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Abstract In this paper, an inverse source problem for the Sobolev equation
with fractional Laplacian is investigated. We prove that this kind of problem
is ill-posed and apply the Quasi-boundary regularization method and frac-
tional Landweber iterative regularization method to solve this inverse problem.
Based on the result of conditional stability, the error estimates between the
exact solution and the regularization solution are given under the priori and
posteriori regularization parameter selection rules. Finally, three examples are
given to illustrate the effectiveness and feasibility of these methods.
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1. Introduction

Let © be a bounded domain in RY (N > 1) with sufficiently smooth boundary 99.
In this paper, we consider the following initial-boundary value problem for Sobolev
equation with fractional Laplacian [14]

ug(w,t) — alAug(x,t) + (=A)Pu(z,t) = F(x), z€Q, te(0,T],
u(z,t) =0, z e, te(0,T], (1.1)
’LL(.’E,O) =0, x €9,

where a > 0 is the diffusion coefficient, F'(x) is the source function and u(z,t) de-
scribes the distribution of the temperature at position x and time ¢. The parameter
B is the fractional order of Laplacian operator with 1 < 8 < 2.

Problem (1.1) is a forward problem when the function F(z) is given appropri-
ately. If the source term F'(x) is unknown, use the additional condition

u(z,T) = g(x), z € Q, (1.2)
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to identify the unknown source F'(x). This is an inverse problem. In practical
applications, the input data g(x) is given by measurement and the measured data
g°(z) satisfies

lg(-) = g° ()l < 6. (1.3)

where || - || is the L?(Q) norm and § > 0 is the measurement error.

Fractional order Sobolev equations have been the subject of extensive research
in recent years [2,6,8,12,15,16,26,27]. The researches in this field have focused
on various aspects, including nonlinear problems [13,19], applications [5], and the
properties of the fractional Laplacian operator [11]. The study of these equations
have numerous applications in various fields, including physics, biology, and finance.
The fractional Laplacian operator, an important operator that arises in fractional
order Sobolev equations, has been the subject of recent research, with a focus on
understanding its spectral properties, relationship to other fractional operators,
and applications in various fields. The direct problem of fractional-order Sobolev
equations has garnered substantial attention from a host of researchers in recent
times. In [4], the authors tackled the initial-boundary value problem of Sobolev-
type equation. In [1], the authors set forth foundational criteria for the approximate
controllability of nonlinear impulsive delay integro-differential systems of Sobolev
type, specifically within the fractional order range of 1 < ¢ < 2. Notably, their
exploration extends to showcase the exact null controllability of identical systems
under the stipulated conditions. However, research on the inverse problems of
fractional-order Sobolev equations have been scarce. Therefore, this study will
employ two regularization techniques for solving this equation and validating the
effectiveness of the methods through corresponding numerical experiments.

The inverse problem is solved by the regularization method, such as the Tikhonov
regularization method [18], the modified Tikhonov regularization method [17], the
Landweber iterative regularization method [7], the fractional Landweber iterative
regularization method, the Quasi-boundary regularization method, the Quasi-
inverse regularization method and so on. In [21,22], X. T. Xiong et al. used a
modified Tikhonov method to solve a cauchy problem of the fractional diffusion
equation. In [9,20], T. Wei et al used the boundary element method combined with
generalized Tikhonov regularization method to identify the unknown source and
diffusion coefficient of fractional diffusion equation. In [7], Y.X. Gao et al. used
the fractional Landweber iterative regularization method to study the inverse prob-
lem of the time-fractional Schrodinger equation. In [23,24], F. Yang, et al. used
three regularization methods(Landweber iterative regularization method, fractional
Landweber iterative regularization method, Quasi-boundary regularization method)
to identify the initial value of homogeneous anomalous secondary diffusion equation.
In [25], J.M. Xu et al. used the modified Quasi-boundary regularization method to
identify the initial value of fractional pseudo-parabolic equation.

This paper is divided into six sections. In section 2, we give the solution of
the problem (1.1) and the result of conditional stability. In section 3, we use the
Quasi-boundary regularization method to obtain the regularized solution of the
problem (1.1). In section 4, we give the fractional Landweber iteration regular-
ization method, Landweber iteration regularization method and their convergent
estimations. Several numerical examples are given in section 5. In the final section,
we give a brief conclusion.



200 F. Yang, L. Yan, H. Liu & X. Li

2. The solution of the problem (1.1) and the result
of conditional stability

In this section, we mainly give the uncertainty analysis, the solution of the prob-
lem and the result of conditional stability (1.1). Let A, and x, be the Dirichlet
eigenvalues and eigenfunctions of —A on the domain €, satisfy [10]

Axn(z) = =Apxn(x), 2 € Q,

Xn(x) =0, x € 09,

(2.1)

where 0 < A\ < Mg < -+- < Ay < -+, limy oo Ay = +00 and xp(2) € H?(Q) N
HY(Q), then {x,}52; can be normalized as the orthonormal basis in space L?((2).
For any p > 0, we define the space

17(©) = {6 € )| 3 A1) < ). (2:2)

where (-,-) is the inner product in L?(€2), then HP(Q) is a Hilbert space with the
norm

Il = (D2 X1 xa)2) - (2:3)
n=1

The solution of problem (1.1) is obtained by using characteristic functions, variable
separation method and Laplace transformation

\B
i 1 —e 1+a)\nt
) =3 j ) nl), (2.4)

where F), = (F(z), xn(x)) is the Fourier coefficient. Using u(x,T') = g(z), according
0 (2.4), we obtain

B
= B (1— e T T)
= Z 5 Xn(2). (2.5)
n=1 A"
So )
Fo(l — e i)

: (2.6)

g =

where g, = (g(z), xn(2)) is the Fourier coefficient. So we get the exact solution of

(x
the problem from (2.6)

o Aign
Fz) =)  — "= —xa(@). (2.7)
n=11—¢e Trary L

Lemma 2.1. If 0 < A < X <--- < A\, < ---, then the following inequality holds:

Cl 1 Ap
)\7 < )\7(1 —e 1+a>\,LT)’ (2.8)

M 7
where C; =1 — e a1
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Proof. Consider the following function

We take the derivative of the function ®(z)£-

B4 aP(B-1)
N (1+az)?

