk, x)ρ1kv1(tk, x)S1(tk, x) + p2(tk, x)ρ2kv2(tk, x)E1(tk, x)

+ p4(tk, x)ρ3kv3(tk, x)S2(tk, x) + p5(tk, x)ρ4kv4(tk, x)E2(tk, x)

+G(tk, y(tk, x), vk).

Moreover there are adjoint functions Pi(·, ·)(i = 1, 2, 3, 4, 5, 6) such as

dp1(t, x) = [−d1△p1(t, x) + (β1I2(t, x) + µ1)p1(t, x)− β1I2(t, x)p2(t, x)

+ q1(t, x)σ1I2(t, x)− q2(t, x)σ1I2(t, x)

+ 1[0,T−τ(T )]
1

1− τ̇(t− τ(t) + ´τ(t))
β1I2(t+ ´τ(t), x)p2(t+ ˜τ(t), x)

− 1[0,T−τ(T )]
1

1− τ̇(t− τ(t) + ´τ(t))
β1I2(t+ ´τ(t), x)p3(t+ ˜τ(t), x)

+ 1[0,T−τ(T )]
1

1− τ̇(t− τ(t) + ´τ(t))
σ1I2(t+ ´τ(t), x)q2(t+ ˜τ(t), x)

− 1[0,T−τ(T )]
1

1− τ̇(t− τ(t) + ´τ(t))
σ1I2(t+ ´τ(t), x)q3(t+ ˜τ(t), x)]dt

+ q1(t, x)dB1(t),

dp2(t, x) = [−d2△p2(t, x) + µ1p2(t, x)]dt+ q2(t, x)dB1(t),

dp3(t, x) = [−d3△p3(t, x) + (µ1 + γ1) + v1(t, x))p3(t, x)

+ β2S2(t, x)p4(t, x)− β2S2(t, x)p5(t, x)

+ q4(t, x)σ2S2(t, x)− q5(t, x)σ2S2(t, x)− γ1p1(t, x)−O1

+ 1[0,T−τ(T )]
1

1− τ̇(t− τ(t) + ´τ(t))
β2S2(t+ ´τ(t), x)p5(t+ ˜τ(t), x)

− 1[0,T−τ(T )]
1

1− τ̇(t− τ(t) + ´τ(t))
β2S2(t+ ´τ(t), x)p6(t+ ˜τ(t), x)

− 1[0,T−τ(T )]
1

1− τ̇(t− τ(t) + ´τ(t))
σ2S2(t+ ´τ(t), x)q6(t+ ˜τ(t), x)]dt

+ q3(t, x)dB1(t),



Finite time stability and optimal control of... 181

dp4(t, x) = [−d4△p4(t, x) + (β2I1(t, x) + µ2)p4(t, x)− β2I1(t, x)p5(t, x)

+ q4(t, x)σ2I1(t, x)− q5(t, x)σ2I1(t, x)

+ 1[0,T−τ(T )]
1

1− τ̇(t− τ(t) + ´τ(t))
β2I1(t+ ´τ(t), x)p5(t+ ˜τ(t), x)

− 1[0,T−τ(T )]
1

1− τ̇(t− τ(t) + ´τ(t))
β2I1(t+ ´τ(t), x)p6(t+ ˜τ(t), x)

+ 1[0,T−τ(T )]
1

1− τ̇(t− τ(t) + ´τ(t))
σ2I1(t+ ´τ(t), x)q5(t+ ˜τ(t), x)

− 1[0,T−τ(T )]
1

1− τ̇(t− τ(t) + ´τ(t))
σ2I1(t+ ´τ(t), x)q6(t+ ˜τ(t), x)]dt

+ q4(t, x)dB2(t),

dp5(t, x) = [−d5△p5(t, x) + µ2p5(t, x)]dt+ q5(t, x)dB2(t),

dp6(t, x) = [−d6△p6(t, x) + (µ2 + γ2) + v2(t, x)]p6(t, x)

+ β1S1(t, x)p1(t, x)− β1S1(t, x)p2(t, x)

+ q1(t, x)σ1S1(t, x)− q2(t, x)σ1S1(t, x)− γ2P4(t, x)−O2

+ 1[0,T−τ(T )]
1

1− τ̇(t− τ(t) + ´τ(t))
β1S1(t+ ´τ(t), x)p2(t+ ˜τ(t), x)

− 1[0,T−τ(T )]
1

1− τ̇(t− τ(t) + ´τ(t))
β1S1(t+ ´τ(t), x)p3(t+ ˜τ(t), x)

− 1[0,T−τ(T )]
1

1− τ̇(t− τ(t) + ´τ(t))
σ1S1(t+ ´τ(t), x)q3(t+ ˜τ(t), x)]dt

+ q6(t, x)dB2(t)

where the time lead function τ́(·) is introduced to take into account the functional
dependence of the delay τ(·) on time. If s = t − τ(t) for 0 ≤ t ≤ T, by solving for
t, τ́(s) is given by t = s+ τ́(s) [3]. At the impulse or jump point, we have

p1(t
+
k , x) = (1 + ρ1k(v1(tk, x)))p1(tk, x),

p2(t
+
k , x) = (1 + ρ2k(v2(tk, x)))p2(tk, x),

p4(t
+
k , x) = (1 + ρ3k(v3(tk, x)))p4(tk, x),

p5(t
+
k , x) = (1 + ρ4k(v4(tk, x)))p5(tk, x),

with transverse conditions

Pi(T ) =

∫
Ω

hyi(y(T, x))dx, Pi(T
+) =

∫
Ω

hyi(y(T
+, x))dx, i = 1, 2, 3, 4.

