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Abstract A partially degenerate reaction-diffusion system with advection
term and free boundary conditions is investigated in this paper. Firstly, we
present a spreading-vanishing dichotomy for the asymptotic behavior of so-
lutions of the system. Then, we obtain criteria for spreading and vanishing.
Moreover, numerical simulation is given to illustrate the theoretical results.
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1. Introduction

In the past decades, quite a few reaction-diffusion systems in which some but not
all diffusion coefficients are zeroes called partially degenerate reaction-diffusion sys-
tems, have been introduced to give an accurate description of a wide variety of phe-
nomena in population biology, epidemiology, and so on. Capasso and Maddalena [3]
introduced an epidemic reaction-diffusion model to study the fecally-orally trans-
mitted diseases in the European Mediterranean regionsut = duxx − au+ cv,

vt = −bv + g(u).
(1.1)

Zhao and Wang [43] established the existence of wavefronts and a minimal wave
speed of (1.1) with monostable nonlinearity. Xu and Zhao [34] proved the exis-
tence,uniqueness and stability of traveling front of (1.1) with bistable nonlinearity.
Wu [33] constructed some new entire solutions for (1.1) with bistable nonlinear-
ity, which behaves like two increasing traveling wave solutions propagating from
both sides of the x-axis and annihilating at a finite time. Hadeler and Lewis [14]
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presented the following reaction-diffusion systemut = duxx + f1(u)− γ1u+ γ2v,

vt = γ1u− γ2v,
(1.2)

which describes a species population where the individuals alternate between mobile
and stationary states, and only the mobile reproduce. Zhang and Zhao [38] con-
sidered the asymptotic behavior of solutions of (1.2). Further, Zhang and Li [39]
established the monotonicity and uniqueness of traveling wave solutions of (1.2).
Fang and Zhao [8] studied the traveling fronts and spreading speed of the following
general partially degenerate reaction-diffusion systemut = duxx + f1(u, v),

vt = f2(u, v).
(1.3)

Zhang et al. [37] considered a class of partially degenerate nonlocal diffusion systems
with free boundaries. Chen et al. [4] discussed a partially degenerate epidemic model
with time delay and free boundaries.

Recently, the free boundary condition has been considered in more and more eco-
logical models to let the description of a gradual spreading process be more close to
the reality. For example, we refer to [2,7,18,19,46] for single-species models. More
works related to the system can be found, such as [12,13,30] for Lotka-Volterra com-
petition systems, [21, 35, 40] for predator-prey systems, [27, 31, 41, 47] for epidemic
models and [20, 26, 36] for other models. Wang and Cao [29] studied the spreading
frontiers of (1.3) with free boundary. It is shown that a spreading-vanishing di-
chotomy holds, and the sharp criteria for the spreading and vanishing are obtained.
Choi and Ahn [6] considered non-uniform dispersal of logistic population models
with free boundaries in a spatially heterogeneous environment. They observed that
the spreading-vanishing dichotomy and the asymptotic spreading speed of the mov-
ing front is uniquely determined in relation to the semi-wave speed. Ahn et al. [1]
investigated the free boundary problem of a man-environment-man epidemic model:
f1(u, v) = −au− cv and f2(u, v) = −bv +G(u). Kaneko et al. [16, 17] investigated
the Stefan problem of nonlinear diffusion equation (x ∈ Ω(t) ⊂ RN ) with positive
bistable nonlinearity.

Normally, diffusion of particles in physics is random and obeys Fick’s law. How-
ever, species in population dynamics or diseases in epidemiology diffuse differently
owing to their initiative behaviors and activities. Some species or diseases prefer to
move in one direction because of appropriate climate, food, wind direction, etc. For
example, Maidana and Yang [23] studied the spread of West Nile virus (WNv) in
North America. West Nile virus appeared for the first time in New York city in the
summer of 1999. In the second year the wave front traveled 187km to the Northand
and 1100km to the South, it spread across almost the whole America continent till
2002. Therefore, the propagation of WNv from New York city to California state is
a consequence of the diffusion and advection movements of birds. Especially, bird
advection becomes an important factor for lower mosquito biting rates. Recently,
there are some works considering the advection. Gu et al. [9, 10] was the first one
to consider the long-time behavior and the asymptotic spreading speeds of the free
boundary problem with Fisher-KPP type and small advection. Gu et al. [11] further
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studied the long time behavior of solutions of Fisher-KPP equation with advection
β > 0 and free boundaries. For a single equation with advection, there are many
other works [15,24,32,44]. Besides, there are also several works devoted to the sys-
tem with small advection [5, 28, 45]. Zhao et al. [42] considered the free boundary
problem with the advection based on [1].