' (2) , 2> 0.

So the function ®(z) is strictly monotonically increasing, and we have

)\f < )\g > 1
n .
1+aN  14a),’
Therefore, we get
Cl 1 _ AQ
% < E(l — e Trax 1), (2.9)

Lemma 2.2. Foranyp >0, >0,T >0, and0 < \; < s, the following inequality
holds:
1-% Cop?,0<p<2,
A(s) = ps 7 < 2 P

e (2.10)
Crtps Csp, p=>2,

2—p)C -2
(( ;) 1yl=3

——— > p— 1
(%TP)CH*CH - Cs

where Coy = 7
Ci A

Proof. When 0 < p < 2, due to lim,_o A(s) = 0 and lims_, o, A(s) = 0, then we
obtain

A(s) < sup A(s) < A(s™),

S})\l

where s* is the root of equation A'(s) = 0 and its value is s* = @=p)Ch

pp
Therefore
M((2—p)01)1—g
A(s) S A(s™) = Q,P#— =: Cz/ﬁ- (2.11)
(Tp)01 + Cl
When p > 2
st
(s) = £ = a <—h = Csp. (2.12)

O

Lemma 2.3. Foranyp >0, >0,T >0, and0 < A1 < s, the following inequality
holds:

MSZTTP < C4/LPT+2,O<]9<2,

Bls)=t2 "1 < (2.13)
Cl T s C5M7 D 2 27
2-p
(271)201 4
here Cy 1= ~———tre—, Cs 1= —-5—
where Uy Cl+(2;i)201 ;> &5 )\TTch
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Proof. When 0 < p < 2, due to lims_,o B(s) = 0 and lims_, ., B(s) = 0, then we
obtain
B(s) < sup B(s) < B(s"),

SZAI

where s* is the root of equation B'(s) = 0 and its value is s* = ((2;:’2))6,; L Therefore

2—p

((2—p>01 ) 2
2 P

B(s) < B(s") = ~2© e = Can (2.14)

Ci+ =15

When p > 2,
s

B(s) = L. <t <L~ (2.15)

Crem S o S E

O

Define operator K : f(-) — ¢(-), then problem (1.1) can be transformed into

the following operator equation: K f(z) = g(x), = € 2, where K satisfies K f(x) =
8

>\'IL
g(x) = 0 NP (1 — e s DY Fyxa(2). Obviously, K is a linear self-adjoint
AL
operator, and its singular values are: o, = A\;7(1 — eilﬂﬂnT). Due to g, =
Y
F,-\;P(1—e ™axa ") thus F, = 0, ' - g,. Therefore, we have

o0

B
Flo) =3 —200n (@) (2.16)

n=11—¢e 1+anAnT

From(2.16), we can infer that F'(z) — oo, when n — co. Therefore this problem
is ill-posed. In order to discuss the error convergence, the conditional stability of
the exact solution f(x) is given. Here we assume that F'(x) satisfies the following
priori bound conditions:

1
2

IE( N #e(0) = (Z)\ﬂp| F x| ) < E, (2.17)

where FE and p are both positive constants.

Theorem 2.1. If F(x) satisfies the priori bound condition || f(-)|gro) < E, then
we obtain

1 P
IF()| < O E7= |g()|7=, p>0, (2.18)

where Cy = %
1

Proof. According to the formula (2.7), Lemma 2.1, and the Holder inequality,
we have

IIF(-)II2
—| Z e

1(1—e mT)

Z Azﬁgn

1(1—e mTV
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%

2p44

)\269 p+2

1(1—e WTF

- gn"” P2, 2 o, 2B opt2
< (> ) (W)
n=1 ()\nﬂ(l—e TFarn ))2 n=1
o0 92 2 o0
= Yy SPALS
=l (G (1 - e e s

> o : )7 g ()]

B
=P — e T (AP - e T

= 1 2 2p
) Dy -V pm——— e IO
n=1 (1 — e_ﬁT)p
= 1 2 2p_
SO IN v p——— PO T
(1—e s T)p
37 i 2p_
S Gy ERE|g()]PE, (2.19)

where Cy = % Then we have
1

e _p_
IFC)| < CyEr|g()]|7.

Therefore, we complete the proof of Theorem 2.1. O

3. Quasi-boundary regularization method and its
convergence estimation

In this section, we will use the Quasi-boundary regularization method to obtain the
regularized solution of the problem (1.1). At the same time, we give the Holder
type error estimates between the exact solution and the regularization solution of
the problem. The main idea of the Quasi-boundary regularization method is to add
a penalty to the final data of the original problem to obtain an approximate solution
to the original problem (1.1), i.e., ui(x,T) + pFl‘f(x) = ¢°(x) is used to instead of
u(z,T) = g(z) to get the regularization solution of the problem (1.1), that is, to
solve the following equation

aa“éi‘r’t) - aAauf‘a(f’t) + (=AY (2,1) = Fo(2), z€Q, te(0,T),
ud(z,t) =0, r €0, te(0,T), (3.1)
ud,(z,0) =0, xz €N,

ul(z,T) + pF)(z) = g(z), x € Q,

where > 0 is the regularization parameter. Similarly, the separation of variables
method and the Laplace transform can be used to obtain solution ui(m, t) of formula
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(3.1)

ety = 30 Ll iy ), (3.2)