Moreover,

v̄i(t, x) = max{0,min{ṽi(t, x), vimax}}, v̄i(tk, x) = max{0,min{ṽi(tk, x), vikmax}}

within

ṽ1(t, x) =
p3(t, x)Ī1(t, x)

R1
, ṽ2(t, x) =

p6(t, x)Ī2(t, x)

R2
,
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Table 1. Parameters value.

Parameters Biological definition Value Source

A1 Recruitment rate of susceptible dogs 1.67× 104month−1 Estimated

β1 Transmission rate form livestock to dogs 4.6× 10−7month−1 [9]

µ1 Natural death rate of dogs 0.02month−1 Estimated

γ1 Recovery rate of infected dogs 0.34month−1 Estimated

A2 Recruitment rate of susceptible livestock 4.52× 104month−1 Estimated

β2 Transmission rate form dogs to livestock 7.9× 10−7 [9]

µ2 Natural death rate of livestock 0.07month−1 [10]

γ2 Recovery rate of infected livestock 0.51month−1 Estimated

ṽ1(tk, x) = −p1(tk, x)ρ1kS̄1(tk, x)

R̃1

, ṽ2(tk, x) = −p2(tk, x)ρ2kĒ1(tk, x)

R̃2

,

ṽ3(tk, x) = −p4(tk, x)ρ3kS̄2(tk, x)

R̃3

, ṽ4(tk, x) = −p5(tk, x)ρ4kĒ2(tk, x)

R̃4

.

To date, there is no method to completely resolve echinococcosis. Therefore,
the development of a control strategy only provides some recommendations for
prevention and control, which will form the basis for the development of a new
control programme.

6. Numerical simulations

In this section, we analyze the System (2.5) by utilizing its numerical solution. To
accomplish this, we opt for the Milstein method [10] to simulate the behavior of the
System (2.5). This approach allows us to effectively model and study the system’s
dynamics and behavior in a numerical framework. The values of the parameters of
the system are taken from [9,18] and are listed in Table 1. Thus, we set the spatial
variable dimension as r = 1, with x belonging to the domain Ω = [−0.4, 0.4], and
choose a function as

τ(t) =
T

2π
sin(

πt

T
), t ∈ [−τ̂ , T ],

which gives τ(t) ≤ τ̂ = T
2π and ´τ(t) ≤ τ̃ = 1

2 < 1. Setting the impulse sequence

{tk} = {0.4, 0, 8, 1.2, 1.6, 2.0, 2.4, 2.8, 3.2, 3.6, 4.0, 4.4}, i.e. tM = tm = 0.4month.

6.1. Analysis of FTS

Set T = 4.5month,B1 = 1.944 × 105, B2 = 2.5 × 105, ρ1k = 0.2, ρ2k = 0.3, ρ3k =
0.2, ρ4k = 0.2. µ = max{(1 − ρik)

2} ∈ (0, 1) and choosing σ1 = 4 × 10−6, σ2 =

3×10−6, we have lnµ
hM

+ |D2|+ D3

µ e
− lnµ

hM
τ̂
= −0.263, and −lnµ−ω = −2.79×108, as

a result, the fulfillment of condition (C1) in Theorem 4.2 suggests that the system
exhibits FTS with respect to the parameters (4.5, 1.944×105, 2.5×105) as depicted
in Fig.1.

In this scenario, we study the impact of impulse, noise and time delay on the
System (2.5). By selecting parameter values that meet the requirements of condi-
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Figure 1. The state trajectories ofy(x, t) = (S1(x, t), E1(x, t), I1(x, t), S2(x, t), E2(x, t), I2(x, t)) for
System (2.5) with initial value y(x, 0) = (1.405×104, 1.3×104, 3.3×103, 2.78×105, 1.23×105, 4.16×104)

tion(C1) in Theorem 4.2, we observe that the system displays FTS with respect to
the parameters (4.5, 1.944× 105, 2.5× 105).

• The role of impulsive

When examining the effect of impulse interference on System (2.5), we maintain
the parameter values from Figure 1 and set ρik = 0. Computational analysis reveals
that none of the conditions in Theorem 4.2 are met. In other words, the system, in
relation to (4.5, 1.944× 105, 2.5× 105), does not fulfill the requirements for FTS, as
depicted in Figure 2.

In this section, when we solely modify the condition of the impulse compared to
Figure 1, we observe that the system is unable to achieve FTS without the influence
of the impulse. These findings indicate that the impulse perturbation significantly
impacts the system’s stability within a finite time frame.

• The role of noise

To demonstrate the effect of white noise on System (2.5), we have selected
the same parameters as those used for generating Figure 1 and assigned values of
σ1 = σ2 = 0. The calculations indicate that the system is not finite time stability
relative to (4.5, 1.944× 105, 2.5× 105), as shown in Figure 3.

In regards to Figure 3, we are not considering the effect of white noise on System
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Figure 2. The System (2.5) displays state trajectories for y(t, x) = (S1(t, x), E1(t, x), I1(t, x),
S2(t, x), E2(t, x), I2(t, x)) with an initial value of y(0, x) = (1.405 × 104, 1.3 × 104, 3.3 × 103, 2.78 ×
105, 1.23 × 105, 4.16 × 104) without impulse perturbation.