Inspired by the work [29], we consider the following reaction-advection-diffusion
system with general reaction functions

ut = duxx − βux + f1(u, v), g(t) < x < h(t), t > 0,

vt = f2(u, v), g(t) < x < h(t), t > 0,

h′(t) = −µux(h(t), t), t > 0,

g′(t) = −µux(g(t), t), t > 0,

u(0, x) = u0(x), v(0, x) = v0(x), −h0 ≤ x ≤ h0,

h(0) = −g(0) = h0,

(1.4)

where d, β, µ and h0 are positive constants, x = h(t) and x = g(t) are moving
boundaries to be determined. The initial functions u0(x), v0(x) ∈ Σ(h0) for some
h0 > 0, and

Σ(h0) :={ϕ ∈ C2([−h0, h0]) : ϕ(−h0) = ϕ(h0) = 0, ϕ′(h0) < 0,

ϕ′(−h0) > 0, ϕ(x) > 0 in (−h0, h0)}.

For convenience, we denote ∆ := f1u − f1vf2u
f2v

. Throughout this paper, we assume
that the following holds for f1, f2 and β

(i) fi ∈ C1(R2
+,R)(i = 1, 2), ∂f1(u,v)

∂v > 0, ∂f2(u,v)
∂u > 0, f1(u, v) ≤ f1uu + f1vv,

f2(u, v) ≤ f2uu + f2vv, where f1u := ∂f1(0,0)
∂u , f1v := ∂f1(0,0)

∂v , f2u := ∂f2(0,0)
∂u ,

f2v := ∂f2(0,0)
∂v < 0;

(ii) there exist K1,K2 > 0 such that for any M1 ≥ K1,M2 ≥ K2, there exist
M̄1 ≥ M1, M̄2 ≥ M2 such that f1(M̄1, M̄2) ≤ 0, f2(M̄1, M̄2) ≤ 0;

(iii)

0 < β < β∗ =

2

√
d(f1u − f1vf2u

f2v
), ∆ > 0,

∞, ∆ ≤ 0.

2. Some basic results

Firstly, we present the existence and uniqueness of the solution by the contraction
mapping theorem.

Lemma 2.1. For any initial value (u0, v0) ∈ Σ(h0) and any α ∈ (0, 1), there exists
a positive number T such that problem (1.4) admits a unique solution (u, v; g, h),
which satisfies

(u, v; g, h) ∈ C1+α,(1+α)/2(GT )× C(GT )× (C1+α/2((0, T ]))2,
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moreover,

∥u∥C1+α,(1+α)/2(GT ) + ∥v∥C(GT ) + ∥g, h∥C1+α/2((0,T ]) ≤ C,

where GT := {(x, t) ∈ R2 : x ∈ [g(t), h(t)], t ∈ [0, T ]}, the constants T and C only
depend on h0, α, β, ∥u0∥C2([−h0,h0]) and ∥v0∥C2([−h0,h0]).

Proof. The free boundary problem is transformed into a fixed boundary problem
by making a transformation. Let

y =
2x− g(t)− h(t)

h(t)− g(t)
,

w(y, t) = u(
(h(t)− g(t))y + g(t) + h(t)

2
),

z(y, t) = v(
(h(t)− g(t))y + g(t) + h(t)

2
).

Then (1.4) can be transformed into the fixed boundary problem

wt − dρ2(t)wyy + (βρ(t)− ξ(y, t))wy = f1(w, z), −1 < y < 1, t > 0,

zt − ξ(y, t)zy = f2(w, z), −1 < y < 1, t > 0,

w(±1, t) = z(±1, t) = 0, t > 0,

w(y, 0) = u(h0y, 0), z(y, 0) = v(h0y, 0), −1 ≤ y ≤ 1,

where

ρ(t) =
2

h(t)− g(t)
, ξ(y, t) =

h′(t) + g′(t)

h(t)− g(t)
+

h′(t)− g′(t)

h(t)− g(t)
y.

Similar to Theorem 1.1 in [22], the unique local solution is obtained by constructing
a contraction map.