According to ui(m,T) + /JFi(:E) = ¢g(z), we obtain ui(m,T) =3, (gfl(:r) —

s a
M(F,f(l“))n)Xn(l‘), uz(x,T) =3 (I;“ﬂ)" (1- 671+AM7LT)Xn(w) is derived from the

]
(3.2) formula when t = T. So (Fi(z))n)\gﬁ(l - e_1+AJ3nT) =g (z) - M(Fg(x))n,
thus

Mgl (x
(Pﬁ(x))n = jé( ) . (3.3)
(1—e s D) 4+ Al

Thus, we get the Quasi-boundary regularization solution with error and regulariza-
tion solutions without error

8

Aoge

Fp(x) 5 Xn (), (3.4)
_ B
1 (]_ — e T+axp ) —+ /1')\1'1

Ao gn

n

M

Fu(x) Xn (). (3.5)

n

A
1(1—e e 7Y 4 pd

To recovery the source item F'(x), we need to solve the following integral equation:

(KF)(z) = / k() F(€)de = g(x).

where the kernel function is:
oo B xﬁ T
k(x,6) = > A (1= e a5 ) (@) xn (€)-
n=1

Next, we will give the convergent estimates between the exact and regularization
solutions under the a priori regularization parameter and a posteriori regularization
parameter.

3.1. The convergent error estimate with an a priori parameter
choice rule

Theorem 3.1. Assuming a priori bound (2.17) and a noise assumption (1.3) hold,

then there are

(1) If 0 < p < 2 and the regularization parameter u = (%)ﬁ is selected, then there

is
IFS() = FO)|l < (1+ Co)E7= 6752, (3.6)

(2) If p = 2 and the regularization parameter p = (%)% is selected, then there is

IER() = F()|l < (1+Cs)E24%2, (3.7)
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Proof. By means of a triangular inequality, we have
1FZC) = FOI < IELC) = FuOll + I1EL() = FO)- (3.8)

Let us first give an estimate of the first term. Through (3.4), (3.5), (1.3) and
Lemma 2.1, we obtain

B8 - BN = |3 — 28l —0)
n=1 (1 —e Taxa ) 4 py
_ f: ( A (g% = gn) 2

ISV
1 (1_6 TFarn )+M)‘n

]
<)%
L
Then 5
IF3 () = Fa (Il < o (3.9)
Now let us estimate the second term of equation (3.8). Using (2.13), (2.17), (3.5)

and Lemma 2.2, we can deduce

1F.() = FOI?
> Mg > 2
= Z A8 Z Xn(x)H
n=1 (]_ — e 1+axn ) + /J')\/B n—=1 (1 — e 1+a/\n T)

Aggn Agg

A
(1—e s D) 4 und

S

(1—e e T)

M8 1

3
Il
—

o0

-8 77A?" T -8 77%31 T
Z A" (1 —e  TFexn ) — gp (AP (1 —e” TFexn ) + )
BV
AP0 = T A
9n
A8 '
1 )\;B(]_ — e l+a/\nT) + )\;B

Xn(x)H2

3
Il
-

NG
(1 —e 1+a>\7LT)

A m(ﬂf)”2

NE

3
Il

Y
(1—e maxa 1)

N

[M]8

_ > gn _/1/ 2
- Z A8 ’ AB Xn(2)
=1 P (1—emom D) NPl —e o D) 4p
_ i ( In 2 ju )2
B A Y4
n=1 M\ Pl —emam D) NP1 - e T 4 p
> g 2 L 2
— Z ( n )ﬁp( ) A—Bp
A8 n _ A8 n
n=1 M\ (1 — e T AP —e Ty 4
1—2
( In pAn )

<

3
Il

no

E“( sup A(n))Q,

n>=1

(

A
1021 — e e T

)

Ch

)’

+ u/\ﬁ
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where 51-2)
An 2

A(n) =22

C’1 + M)\n

Applying Lemma 2.2, we obtain
1_2 p P
An 2 1-3 Copnz,0<p<2,
A(n) = - e 2 P (3.10)

CouM G ps+CL Capt, p=2.

Therefore, we have

CoEp%,0<p<2,
[Fu() = F()I < (3.11)
CsEu, p=2.

Combining (3.9) with (3.11), we obtain

) CoEps,0<p<2,
IF2() = FO)Il < = + (3.12)
H C3Ep, p>2.

By choosing the regularization parameters p = (£)77(0 < p < 2) and pu =

(%)% (p > 2), we have the following results.
2 P
(1+Co)Err267r2, 0 < p < 2,
[IHORFACIES L (3.13)
(1+C3)E§5§7 p>2
The proof of Theorem 3.1 is completed. O

3.2. The convergent error estimate with an a posteriori pa-
rameter choice rule

In this section, discrepancy principle is used to select a posteriori regularization pa-
rameter p. The posteriori regularization parameter satisfies the following equation:

ln(E + )" (KF () = g° ()] = 76. (3.14)
Lemma 3.1. Let p(p) := [|n(K + p) " (KFR() = g’ (). If gl > 70 > 0, we
obtain
(a) p(u) is a continuous function;
(b) limy, 0 p(p) = 0;

(¢) im0 p(1) = 19°C)Il;
(d) p(p) is a strictly monotone increasing function for any p € (0, 400).

Proof. The proof of this Lemma is obtained by the expression of

o0 6 .
o) = (S i Yi(g2)H)E.

An
n=1 (1— e Taxa ') 4 pAo
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The following lemmas will be used in the proof of a posteriori convergent esti-
mate.