(2.5). Upon comparing Figure 3 to Figure 1, It is clear that the system fails to
sustain its finite-time stability under identical conditions. Thus, it is apparent that
white noise exerts a notable influence on the system’s finite-time stability, which is
only assured when the conditions outlined in Theorem 4.2 are met.

• The role of delay
As per Theorem 4.2, it is important to acknowledge that delay also contributes

to the FTS of System (2.5). To demonstrate this influence, we have selected a
delay that is different shown in Figure 1 for comparison, while keeping the other
conditions the same. Our calculations indicate that under these conditions, the
system does not meet the criteria for finite time stability, as illustrated in Figure 4.

The figure shows that, under the same conditions, an unnecessarily large time
delay is not beneficial for the finite-time stability of the system.

6.2. Determination of optimal control

In this section, our goal is to observe the impact of control strategies on System
(2.5), particularly their impact on the number of infections in the final and in-
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Figure 3. The System (2.5) displays state trajectories for y(t, x) = (S1(t, x), E1(t, x), I1(t, x),
S2(t, x), E2(t, x), I2(t, x)) with an initial value of y(0, x) = (1.405 × 104, 1.3 × 104, 3.3 × 103, 2.78 ×
105, 1.23 × 105, 4.16 × 104) without white noise.

termediate hosts. We have decided to select a time delay of τ(t) = τ = 2.5 and
weight constants become O1 = 1.5 × 104, O2 = 0.8 × 104, R1 = 1.9 × 107, R2 =
0.2 × 104, R3 = 2.1 × 102, R4 = 0/4 × 102, R5 = 2.3 × 103, R6 = 0.1 × 103. Ad-
ditionally, we select ∆t = 0.1, delay τ = 2.5 = ℓ∆t and T = 40 = ȷ∆t, ∆x = 1
and X = 10 = α∆x, where ℓ > 0, ȷ > 0, and α > 0 are integers. The val-
ues of S1(t, x), E1(t, x), I1(t, x), S2(t, x), E2(t, x), I2(t, x), pk(t, x), k = 1, 2, 3, 4, 5, 6,
at nodal points are provided as S1i,j , E1i,j , I1i,j , S2i,j , E2i,j , I2i,j , p

k
i,j , where −ℓ ≤

j ≤ ȷ, 0 ≤ i ≤ α. We employ forward and backward difference methods to approx-
imate the state equation and adjoint equation. Therefore, the parameter values
outlined in Table 1, ρ1k = 0.2, ρ2k = 0.3, ρ3k = 0.2, ρ4k = 0.3. We set vimax = 1
and vikmax = 1, and the control measures, for vi ∈ [0, 1], are designed to reduce
the number of infected hosts. For vik ∈ (0, 1], they represent an increase in the
frequency of vaccinations and deworming. Furthermore, setting the spatial variable
x = 6, we can generate the time trajectory plot for the optimal control, as de-
picted in Fig.5. Additionally, to demonstrate the role of control variables, we have
also plotted the paths (S1(t, x), E1(t, x), I1(t, x), S2(t, x), E2(t, x), I2(t, x)) with and
without control in Fig.6.

Figure 6 demonstrates that targeted control measures can significantly decrease
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Figure 4. The System (2.5) displays state trajectories for y(t, x) = (S1(t, x), E1(t, x), I1(t, x),
S2(t, x), E2(t, x), I2(t, x)) with an initial value of y(0, x) = (1.405 × 104, 1.3 × 104, 3.3 × 103, 2.78 ×
105, 1.23 × 105, 4.16 × 104) with time delayτ(t) = 2.5.

the number of infections in both final and intermediate hosts approaching zero (as
shown Fig.6(a). However, if only a pulse therapeutic method is adopted, such an
effect cannot be achieved (as shown Fig.6(b). Targeted control strategies are crucial
for controlling costs and improving treatment outcomes.

7. Conclusions

In this paper, we expand upon a new ISPDDE model that considers noise, time-
varying delay, and impulse interference related to echinococcosis. Sufficient condi-
tions for the FTS of the system by using the Lyapunov function and the bounded
impulse interval method. Numerical simulations illustrate the validity of the theo-
retical results (Fig.1) and explain the effects of impulse (Fig.2), noise (Fig.3), and
delay (Fig.4) on the FTS of the system. In addition, the control variables intro-
duced lead to a reduction in the number of infected hosts in the intermediate and
final hosts and minimize the corresponding costs from the point of view of timely
control. It is also crucial to consider finite-time control as an important aspect.
Although our article only considered FTS, future research will look into finite-time
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Figure 5. The trajectories of v1(t, x), v2(t, x) for System (5.1), with a constant spatial variable x = 6
and initial value y(0, x) = (1.405 × 104, 1.3 × 104, 3.3 × 103, 2.78 × 105, 1.23 × 105, 4.16 × 104).
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Figure 6. The paths of (S1(t, x), E1(t, x), I1(t, x), S2(t, x), E2(t, x), I2(t, x)) for System (5.1), with a
constant spatial variable x = 6 and initial value y(0, x) = (1.405 × 104, 1.3 × 104, 3.3 × 103, 2.78 ×
105, 1.23 × 105, 4.16 × 104), with and without control, respectively.