Lemma 2.2. Let (u, v; g, h) be a solution of problem (1.4) for t ∈ [0, T ] for some
T > 0 , then there exist constants C1, C2 independent of T such that

0 < u(x, t), v(x, t) ≤ C1, for (x, t) ∈ (g(t), h(t))× (0, T ],

0 < −g′(t), h′(t) ≤ C2, for t ∈ (0, T ].

Proof. Since the system is cooperative and u0, v0 ≥ 0 are nontrivial, we have
u, v > 0 for (x, t) ∈ (g(t), h(t)) × (0, T ]. Using the strong maximum principle, we
immediately obtain ux(h(t), t) < 0 and ux(g(t), t) > 0. Then h′(t) > 0,−g′(t) > 0
in (0, T ].

Set M1 := max{K1, ∥u0∥C2([−h0,h0])},M2 := max{K2, ∥v0∥C2([−h0,h0])}, then
there exist M̄1 ≥ M1 and M̄2 ≥ M2 such that f1(M̄1, M̄2) ≤ 0, f2(M̄1, M̄2) ≤ 0.

Define

L1 := max
DT

{u(x, t)}, N1 = max{max
D

∂

∂z
f1(z, w),max

D

∂

∂w
f2(z, w), 0},

and

L2 := max
DT

{v(x, t)}, N2 = max{max
D

∂

∂w
f1(z, w),max

D

∂

∂z
f2(z, w)},
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where DT = {(x, t) ∈ R2 : x ∈ [g(t), h(t)], t ∈ [0, T ]} and D = {(z, w) ∈ R2 : 0 ≤
z ≤ max{M̄1, L1}, 0 ≤ w ≤ max{M̄2, L2}}.

Set
(U(x, t), V (x, t)) = (M̄1 − u(x, t), M̄2 − v(x, t))e−(N1+N2)t,

then

f1(u, v) =f1(M̄1 − Ue(N1+N2)t, M̄2 − V e(N1+N2)t)

=f1(M̄1, M̄2)−
∂

∂u
f1(ξ1(x, t), ξ2(x, t))Ue(N1+N2)t

− ∂

∂v
f1(ξ1(x, t), ξ2(x, t))V e(N1+N2)t,

and

f2(u, v) =f2(M̄1 − Ue(N1+N2)t, M̄2 − V e(N1+N2)t)

=f2(M̄1, M̄2)−
∂

∂u
f2(γ1(x, t), γ2(x, t))Ue(N1+N2)t

− ∂

∂v
f2(γ1(x, t), γ2(x, t))V e(N1+N2)t,

where ξ1(x, t), γ1(x, t) are between u(x, t) and M̄1, and ξ2(x, t), γ2(x, t) are between
v(x, t) and M̄2. It follows that

Ut − dUxx + βUx

≥ ∂

∂u
f1(ξ1, ξ2)U +

∂

∂v
f1(ξ1, ξ2)V − (N1 +N2)U, x ∈ (g(t), h(t)), t ∈ (0, T ],

Vt ≥
∂

∂u
f2(γ1, γ2)U +

∂

∂v
f2(γ1, γ2)V − (N1 +N2)V, x ∈ (g(t), h(t)), t ∈ (0, T ],

U(x, t) = M̄1e
−(N1+N2)t, V (x, t) = M̄2e

−(N1+N2)t, x = h(t) or g(t), t ∈ (0, T ],

U(x, 0), V (x, 0) ≥ 0, x ∈ [−h0, h0].

We now claim that min{U(x, t), V (x, t)} ≥ 0 in DT . Otherwise, there exists
(x0, t0) ∈ DT such that

min{U(x0, t0), V (x0, t0)} = min
(x,t)∈DT

min{U(x, t), V (x, t)} < 0.

Assume that U(x0, t0) = min{U(x0, t0), V (x0, t0)} < 0, then U(x, t) attains its
minimum at (x0, t0) ∈ DT , then

Ut(x0, t0)− dUxx(x0, t0) + βUx(x0, t0) ≤ 0.

On the other hand, we get

∂

∂u
f1(ξ1, ξ2)U(x0, t0) +

∂

∂v
f1(ξ1, ξ2)V (x0, t0)− (N1 +N2)U(x0, t0)

≥ ∂

∂v
f1(ξ1, ξ2)V (x0, t0)−N2U(x0, t0)

> 0,

which leads a contradiction. Similarly, if V (x0, t0) = min{U(x0, t0), V (x0, t0)} < 0,
then V (x, t) attains its minimum at (x0, t0) ∈ DT , which leads a contradiction
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again. Then min{U(x, t), V (x, t)} ≥ 0 inDT . Hence, we obtain 0 < u(x, t), v(x, t) <
C1,where C1 := min{M̄1, M̄2}.