Theorem 3.2. If expressions (1.3) and (2.17) hold and p satisfies the regularization
parameter selection rule, then

(1) If 0 < p < 2, then the following convergent estimate is obtained

(Cy)? | 2

IE20C) = FOI < (Colr + D)7 4 ()72 EFizgviz; (3.15)
(2) If p > 2, then the following convergent estimate is obtained
1 (C5)% 111
IIF[f(-)—F(-)H<(06(T+1)2+(T_1)2E2527 (3.16)
where Cg = C%
Proof. By means of a triangular inequality, we have
IFZC) = FOI < IELC) = FuOll + I1EL() = FO)l- (3.17)
Let us start by proving the first term of the theorem, which applies (3.9)
5 )
1FL () = Fu()ll < o (3.18)
Using formulas (3.14) and formulas (1.3), we have
= P,
o= > g5 (@)
n=1 (1 — ¢ Taxa ') 4 pAo
= P,
<[> - 298 — 90 ()|
n=1 (1 —e e D) 4 i
[ee]
Y
+ H Z( NG )2ann(x)H
n=1 (1 — e Tasa 1) 4 pAd
<6+ J
A priori boundary condition (2.17) can be used to obtain
i B
UA
T ) S g
n=1 (1— e_1+aAnT) + H/\g
bV
S Y Q™) 1 Me
= H Z( NG )2( B ) Br N An? Xn(x)H
n=1 (1 — efﬁT) + u)\T’BL An Arl (1 — eilJrTnAnT)

< Esup(B(n))?,

n>1
B
__An 1
Where B(n) — ,Ll.)\ﬁ . (1—e I+arxy )) 2 o1
RS 5 Y NS
(1—e” TFaxa T) 1 pnd "
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Applying Lemma 2.1, we have

A3

NS (1—e ™)\ 1
B(n) = ) =
(1—e D) + puAd n Art
A (Lyp Lo e e
Ci+phn X A pN+C

Applying Lemma 2.3, we have

C4MPT+250<p<27

B(n) < (3.19)
C5lu7 p P 2.
So
C2E™,0<p<2,
(ro1)s < 4 (G ERT0<p (3.20)
(05)2E/j/2a p 2 2.
Therefore,
2 —
) ((704)1)ﬁE$5ré,o<p<z,
B - 3.21
14 (05)2 1,11 ( )
(——7)2B=67:,  p>2
.
Substitute (3.21) to (3.18), we have
5 ((04);%15%25%,0@@,
FO-FOI<=-<{ 77 3.22
[1F,:() = Fu()l . (Co) 1 1 (3.22)
( 1>2E252’ p>=2
J—

Now let us estimate the second term of formula (3.17), from (3.5), Lemma 2.1,
Lemma 2.3 and the priori boundary condition of F(z), we obtain

= —pF,\8
[FACERACIEDS R Xn (@)
__An_ B
n=1 (1 — ¢ T¥arn ) + P)\n
o g T 8
l’(‘(l — e TFaxp ) P IU/)\TL p
=|l Z( NG )2 ( N )1 2
TR gl (1 e TR T) 4
MEF,
x X (2)

<1 ()| 72

n=1 (]_ — e_lJrTnAnT)

Wk
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B

UAD _p_

<II( N )2annX(x)H pt2
(1—e e Ty 4 pf

—D

. 8 2
<[ SN Foxa(@) | 7207
n=1

c- A
<> ( — )2(gn — g0)xn (@)
n=1 (1 —e 1+u.n/\nT) +:U’)‘7€
(oo}
A8 » 3 =B
+1 i Pgixn(@))77 E7 OFF
n=1 (1 — e TFarn T) + 1A
T+l » 2 _ p_
< 2 Fpt2z §p+2
<)
Therefore, we have
1 P D p
[1Fu () = FO)II < (C—)ﬁ(rﬂ)ﬁEﬁaﬁ. (3.23)
1

IFS() — F()|| < Co(r + 1) 752 Estzgatz 4 71

2
T—1

(3.24)

where Cg = C%, the proof of Theorem 3.2 is completed. O

In the Quasi-boundary regularization method, we can find the saturation effect
by using the formula (3.7) and (3.16), so in the next section, we use the fractional
Landweber iterative regularization method and Landweber iterative regularization
method to effectively avoid this problem.

4. Fractional Landweber iteration regularization
method and convergent estimations

In this section, we first give the regularization solution of the problem, then give

the rules for selecting the priori regularization parameters and the posteriori regu-

larization parameters, and discuss the Holder type error estimation rules for exact

solutions and regularization solutions under these rules. To identify the source term
F(x), we need to solve the following integral equation:

(KF)(z) := /Q k(e €)F(€)de = g(x), (4.1)

where the kernel function is:
oo ,\,,BL
B(w,€) = Y A (1= e ) xn (2)xn ().
n=1

Because k(z,€) = k(§,x), so K is a self-adjoint operator. According to Theorem
2.4 in Ref. [23],if F € L?(Q), then g € H?(Q). It is easy to know that K : L?(Q) —
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L?(9) is a compact operator. Since X, (z) is a set of orthonormal bases in L?(Q2),
it is easy to know that

on =M1 —e D) n=1,2--- (4.2)

is the singular value of compact operator K. Next, we use the fractional Landwe-
ber iterative regularization method to obtain the regularized solution of the prob-
lem (1.1), which is denoted as F™%(x). Replacing KF = g with F = (I —
a(K*K)WTH)f + a(K*K)WT_lK*g has the following iteration format:

FO%(x) =0,
() = (I - a(K"K) FT (@)
+a(K*K)'T K*¢®(z), m=1,2,3,---, (4.3)

where [ is a unit operator, m is the iterative step number and is also selected as the
regularization parameter, a is called the relaxation factor and satisfies 0 < a < W