control. Moreover, different from the Lyapunov asymptotical stability, finite-time
stability can ensure system’s state trajectories converge to the ideal state in a finite
time, and the finite time is said to be settling time or convergence time. Estimating
the settling time is one of the most important problems of finite-time stability and a
point of concern for our further research. Our research mainly focuses on the theo-
retical impact of various environmental factors (including randomness, impulse, and
time delay) on the development of echinococcosis. It can be seen that by combining
sheep immunization, dog deworming treatment, and environmental cleaning, it is
possible to reduce the level of echinococcus granulosis infection in two hosts in the
transmission chain to a very low level. In particular, the environmental disinfection
control strategy could be often ignored. Thus, when developing echinococcosis con-
trol and prevention, environmental disinfection needs to put special emphasis on
planning.
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Appendix A. Proof of Lemma 3.1

Proof. Owing to

(S1(t, x), E1(t, x), I1(t, x), S2(t, x), E2(t, x), I2(t, x)) = (h1(t)y1(t, x), h2(t)y2(t, x),

h3(t)y3(t, x), h4(t)y4(t, x), h5(t)y5(t, x), h6(t)y6(t, x)).

It is clearly that (S1(t, x), E1(t, x), I1(t, x), S2(t, x), E2(t, x), I2(t, x)) is continuous
on (tk, tk+1) ⊂ [0,+∞). For every t ̸= tk,

dS1(t, x) = h
′

1(t)y1(t, x) + h1(t)dy1(t, x)

= h1(t){[d1△y1(t, x) +A1h
−1
1 (t)− β1y1(t, x)h6(t)y6(t, x)

−µ1y1(t, x) + γ1h
−1
1 (t)h3(t)y3(t, x)]dt

−σ1y1(t, x)h6(t)y6(t, x)dB1(t)}

= [d1△S1(t, x) +A1 − β1S1(t, x)I2(t, x)

−µ1S1(t, x) + γ1I1(t, x)]dt− σ1S1(t, x)I2(t, x)dB1(t).

Furthermore, for tk ∈ [0,+∞),

S1(t
−
k , x) = lim

t→t−k

h1(t)y1(t, x)

=(1− ρ1k)
(tk−1)−tky1(tk, x)

=(1− ρ1k)
−1y1(tk, x)

=S1(tk, x),

and
S1(t

+
k , x) = lim

t→t+k

h1(t)y1(t, x) = (1− ρ1k)
tk−tky1(tk, x) = y1(tk, x).

Therefore, we know that

S1(t
+
k , x) = (1− ρ1k)S1(tk, x), for t = tk.

With regard to E1(t, x), I1(t, x), S2(t, x), E2(t, x), I2(t, x), we can infer the same re-
sult using the same method as for S1(t, x). It implies that (h1(t)y1(t, x), h2(t)y2(t, x),
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h3(t)y3(t, x), h4(t)y4(t, x), h5(t)y5(t, x), h6(t)y6(t, x)) satisfies the equivalent System
(2.5) for almost every t ∈ (0,+∞) \ {tk}. It also satisfies the impulsive con-
ditions at t = tk. Proving that System (2.5) has a unique global positive so-
lution (S1(t, x), E1(t, x), I1(t, x), S2(t, x), E2(t, x), I2(t, x)), requires demonstrating
the existence and uniqueness of the global positive solution (y1(t, x), y2(t, x), y3(t, x),
y4(t, x), y5(t, x), y6(t, x)) for System (3.1).

Appendix B. Proof of Lemma 3.2

Proof. Let

W (t) =

∫
Ω

(S1(t, x) + E1(t, x) + I1(t, x) + S2(t, x) + E2(t, x) + I2(t, x))dx,

by (2.5), we have

dW (t)

dt
=

∫
Ω

(
∂S1(t, x)

∂t
+

∂E1(t, x)

∂t
+

∂I1(t, x)

∂t
+

∂S2(t, x)

∂t

+
∂E2(t, x)

∂t
+

∂I2(t, x)

∂t
)dx

=

∫
Ω

(d1△S1(t, x) +A1 − µ1S1(t, x) + d2△E1(t, x)− µ1E1(t, x)

+d3△I1(t, x)− µ1I1(t, x) + d4△S2(t, x) +A2 − µ2S2(t, x)

+d5△E2(t, x)− µ2E2(t, x) + d6△I2(t, x)− µ2I2(t, x))dt

≤
∫
Ω

(d1△S1(t, x) + d2△E1(t, x) + d3△I1(t, x) + d4△S2(t, x)

+d5△E2(t, x) + d6△I2(t, x) +A1 +A2

−Λ((S1(t, x) + E1(t, x) + I1(t, x) + S2(t, x) + E2(t, x) + I2(t, x)))dx

≤ d1

∫
∂Ω

∂S1(t, x)

∂n
dx+ d2

∫
∂Ω

∂E1(t, x)

∂n
dx+ d3

∫
∂Ω

∂I1(t, x)

∂n
dx

+d4

∫
∂Ω

∂S2(t, x)

∂n
dx+ d5

∫
∂Ω

∂E2(t, x)

∂n
dx

+d6

∫
∂Ω

∂I2(t, x)

∂n
dx+

∫
Ω

(A1 +A2)dx− ΛW (t)

= (A1 +A2)|Ω| − ΛW (t),

where Λ = min(µ1, µ2),

lim
t→∞

W (t) ≤ (A1 +A2)|Ω|
Λ

= B.
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Appendix C. Proof of Theorem 3.1

Proof. Since the coefficients of System (3.1) satisfy the local Lipschitz condition,
for any given initial value (y1(s, x), y2(s, x), y3(s, x), y4(s, x), y5(s, x), y6(s, x)) ∈
L2([−τ̂ , 0] × Ω;R6

+), the System (3.1) has a unique solution y(t, x) on [−τ̂ , τe),
where τe is the explosion time.