It remains to be shown that −g′(t), h′(t) ≤ C2 in (0, T ]. The proof is similar to
that of Lemma 2.2 in [7].

Since the boundedness of u, v, g and h, the global solution is guaranteed.

Theorem 2.1. The solution of (1.4) exists and is unique for all t ∈ (0,∞).

Now we give two comparison principles, which can be proven by the similar way
of Lemma 2.5 in [1].

Lemma 2.3. Assume that T > 0, ḡ, h̄ ∈ C1([0, T ]), ū ∈ C(D̄)∩C2,1(D), v̄ ∈ C(D̄)∩
C0,1(D)with D = {(x, t) ∈ R2 : ḡ(t) < x < h̄(t), 0 < t ≤ T}, and

ūt ≥ dūxx − βūx + f1(ū, v̄), ḡ(t) < x < h̄(t), 0 < t ≤ T,

v̄t ≥ f2(ū, v̄), ḡ(t) < x < h̄(t), 0 < t ≤ T,

ū(ḡ(t), t) = ū(h̄(t), t) = 0, 0 < t ≤ T,

v̄(ḡ(t), t) = v̄(h̄(t), t) = 0, 0 < t ≤ T,

ḡ(0) ≤ −h0, ḡ
′(t) ≤ −µūx(ḡ(t), t), 0 < t ≤ T,

h̄(0) ≥ h0, h̄
′(t) ≥ −µūx(h̄(t), t), 0 < t ≤ T,

ū(x, 0) ≥ u0(x), v̄(x, 0) ≥ v0(x), −h0 < x < h0.

For (u, v; g, h) being a solution of (1.4), then

g(t) ≥ ḡ(t), h(t) ≤ h̄(t) for t ∈ (0, T ],

u(x, t) ≤ ū(x, t), v(x, t) ≤ v̄(x, t) for x ∈ [g(t), h(t)], t ∈ (0, T ].

Lemma 2.4. Assume that T > 0, g, h ∈ C1([0, T ]), u ∈ C(D̄)∩C2,1(D), v ∈ C(D̄)∩
C0,1(D) with D = {(x, t) ∈ R2 : g(t) < x < h(t), 0 < t ≤ T}, and

ut ≤ duxx − βux + f1(u, v), g(t) < x < h(t), 0 < t ≤ T,

vt ≤ f2(u, v), g(t) < x < h(t), 0 < t ≤ T,

u(g(t), t) = u(h(t), t) = 0, 0 < t ≤ T,

v(g(t), t) = v(h(t), t) = 0, 0 < t ≤ T,

g(0) ≥ −h0, g
′(t) ≥ −µux(g(t), t), 0 < t ≤ T,

h(0) ≤ h0, h
′(t) ≤ −µux(h(t), t), 0 < t ≤ T,

u(x, 0) ≤ u0(x), v(x, 0) ≤ v0(x), −h0 < x < h0.

Let (u, v; g, h) be the unique solution of (1.4), then

g(t) ≤ g(t), h(t) ≥ h(t) for t ∈ (0, T ],

u(x, t) ≥ u(x, t), v(x, t) ≥ v(x, t) for x ∈ [g(t), h(t)], t ∈ (0, T ].
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3. An eigenvalue problem

In this section, we discuss an eigenvalue problem and present its properties of its
principal eigenvalue. Now we introduce the following eigenvalue problem−λϕ = dϕxx − βϕx + (f1u − f1vf2u

f2v
)ϕ, −l < x < l,

ϕ(l) = ϕ(−l) = 0.
(3.1)

Lemma 3.1. Denote by λ1(l) the principle eigenvalue of problem (3.1) with fixed
l, then

λ1(l) =
dπ2

4l2
+

β2

4d
− f1u +

f1vf2u
f2v

.

Proof. Let µ1, µ2 be the roots of

dµ2 − βµ+ λ+ f1u − f1vf2u
f2v

= 0. (3.2)

Then ϕ(x) = Aeµ1x + Beµ2x is the solution of (3.1). By the boundary conditions
ϕ(±l) = 0, ϕ ≡ 0 if β2 − 4d(λ+ f1u − f1vf2u

f2v
) ≥ 0. Then we have

β2 − 4d(λ+ f1u − f1vf2u
f2v

) < 0.