Since K is a self-adjoint operator, we denote operator R, : L*(2) — L?*(£2) as
follows

m—1
Rm=ay (I-a(K*K)#)"(K*'K)T K*,0<y<1, m=1,2.3,--.

n=0
Remark 4.1. When v =1, R,, is defined as follows:

m—1
Rm=0aY (I-aE*K)"K*, m=123,--. (4.4)

n=0

As can be seen from the literature [23], formula (4.4) is a Landweber iteration
regularization operator, which is recorded as

mq— 1
mlfaz I—a(K*K))"K*, m;=1,2,3,---. (4.5)
Through calculating, we get

F™(2) = Ryngh = a Y (I = a(K*K)™% ) (K*K)™> K* g} (x). (4.6)

Using (4.3) and the singular value o,, of operator K, we get the fractional Landweber
iteration regularization solution

B
i 1—(1—a(\f(1— e o Tyyrttym

F™o (g InXn (), (4.7)

\B
n=1 _'8(1 —e 1+a>\nT)

by
where g = (¢°(z), xn(z)). Because o, = A\ (1 — e” Taxa 1) is the singular value

bY
of operator K and 0 < a < W, we can get 0 < a(A\;7(1 — e Taxa )7+l < 1,
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4.1. The convergent error estimate with an a priori parameter
choice rule

Theorem 4.1. Suppose (1.3) and (2.17) hold. The exact solution of problem (1.1)
is formula (2.7) and the corresponding fractional Landweber reqularization solution

is given by (4.7). The regularization parameter is chosen by m = [b], where b =
2(y+1)
% "™ Then we obtain the following convergent error estimate:
[F™0() = F()| < CrE72 8752, (4.8)

where [b] denotes the largest integer less than or equal to b and Cy := m% + Cs is
positive constant.

Proof. By applying the triangular inequality, we can get
IE™0() = FON < IF™C) = F™ O + [IF™() = F()]- (4.9)

For the first part on the right side of equation (4.9), using equation (1.3) and
Bernoulli inequality, we have

bV
m m — 1- (1 — a(/\’r_L,B(l — e*mT))'y-&-l)m
|0y = P = 32 9 xn ()
n=1 /\;ﬁ(l — e TTaxy T)

N:
21— (1 —a(M\;P(1 — e Tax T))ritym 2
B vl i) s
_5 __An T
n=1 An (1—6 TfaXn )

B

(95— gn)xn(a)|

B
n=1 )\’;ﬁ(l _ e_l-F/\Tn/\nT)
s 7)\74?’ m
_ Z (1-(1- a(/\;ﬁ(l —e 1+ax,LT))v+1) )2 (95 ., )2
B n n
n=1 AP - e_lﬁziﬂX“T))2
8
_ i (1—(1—a(A\?(1 - e*ﬁf’&nT))wﬂ)m)ﬁ(wl) ( 5 )2
-B 7A7£3LT 2 (v41) In—9n
n=1 (>\n (1 — e ltain ))'v+1
A8 5
= (1 —(1—a(;”? 1 — ¢~ TFasn D)) r+H1ym) 557
<y b T (65— gu?

-8B _ Ap T\ =2 (v+1)
n=1 (A7 (1 — e Taxn 2 ))7+1 Y

(95 — gn)

Ap
< i (am(A P (1 — e~ T 1)) 7
~

B
n=1 (A1 — e T)) 0D
oo

=7 MY (g — gn)’

n=1

2 2
22 o9
<av I maFT .

So we obtain
|F78() — ()| < aFim e, (4.10)
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On the other hand, using (2.17), we obtain

ﬁ
. S a0 (1= e T Ty
HF ( - ”2 Z \B ann(x)
n—1 An *3(]_—6 1+aan)
1
- )\[3 ann<$)||2

AP — e~ T

5
[ (1 —a(A (1 —emmasnT)rthm) — 1
=|l Z =z nxn (@)
n=1 A ﬁ(l _ e_ﬁT)
3
o0
—(1—a(\P(1—e i Tyyrtrym
=| Z NG ann(x)H2
n=1 AP (1= e

Y
. - (1—a(\;5(1 - e*mT))WH)zm )
B Z AS In
n=1 ()\T_Lﬁ(l _ e*mT))Q

=3 a0 T B ) )

n=1
< (1— a(ﬁ))'y+l 2m
<> A)\nﬂp ) BN
n=1 n
(oo}
< sup . F2)\5p
< sup (D(\n))*E?,
n>N
(1-a(FN7Hh)
where 07:1*6_1%,D()\n) — AELT

(1—a(SE)rHhHm

Let G(s) :=

S
Suppose sg satisfies G’ (so) = 0, we have

, 5= \5,

n

D 1

So = 1+~
(aciﬂ(p +2m(1+ 7))
Then
G( ) G(So)
(1 (%7)7“)
ya
6
<syt
= (17 p Bl
aC; 7 (p+2m(1+ 7))
B B SR -
(a071+7) (p+2mv+2m)
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P
< Cy - 2047
()
where Cs = (—) 70,
Therefore, w7e have
1 P
IF™() = F()| < DOn)E < G(S)E < Cs(——) T80 E. (4.11)
Yy+m
2(1:_?)
Combining (4.10), (4.11) and (4.12), if the regularization parameter m = [(% ]
is selected, then
||Fm’5(~) —FO)| < aﬁEﬁgﬁ 4 CgEﬁ(S# = C’gEﬁéﬁ, (4.12)
where Cy = a I+ Cs.
The proof of Theorem 4.1 is completed. O

4.2. The convergent error estimate with an a posteriori pa-
rameter choice rule

In this section, we give the posteriori error estimation and the selection criteria of
posteriori regularization parameters should be satisfied:

IEE™() = ¢° ()]l < 74, (4.13)

when m = m(0) first appears, the iteration stops, where ||g°|| > 7.