Let q0 > 0 be sufficiently large number. For each q ≥ q0, define a stopping time

τq = inf

{
t ∈ [0, τe) : min{yi(t, x)} ≤ 1

q
or max{yi(t, x)} ≥ q

}
, i = 1, 2, 3, 4, 5, 6,

set inf ∅ = ∞. It can be seen that τq is increasing as q → +∞. Let τ∞ = limt→+∞,
then τ∞ ≤ τea.s and y(t, x) > 0. To verify that τe = ∞a.s. We only need to demon-
strate that τ∞ = +∞a.s. Before confirming its validity, we need to determine the
boundedness of the solution. For simplicity, we denote yi = yi(t, x), i = 1, 2, 3, 4, 5, 6.
For arbitrary T > 0, t ∈ [0, tq ∧ T ), let

V1(t) =

∫
Ω

y21dx, V2(t) =

∫
Ω

y22dx, V3(t) =

∫
Ω

y23dx,

V4(t) =

∫
Ω

y24dx, V5(t) =

∫
Ω

y25dx, V6(t) =

∫
Ω

y26dx.

Applying the Itô formula and basic inequality we deduce that

dV1(t) ≤ 2

∫
Ω

y1[d1△y1 +A1h
−1
1 (t)− β1y1h6(t)y6 − (µ1 − ln(1− ρ1k))y1(t, x)

+γ1h
−1
1 (t)h3(t)y3]dxdt+

∫
Ω

σ2
1y

2
1h

2
6(t)y

2
6dxdt

−2

∫
Ω

σ1y
2
1h6(t)y6dxdB1(t)

≤ 2

∫
Ω

[−d1(∇y1)
2 +A1h

−1
1 (t)y1 − β1y

2
1h6(t)y6 − µ1y

2
1 + |ln(1− ρ1k)|y21

+γ1h
−1
1 (t)h3(t)y1y3 +

1

2
σ2
1y

2
1h

2
6(t)y

2
6 ]dxdt

−2

∫
Ω

σ1y
2
1h6(t)y6dxdB1(t),

and

dV2(t) ≤2

∫
Ω

y2[d2△y2 + β1h
−1
2 (t)h1(t)h6(t)y1y6 − (µ1 − ln(1− ρ2k))y2

− β1h
−1
2 (t)h1(t− τ(t))y1(t− τ(t))h6(t− τ(t))y6(t− τ(t))]dxdt

+

∫
Ω

[σ2
1h

−2
2 (t)h2

1(t)y
2
1h

2
6(t)y

2
6

+ σ2
1h

−2
2 (t)h2

1(t− τ(t))y21(t− τ(t))h2
6(t− τ(t))y26(t− τ(t))]dxdt

+ 2[

∫
Ω

σ1h
−1
2 (t)h1(t)y1y2h6(t)y6

− σ1h
−1
2 (t)h1(t− τ(t))y1(t− τ(t))y2h6(t− τ(t))y6(t− τ(t))]dxdB1(t)

≤2

∫
Ω

[−d2(∇y2)
2 + β1h

−1
2 (t)h1(t)h6(t)y1y2y6 − µ1y

2
2 + |ln(1− ρ2k)|y22



Finite time stability and optimal control of... 191

+
β1h

−1
2 (t)ĥ1ĥ6y2

2
(y21(t− τ(t)) + y26(t− τ(t)) +

1

2
σ2
1h

−2
2 h2

1y
2
1h

2
6y

2
6

+
1

2
σ2
1h

−2
2 ĥ2

1y
2
1(t− τ(t))ĥ2

6y
2
6(t− τ(t))]dtdx

+ 2

∫
Ω

σ1h
−1
2 h1h6y1y2y6 − σ1h

−1
2 ĥ1ĥ6y1(t− τ(t))y2y6(t− τ(t))]dxdB1(t),

moreover,

dV3(t) ≤ 2

∫
Ω

y3[d3△y3 + β1h
−1
3 (t)h1(t− τ(t))y1(t− τ(t))h6(t− τ(t))y6(t− τ(t))

−(µ1 + γ1)y3]dxdt+

∫
Ω

σ2
1h

−2
3 (t)ĥ2

1y
2
1(t− τ(t))ĥ6

2
y26(t− τ(t))dxdt

+2

∫
Ω

σ1h
−1
3 (t)h1(t− τ(t))y1(t− τ(t))y3h6(t− τ(t))y6(t− τ(t))dxdB1(t)

≤ 2

∫
Ω

[−d3(∇y3)
2 +

β1h
−1
3 ĥ1ĥ6y3
2

(y21(t− τ(t)) + y26(t− τ(t)))

−(µ1 + γ1)y
2
3 +

1

2
σ2
1h

−2
3 ĥ2

1y
2
1(t− τ(t))ĥ2

6y
2
6(t− τ(t))]dtdx

+2

∫
Ω

σ1h
−1
3 (t)ĥ1y1(t− τ(t))y3ĥ6y6(t− τ(t))dxdB1(t),

and

dV4(t) ≤ 2

∫
Ω

y4[d4△y4 +A2h
−1
4 (t)− β2y4h3(t)y3 − (µ2 − ln(1− ρ3k))y4(t, x)

+γ2h
−1
4 (t)h6(t)y6]dxdt+

∫
Ω

σ2
2y

2
4h

2
3(t)y

2
3dxdt

−2

∫
Ω

σ2y
2
4h3(t)y3dxdB2(t)