Lemma 4.1. Let p(m) = ||[KF™°(-) — ¢°(")||, then we have the following conclu-
stons

(a) p(m) is a continuous function;
(b) limy,_,o p(m) = 0;
(¢) limy, 100 p(m) = [|g°]l;

(d) p(m) is a strictly increasing function for any m € (0, +00).

Proof. The proof of this lemma is obtained by the following expression:

© — e_%T %
plm) = (301 = a7

O

Remark 4.2. According to the Lemma 4.1, the uniqueness of m is selected by
the method of formula (4.13).

Lemma 4.2. Assume the priori condition (2.17) and the noise assumption (1.3)
hold. For fized T > 1, if we choose the regqularization parameter by using Morozov’s
discrepancy principle (4.13), then the regularization parameter m = m(9) satisfies
1 2040 p+2 FE 26+

p+2 2

— (=) T, 4.14
T—1 Zafny'H((S) ’ ( )

m < (
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Proof. Due to (4.7), we obtain

o 11— (1 _ a(lfenfT”an)”“)m
Rug=3" goxn (@) (4.15)
n=1 1—e ;\Eaan
and _ e
1K Rong = gl = S (1 = a2, (4.16)
n=1 n

s
Due to [1 — a(/\iﬁ)%k” < 1, we obtain [[KR;,—1 — I[| < 1. On the one
1—e TFasn T
hand, it is not difficult to find that m is the minimum satisfying | K R,,¢° — ¢°|| =
| K fm™9 — g°|| < 76. Therefore,

|KRm-19 — gl = |KRm-19 — KRy 19" + KRyn_19° — ¢° + ¢° — g|

> |KRm-19° — ¢°ll = |(KRpm—1 = I)(g° — g)|

> 76— |K Ry — 16 (4.17)
>716—0

= (1 —1)é.

On the other hand, by using (2.17) formula, we obtain

||KR7rL 19 — gH2

_IIZ (1— (1—a(1_e;ﬁ+m )WH) )ann Zann
131 a(le;g“))m)m‘l)%xnwﬂ
n=1

B

°° 1 e T\ vy mo1y 2 1 71+>\T%T 2
S ((me) ) ) gy )

n=

—

H?(\,)E?,

/AN
S
jar]
Vg

AL AL
AT\ T\ m—1 —IAA—T\ _ =Bp
where H(\,) = (1 - a(ﬁ) ) ) (%))\,ﬁ .

From Lemma 2.1, we can obtain

HO\) < (1 B a(i%>7+1)ml/\nﬁ(§+l).

Set L(s) := (1 - a(C’ls)H—l)m ' EREDNPEE

Suppose sg satisfies L' (sg) = 0, we obtain

p+2 )ﬁ

0o <<2<m —1)(v+ 1) +p + 2)aCy !
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Then we have

L(s) <L(so)

1

2 S\l me1
:(1_a(01((2(m—1)(7f$+p+2)aCI’+1) ) )

2 747\ (5+D)
. (((2(m1)(7f1+)+p+2)a03+1) ) )

<(( p+2 )ﬁ)(%ﬂ)
“\\@2m—-1)(y+1) +p+2)aC] !
p+2
S(#Cf)w 2(w++1)_
That is
(r—1)5 < (#&H)%m*%ﬂ (4.18)

From the formula (4.18), we can get

1 264  p+2 FE 2641
) P2

1" 2ay(Cy )Y L6

m < (

The proof of Lemma 4.2 is completed. O

Theorem 4.2. The exact solution of the problem (1.1) is given by (2.4), the frac-
tional Landweber iterative reqularization solution F™°(z) is given by (4.7). The
regularization parameter m = m(9) is obtained by the iteration stop criterion (4.13),

then we obtain , .
|[F™() — F()|| < CroE7+2 55+, (4.19)

here Cro i= (=) 577 —2¥2 )T 4 (0)) 77 (7 + 1) 72 is positi
where C1o := ((7=7) P72 gGyr) 771 + (C1) 772 (1 4 1) %2 is positive constant.
Proof. Using the triangle inequality, we have
IE™2() = FOI < IF™ () = Fm Ol + [F™() = F()ll.- (4.20)
From Lemma 4.2 and (4.10), we have
IE™2 () = F™ ()|

<a ™ Imite (4.21)
1 1 204D p+2 1 2 _p
p+2 ¥+ Fpt2 yp+2,
T—1 Qafy(Cl)VH)

For the second term on the right side of (4.20), we have

__AR g
1 — e TFarxn

K(F"() = F() =Y (1= a(———5——)")"g,xn(x)

n:l n
N
> 1—e Taxa
=) —(1- a(/\iﬂ)”“)m(gn — go)xn(x)  (422)
n=1 n

T
£30—(— a—)) ghv a).



216 F. Yang, L. Yan, H. Liu & X. Li

According to (1.3) and (4.13), we can get

[K(F™() = FO)) < (r+1)6. (4.23)
Due to
0 1—e" 1+/\aﬁxn T /\2ﬁ92 1
IF™ () = F()lar ) = O (1 — a(——5——)"")* " —=—— )3
A —2n_p

n=1 n (1—6 TTaxy, )2

- N an 1
<QUAMr———)"

n=1 (1 — e 1+u.n>\nT>2
= NIrED?

n=1
< FE.

Using Theorem 2.1, we obtain
IF™() — F()|| < (C1)72 (1 + 1) 72 Bz o752, (4.24)

Combining (4.20), (4.21) and (4.24), we obtain

|0 () — F()|| < CroE72 7%, (4.25)
(v+1) —p »
where Cg := ((i)%%)ﬁ () (4 1) -

5. Numerical implementation

In this part, we use three numerical examples to prove the effectiveness and feasi-
bility of Quasi-boundary regularization method and fractional Landweber iterative
regularization method. Let £2 = (0,1), T =1, a = 0.5. First of all, we obtain the
final data g(x) by solving the following forward problem

u(w,t) — alAug(z,t) + (=A)Pu(z,t) = F(x), z€Q, te(0,T],
ul, ) = 0, reon, te (0,1,  (5.1)
u(z,0) =0, x €,

with the given data F(z). We define
t,=27(2=0,1,...,N), z; =jh(j=0,1,---, M), (5.2)

where 7 = % is the step size of temporal direction and h = ﬁ is the step size of
spatial direction.
Next we will use the finite element difference method to carry out numerical
experiments. First, the forward Euler scheme for the u; is as follows:
ouk kTt ok

I 1 7

ot T
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The Laplace operator difference scheme of one-dimensional integer order is as

follows

k+1 k+1 k+1 k
Al LUy — 2u +u11—ul+1+2u —u; 4
(ui )t - h2 N

The difference format of a one-dimensional fractional Laplace operator is as follows
[28]
(—A)°U = C1,25BU,

where C s = %, B is a strictly diagonally dominant and symmetric positive

definite matrix. B £ (h)%);ll , and

(Dt )+ Zalip) 2y 1<pie
h—2s
22
h—25
22

1

—Zy(i,i—1), p=i—1,

Sa
<
(1>

— Z3(i,i+2), p=i+]1,

and h; ; satisfies
h=%  Zy(i,M +1)
" 2—2s M+1—1
Z1Gi,1)  Za(i, M +1)
hii + hi,y v ’ ’ 7
p_lz,;# =) T
h L Z(0,)
2—2s i
where Z1(i,k) = 75 fr (zx —y) (s — ) > dy, Zo(is k) = #f;:fl (y — zx) (w;—

1 Tk

y)“*dy, Zs(i k) = h12 : (zr —y) (y—xz‘)izs dyv Z4(i k) = 72 Th_1 (y — zk-1)

X (y =) 2 dy and Yi(i) = [° oty Yo() = [ o dy-
Through simple calculation, there are the followmg results

1=1

) )

2<i< M1,

i= M,

—2s
mmli —plP —(li—pl = )P — (i —p|+ 1)>%], s £0.5,

- %[*QIFPIIH(IFPI)+(Ii*pl+1)1n(|i*p\+1)
+(li =pl =) In(ji = j[ = 1)], s =0.5,

Zs(iyi—1)
= Z3(i,i + 2)
h—2s

B e G2 s £ 05,

1
E[anQf 1], s =0.5,
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25 22 (1
i (25 = 1)(2 - 2s) ‘
Z1(i,1) Hui)ln (Z_%l>+1] s =05,
Zy(i, M +1)

=
(2s — 1)(2 — 29)
X [(M+1—10)*2 — (M

1 M41—i

E[(z—M)]ln (]V[z) +1] , §=10.5,
\—2s — 2 —2s

v = S vy = L)

Arrange the above formulas to get the matrix B.

—(2-25)i"7*], s #0.5,

—i)27% (2 28)(M +1—4)'"2], 5 #0.5,

It is worth noting that the difference format of the fractional order Laplace

operator is for the difference format of order 0-

1, but when studying the error

estimation, the differential format can converge to the (3 —28) order, so in the later
numerical experiments, we give numerical simulation results of order 1.1, 1.2, 1.3.
Therefore, we establish the difference format corresponding to the equation (5.1)

(A+BU™ = AU + F,
where Ul:i= (ul,ub,ub, - - -7u§\4+1)7i =0,1,2,-- - M, F := (F(z1), F(z2), F(z3),
'7F(xM+1))7
0
Awrsyxoeen) = | Ao
0
Bip41)x(v+1) = Bvr—1yxar-1)
in which
%—’_ 7'2I$2 _7;712
b E ok
Awr-vx-n = —ddE T
—
—hr ot e

By differentiating the function, we can get the numerical solution of the function
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through the following iterative format,

(A+BU = AU+ F, 2<i<N,
(A+B)U!=F.

On the basis of the above iterative format, the numerical solution corresponding to
the function and the value of the g(z) function can be obtained by using Matlab
software. For the inverse problem, when applying the Quasi-boundary regulariza-
tion method and fractional Landweber iterative regularization, we need to obtain a
matrix K that satisfies Kf = UN = ¢, i.e.,

K'=(A+B)™,
K'=(A+B) (K" '+1I), n=2,---,N,
K=KV,

Finally, the Quasi-boundary regularization solution is obtained by the following
formula:
1
FO(g) — 5
/,L(I> K+‘ug )

and the fractional Landweber iteration regularization solution is obtained by the
following formula:

y—

m—1
Fd—ay” (I - a(K*K)”T“) (K*K)'7 K*g°.
n=1

By adding random perturbation to noise data g(x) , the data with errors are ob-
tained,

¢’ = g + ¢ - rand n(size(g)),

where the function randn(-) produces a list of random numbers with a mean of 0
and a variance of 1. The priori regularization parameter is based on the smooth con-
ditions of the exact solution, which is actually difficult to give in practical problem.
The following examples demonstrate the validity of the Quasi-boundary regulariza-
tion method and the fractional Landweber iteration regularization method based
on a posteriori regularization parameter selection rule.

For the selection of parameter p, we have given it in (3.14) with 7 = 1.01. For
the parameter selection corresponding to the fractional order Landweber iterative
regularization method, we select v = 0.1, and the selection of the iteration step m
is also given by formula (4.13). Select M = 100, N = 50. We give the following
three examples.