≤ 2

∫
Ω

[−d4(∇y4)
2 +A2h

−1
4 (t)y4 − β2y

2
4h3(t)y3 − µ2y

2
4 + |ln(1− ρ3k)|y24

+γ2h
−1
4 (t)h6(t)y4y6 +

1

2
σ2
2y

2
4h

2
3(t)y

2
3 ]dxdt

−2

∫
Ω

σ2y
2
4h3(t)y3dxdB2(t),

and

dV5(t) ≤2

∫
Ω

y5[d5△y5 + β2h
−1
5 (t)h4(t)y4h3(t)y3 − (µ2 − ln(1− ρ4k))y5

− β2h
−1
5 (t)h4(t− τ(t))y4(t− τ(t))h3(t− τ(t))y3(t− τ(t))]dxdt

+

∫
Ω

[σ2
2h

−2
5 (t)h2

4(t)y
2
4h

2
3(t)y

2
3

+ σ2
2h

−2
5 (t)h2

4(t− τ(t))y24(t− τ(t))h2
3(t− τ(t))y23(t− τ(t))]dxdt

+ 2[

∫
Ω

σ2h
−1
5 (t)h4(t)y4y5h3(t)y3

− σ2h
−1
5 (t)h4(t− τ(t))y4(t− τ(t))y5h3(t− τ(t))y3(t− τ(t))]dxdB2(t)
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≤2

∫
Ω

[−d5(∇y5)
2 + β2h

−1
5 h3(t)h4(t)y3y4y5 − µ2y

2
5 + |ln(1− ρ4k)|y25

+
β2h

−1
5 (t)ĥ4ĥ3y5

2
(y23(t− τ(t)) + y24(t− τ(t))) +

1

2
σ2
2h

−2
5 h2

4y
2
4h

2
3y

2
3

+
1

2
σ2
2h

−2
5 ĥ2

4y
2
4(t− τ(t))ĥ2

3y
2
3(t− τ(t))]dxdt

+ 2

∫
Ω

σ2h
−1
5 h3h4y3y4y5 − σ2h

−1
5 ĥ4ĥ3y4(t− τ(t))y5y3(t− τ(t))]dxdB2(t),

and

dV6(t) ≤ 2

∫
Ω

y6[d6△y6 + β2h
−1
6 (t)h4(t− τ(t))y4(t− τ(t))h3(t− τ(t))y3(t− τ(t))

−(µ2 + γ2)y6]dxdt+

∫
Ω

σ2
2h

−2
6 (t)ĥ2

4y
2
4(t− τ(t))ĥ3

2
y23(t− τ(t))dxdt

+2

∫
Ω

σ2h
−1
6 (t)h4(t− τ(t))y4(t− τ(t))y6h3(t− τ(t))y3(t− τ(t))dxdB2(t)

≤ 2

∫
Ω

[−d6(∇y6)
2 +

β2h
−1
6 ĥ3ĥ4y6
2

(y23(t− τ(t)) + y24(t− τ(t)))

−(µ2 + γ2)y
2
6 +

1

2
σ2
2h

−2
6 ĥ2

3y
2
3(t− τ(t))ĥ2

4y
2
4(t− τ(t))]dtdx

+2

∫
Ω

σ2h
−1
6 ĥ3ĥ4y3(t− τ(t))y6y4(t− τ(t))dxdB2(t),

then, for V (t) =

6∑
i=1

Vi(t), we have

dV (t)

≤2

∫
Ω

[A1h
−1
1 (t)y1 + |ln(1− ρ1k)|y21 + γ1h

−1
1 h3y1y3 +

1

2
σ2
1y

2
1h

2
6y

2
6

+ β1h1h
−1
2 h6y1y2y6 + |ln(1− ρ2k)|y22 +

β1h
−1
2 ĥ1ĥ6y2
2

(y21(t− τ(t)) + y26(t− τ(t)))

+
1

2
σ2
1h

−2
2 h2

1h
2
6y

2
1y

2
6 +

1

2
σ2
1h

−2
2 ĥ2

1ĥ
2
6y

2
1(t− τ(t))y26(t− τ(t))

+
β1h

−1
3 ĥ1ĥ6y3
2

(y21(t− τ(t)) + y26(t− τ(t)))

+
1

2
σ2
1h

−2
3 ĥ2

1y
2
1(t− τ(t))ĥ2

6y
2
6(t− τ(t))

+A2h
−1
4 y4 + |ln(1− ρ3k)|y24 + γ2h

−1
4 h6y4y6 +

1

2
σ2
2h

2
3y

2
3y

2
4

+ β2h
−1
5 h3h4y3y4y5 + |ln(1− ρ4k)|y25 +

β2h
−1
5 ĥ4ĥ3y5
2

(y23(t− τ(t)) + y24(t− τ(t)))

+
1

2
σ2
2h

−2
5 h2

3h
2
4y

2
3y

2
4 +

1

2
σ2
2h

−2
5 ĥ2

4y
2
4(t− τ(t))ĥ2

3y
2
3(t− τ(t))

+
β2h

−1
6 ĥ3ĥ4y6
2

(y23(t− τ(t)) + y24(t− τ(t)))

+
1

2
σ2
2h

−2
6 ĥ2

3y
2
3(t− τ(t))ĥ2

4y
2
4(t− τ(t))]dxdt
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− 2

∫
Ω

σ1y
2
1h6y6dxdB1(t) + 2

∫
Ω

[σ1h
−1
2 h1h6y1y2y6

− σ1h
−1
2 ĥ1ĥ6y1(t− τ(t))y2y6(t− τ(t))]dxdB1(t)

+ 2

∫
Ω

σ1h
−1
3 ĥ1ĥ6y1(t− τ(t))y3y6(t− τ(t))dxdB1(t)

− 2

∫
Ω

σ2y
2
4h3y3dxdB2(t) + 2[

∫
Ω

σ2h
−1
5 h3h4y3y4y5

− σ2h
−1
5 ĥ3ĥ4y3(t− τ(t))y5y4(t− τ(t))]dxdB2(t)

+ 2

∫
Ω

σ2h
−1
6 ĥ3ĥ4y3(t− τ(t))y6y4(t− τ(t))dxdB2(t).