Example 5.1. Consider the piecewise smooth function

F(x) =
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Figure 1. The comparison of the exact solution F(z) and its Quasi-boundary regularization method
approximation solution F™%(z) of Example 5.1 with 8 = 1.1(a), 1.2(b), 1.3(¢) for € = 0.01,0.005, 0.001.

The exact solution F(x) and its approximations
The exact solution f(x) and its approximations
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Figure 2. The comparison of the exact solution F(z) and its Quasi-boundary regularization method
approximation solution F°(z) of Example 5.2 with 8 = 1.1(a), 1.2(b), 1.3(c) for € = 0.01, 0.005, 0.001.

Example 5.2. Consider a non-continuous function
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The exact solution F(x) and its approximations
The exact solution F(x) and its approximations

(@ x ' ) o

The exact solution F(x) and its approximations

(c) .

Figure 3. The comparison of the exact solution F(z) and its Quasi-boundary regularization method
approximation solution F™?(z) of Example 5.3 with 8 = 1.1,1.2,1.3 for € = 0.01,0.005, 0.001.
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o

The exact solution F(x) and s approximations

°

(a) * (b) x

-
=

I

The exact solution F(x) and its approximations
o o o
288 «

°

(c) .

Figure 4. The comparison of the exact solution F(z) and its fractional Landweber iterative reg-
ularization approximation solution F™?°(z) of Example 5.1 with 8 = 1.1(a),1.2(b),1.3(c) for e =
0.01,0.005,0.001.

Example 5.3. Consider the smooth function
F(z) = sin(37z).

Figures 1-3 show the error between the exact solution F(z) and the Quasi-
boundary regularization approximation solution F 3(90) Figure 1 shows the exact
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The exact solution F(x) and its approximations
The exact solution F(x) and its approximations

(@ x ) o

The exact solution F(x) and its approximations

(c) .

Figure 5. The comparison of the exact solution F(z) and its fractional Landweber iterative reg-
ularization approximation solution F™?°(z) of Example 5.2 with 8 = 1.1(a),1.2(b),1.3(c) for & =
0.01,0.005, 0.001.

The exact solution F(x) and its approximations
The exact solution F(x) and its approximations

(a) * (®) .

The exact solution F(x) and its approximations

(c) .

Figure 6. The comparison of the exact solution F(z) and its fractional Landweber iterative reg-
ularization approximation solution F™?°(z) of Example 5.3 with 8 = 1.1(a),1.2(b),1.3(c) for & =
0.01,0.005, 0.001.

solution F(x) and the Quasi-boundary regularization approximation solution F:f (2)
of Example 5.1 for the relative error levels € = 0.01,0.005,0.001 with various values
g =1.1,1.2,1.3. Figure 2 shows the exact solution F(z) and the Quasi-boundary
regularization approximation solution Fg (z) of Example 5.2 for the relative error
levels e = 0.01, 0.005,0.001 with various values § = 1.1,1.2,1.3. Figure 3 shows the
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exact solution F'(z) and the Quasi-boundary regularization approximation solution
Fg (z) of Example 5.3 for the relative error levels ¢ = 0.01,0.005,0.001 with various
values § =1.1,1.2,1.3.

Figures 4-6 show the error between the exact solution F(x) and the Frac-
tional Landweber iterative regularization approximation solution F™9(x). Fig-
ure 4 shows the exact solution F'(z) and fractional Landweber iterative regular-
ization approximation solution F™?(x) of Example 5.1 for the relative error levels
e = 0.01,0.005,0.001 with various values 8 = 1.1,1.2,1.3. Figure 5 shows the exact
solution F'(z) and the fractional Landweber iterative regularization approximation
solution F™9(x) of Example 5.2 for the relative error levels ¢ = 0.01,0.005,0.001
with various values 8 = 1.1,1.2,1.3. Figure 6 shows the exact solution F'(x) and
the fractional Landweber iterative regularization approximation solution F°(z)
of Example 5.3 for the relative error levels ¢ = 0.01,0.005,0.001 with various values
B=1.1,1.2,13.

From above six figures, we find that for the same example, the smaller ¢ and
a, the better the fitting effect between the exact solution F'(z) and the regulariza-
tion solutions. For different examples, the fitting results of functions with better
smoothness are better than those with worse smoothness.

With the same error, fractional Landweber iterative regularization fits better
than Quasi-boundary regularization method for non-smooth functions and piece-
wise functions, and Quasi-boundary regularization method gets better fitting re-
sults than fractional Landweber iterative regularization for smooth functions.

In addition, limited by the difference format of the fractional order Laplace op-
erator, the smaller the order of Laplace, the better the numerical fitting effect, and
the author will look for a better differential format of the fractional order Laplace
operator in the next study.

6. Conclusion

The problem of inverting the source item of Sobolev equation with fractional Lapla-
cian is studied. The regularization solutions are obtained by Quasi-boundary regu-
larization method and fractional Landweber iteration regularization method. Based
on the conditional stability result, the corresponding error estimates are obtained
under the rules for selecting a priori regularization parameter and a posteriori
regularization parameter. Three numerical examples are given to demonstrate
the effectiveness, stability and superiority of our proposed regularization meth-
ods. Moreover, through the error estimations of the two methods, we find that
the Quasi-boundary regularization method has a saturation effect, while the frac-
tional Landweber iterative regularization method can avoid the saturation effect.
In terms of numerical simulation, the Quasi-boundary method can obtain numerical
results more quickly, but the corresponding results are poor, while the Landweber
method needs to be continuously iterated to obtain better simulation results, and
the numerical results are better than the Quasi-boundary method.
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