Taking the integral of both sides of the above equation from 0 to τq ∧ T , and then
finding the expected value, yields the following.

E[V (τqΛT )]− V (0)

≤ E

∫ τqΛT

0

∫
Ω

2[A1h
−1
1 (t)y1 + |ln(1− ρ1k)|y21 + γ1h

−1
1 h3y1y3 +

1

2
σ2
1y

2
1h

2
6y

2
6

+β1h1h
−1
2 h6y1y2y6 + |ln(1− ρ2k)|y22

+
β1h

−1
2 ĥ1ĥ6y2
2

(y21(t− τ(t)) + y26(t− τ(t))) +
1

2
σ2
1h

−2
2 h2

1h
2
6y

2
1y

2
6

+
1

2
σ2
1h

−2
2 ĥ2

1ĥ
2
6y

2
1(t− τ(t))y26(t− τ(t))

+
β1h

−1
3 ĥ1ĥ6y3
2

(y21(t− τ(t)) + y26(t− τ(t)))

+
1

2
σ2
1h

−2
3 ĥ2

1y
2
1(t− τ(t))ĥ2

6y
2
6(t− τ(t))

+A2h
−1
4 y4 + |ln(1− ρ3k)|y24 + γ2h

−1
4 h6y4y6 +

1

2
σ2
2h

2
3y

2
3y

2
4

+β2h
−1
5 h3h4y3y4y5 + |ln(1− ρ4k)|y25

+
β2h

−1
5 ĥ4ĥ3y5
2

(y23(t− τ(t)) + y24(t− τ(t)))

+
1

2
σ2
2h

−2
5 h2

3h
2
4y

2
3y

2
4 +

1

2
σ2
2h

−2
5 ĥ2

4y
2
4(t− τ(t))ĥ2

3y
2
3(t− τ(t))

+
β2h

−1
6 ĥ3ĥ4y6
2

(y23(t− τ(t)) + y24(t− τ(t)))

+
1

2
σ2
2h

−2
6 ĥ2

3y
2
3(t− τ(t))ĥ2

4y
2
4(t− τ(t))]dxdt,

there exists positive constants Li such that Li = sup{2|ln(1 − ρik)|}, t > 0, i =
1, 2, 3, 4. Then, we can calculate

E[V (τqΛT )]

≤V (0) + E

∫ τqΛT

0

∫
Ω

{[A2
1h

−2
1 (t) +A2

2h
−2
4 (t) + [1 + 2|ln(1− ρ1k)|+ γ1h

−1
1 h3
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+ σ2
1h

2
6B

2 + σ2
1h

2
1h

−2
2 h2

6B
2 + β2

1h
2
1h

−2
2 h2

6B
2]y21 + 2|ln(1− ρ2k)|y22

+ γ1h
−1
1 h3y

2
3 + [1 + 2|ln(1− ρ3k)|+ γ2h

−1
4 h6 + σ2

2h
2
3B

2

+ σ2
2h

−2
5 h2

3h
2
4B

2 + β2
2h

2
3h

2
4h

−2
5 B2]y24 + [1 + 2|ln(1− ρ4k)|]y25 + [1 + γ2h

−1
4 h6]y

2
6

+ β1ĥ1ĥ6(h
−1
2 y2 + h−1

3 y3)[y
2
1(t− τ(t)) + y26(t− τ(t))]

+ σ2
1ĥ

2
1ĥ

2
6(h

−2
2 + h−2

3 )y21(t− τ(t))y26(t− τ(t))

+ β2ĥ3ĥ4(h
−1
5 y5 + h−1

6 y6)[y
2
3(t− τ(t)) + y24(t− τ(t))]

+ σ2
2ĥ

2
3ĥ

2
4(h

−2
5 + h−2

6 )y23(t− τ(t))y24(t− τ(t))}dxdt

≤V (0) + E

∫ τqΛT

0

∫
Ω

C1[1 + y21 + y22 + y23 + y24 + y25 + y26 + y21(t− τ(t))

+ y26(t− τ(t)) + y23(t− τ(t)) + y24(t− τ(t)) + y21(t− τ(t))y26(t− τ(t))

+ y23(t− τ(t))y24(t− τ(t))]dxdt

≤V (0) + E

∫ τqΛT

0

[C1|Ω|+
∫
Ω

C1[y
2
1(t− τ(t)) + y26(t− τ(t)) + y23(t− τ(t))

+ y24(t− τ(t)) + y21(t− τ(t))y26(t− τ(t)) + y23(t− τ(t))y24(t− τ(t))dx]dt

+ E

∫ τqΛT

0

∫
Ω

[C1(y
2
1 + y22 + y23 + y24 + y25 + y26)dx]dt,

where

C1 = max{A2
1h

−2
1 +A2

2h
−2
4 , 1 + |Li|+ γ1h

−1
1 h3 + σ2

1h
2
6B

2 + σ2
1h

2
1h

−2
2 h2

6B
2

+ β2
1h

2
1h

−2
2 h2

6B
2, 1 + 2|ln(1 + ρ3k)|+ γ2h

−1
4 h6 + σ2

2h
2
3B

2 + σ2
2h

−2
5 h2

3h
2
4B

2

+ β2
2h

2
3h

2
4h

−2
5 B2, β1ĥ1ĥ6(h

−1
2 y2 + h−1

3 y3), σ
2
1ĥ

2
1ĥ

2
6(h

−2
2 + h−2

3 ),

β2ĥ3ĥ4(h
−1
5 y5 + h−1

6 y6), σ
2
2ĥ

2
3ĥ

2
4(h

−2
5 + h−2

6 )}, i = 1, 2, 3, 4.

Since

E

∫ τqΛT

0

∫
Ω

C1y
2
1(t− τ(t))dxdt+ E

∫ τqΛT

0

∫
Ω

C1y
2
3(t− τ(t))dxdt

+E

∫ τqΛT

0

∫
Ω

C1y
2
4(t− τ(t)) + E

∫ τqΛT

0

∫
Ω

C1y
2
6(t− τ(t))dxdt

≤ E

∫ 0

−τ̂1

∫
Ω

C1

1− τ̃
y21(t)dxdt+ E

∫ 0

−τ̂2

∫
Ω

C1

1− τ̃
y23(t)dxdt

+E

∫ 0

−τ̂3

∫
Ω

C1

1− τ̃
y24(t)dxdt+ E

∫ 0

−τ̂4

∫
Ω

C1

1− τ̃
y26(t)dxdt

+E

∫ τqΛT

0

∫
Ω

C1

1− τ̃
y21(t)dxdt+ E

∫ τqΛT

0

∫
Ω

C1

1− τ̃
y23(t)dxdt

+E

∫ τqΛT

0

∫
Ω

C1

1− τ̃
y24(t)dxdt+ E

∫ τqΛT

0

∫
Ω

C1

1− τ̃
y26(t)dxdt

≤ C2 + E

∫ τqΛT

0

∫
Ω

C1

1− τ̃
y21(t)dxdt+ E

∫ τqΛT

0

∫
Ω

C1

1− τ̃
y23(t)dxdt

+E

∫ τqΛT

0

∫
Ω

C1

1− τ̃
y24(t)dxdt+ E

∫ τqΛT

0

∫
Ω

C1

1− τ̃
y26(t)dxdt,
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where

C2 =E

∫ 0

−τ̂1

∫
Ω

C1

1− τ̃
y21(t)dxdt+ E

∫ 0

−τ̂2

∫
Ω

C1

1− τ̃
y23(t)dxdt

+ E

∫ 0

−τ̂3

∫
Ω

C1

1− τ̃
y24(t)dxdt+ E

∫ 0

−τ̂4

∫
Ω

C1

1− τ̃
y26(t)dxdt,

since

E

∫ τqΛT

0

∫
Ω

C1y
2
1(t− τ(t))y26(t− τ(t))dxdt

+E
∫ τqΛT

0

∫
Ω

C1y
2
3(t− τ(t))y24(t− τ(t))dxdt

≤ E

∫ 0

−τ̂5

∫
Ω

C1

(1− τ̃)2
y21(t)y

2
6(t)dxdt+ E

∫ 0

−τ̂6

∫
Ω

C1

(1− τ̃)2
y23(t)y

2
4(t)dxdt

+E

∫ τqΛT

0

∫
Ω

C1

(1− τ̃)2
y21(t)y

2
6(t)dxdt+ E

∫ τqΛT

0

∫
Ω

C1

(1− τ̃)2
y23(t)y

2
4(t)dxdt

≤ C3 + E

∫ τqΛT

0

∫
Ω

C1

(1− τ̃)2
B2y21(t)dxdt+ E

∫ τqΛT

0

∫
Ω

C1

(1− τ̃)2
B2y23(t)dxdt,

where

C3 = E

∫ 0

−τ̂5

∫
Ω

C1

(1− τ̃)2
B2y21(t)dxdt+ E

∫ 0

−τ̂6

∫
Ω

C1

(1− τ̃)2
B2y23(t)dxdt.

Thus, we have

E[V (x, τqΛT )]

≤ C4 + C5E

∫ τqΛT

0

∫
Ω

(y21 + y22 + y23 + y24 + y25 + y26)dxdt

= C4 + C5

∫ T

0

E[V (x, τqΛT )]dt

where C4 = V (x, 0) + (C1|Ω| + C2 + C3)τqΛT,C5 = C1 +max{ C1

1−τ̃i
, C1B

2

(1−τ̃i)2
)}, i =

1, 2, 3, 4, 5, 6. It follows from Gronwall inequalities that

E[

∫
Ω

(y21 + y22 + y23 + y24 + y25 + y26)]dx ≤ C4e
C5T .

Define

µq = inf{V (t, x), ∥y(t, x)∥ ≥ q}, for q ≥ q0.

Obviously,

lim
q→+∞

µq = +∞.

µqP (τq ≤ T ) ≤ C4e
C5T . Therefore, choosing q → +∞ yields that P (τq ≤ T ) = 0,

that is P (τ∞ > T ) = 1.
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