The roots of (3.2) is

µ1,2 =
β ± i

√
4d(λ+ f1u − f1vf2u

f2v
)− β2

2d
.

So

ϕ(x) = Ae
β
2dx[cos

√
4d(λ+ f1u − f1vf2u

f2v
)− β2

2d
x

+i sin

√
4d(λ+ f1u − f1vf2u

f2v
)− β2

2d
x]

+Be
β
2dx[cos

√
4d(λ+ f1u − f1vf2u

f2v
)− β2

2d
x

−i sin

√
4d(λ+ f1u − f1vf2u

f2v
)− β2

2d
x].

Since ϕ(±l) = 0, we obtain that√
4d(λ+ f1u − f1vf2u

f2v
)− β2

2d
l =

π

2
+ kπ(k ∈ N).

Hence

λ1(l) =
dπ2

4l2
+

β2

4d
− f1u +

f1vf2u
f2v

.



28 D. Zhu, Y. Xu & X. Li

Theorem 3.1. The following statements of λ1(l) are valid:

(i) λ1(l) is continuous and strictly decreasing in l,

lim
l→0

λ1(l) = ∞, lim
l→∞

λ1(l) =
β2

4d
− f1u +

f1vf2u
f2v

;

(ii) if ∆ > 0 and 0 < β < 2
√
d(f1u − f1vf2u

f2v
), there exists a threshold value

l∗ = 2dπ
4d∆−β2 such that λ1(l) < 0 for l > l∗, λ1(l) = 0 for l = l∗, and λ1(l) > 0

for 0 < l < l∗;

(iii) if ∆ ≤ 0, then λ1(l) =
dπ2

4l2 + β2

4d > 0.

4. Vanishing and spreading

In this section, we first give some sufficient conditions of vanishing and spreading,
then obtain criteria for spreading and vanishing.

Lemma 4.1. Let (u, v; g, h) be the solution of problem (1.4). If h∞ − g∞ < ∞,
then there exists a constant K such that

∥u(·, t)∥C1([g(t),h(t)]) ≤ K,∀t > 1.

Moreover,
lim
t→∞

h′(t) = lim
t→∞

g′(t) = 0.

Proof. The proof is similar to that of Proposition 3.1 in [21]. We omit the details.

Lemma 4.2. Let (u, v; g, h) be the solution of problem (1.4). If h∞ − g∞ < ∞,
then

lim
t→∞

∥u(·, t), v(·, t)∥C([g(t),h(t)]) = 0. (4.1)

Proof. Since f1(u, v) ≤ f1uu+ f1vv, we have that
ut − duxx + βux ≥ f1uu, g(t) < x < h(t), t > 0,

u(g(t), t) = 0, g′(t) ≤ −µux(g(t), t), t > 0,

u(h(t), t) = 0, h′(t) ≥ −µux(h(t), t), t > 0.

In view of Lemma 4.1 and Lemma 3.2 in [44], we obtain

lim
t→∞

∥u(·, t)∥C([g(t),h(t)]) = 0.

On the other hand, v(x, t) satisfies

vt = f2(u, v) ≤ f2uu+ f2vv, g(t) < x < h(t), t > 0.

Hence
lim
t→∞

∥v(·, t)∥C([g(t),h(t)]) = 0.

The proof is complete.
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Lemma 4.3. If ∆ ≤ 0, then h∞ − g∞ < ∞ and (4.1) holds.

Proof. Direct computation gives

d

dt

∫ h(t)

g(t)

(u− f1v
f2v

v)dx

=

∫ h(t)

g(t)

[duxx − βux + f1(u, v)−
f1v
f2v

f2(u, v)]dx

=− d

µ
(h′(t)− g′(t)) +

∫ h(t)

g(t)

[f1(u, v)−
f1v
f2v

f2(u, v)]dx.

Integrating from 0 to t,

∫ h(t)

g(t)

(u− f1v
f2v

v)dx

=

∫ h0

−h0

(u0 −
f1v
f2v

v0)dx+
d

µ
[2h0 − h(t) + g(t)]

+

∫ t

0

∫ h(t)

g(t)

[f1(u, v)−
f1v
f2v

f2(u, v)]dx

≤
∫ h0

−h0

(u0 −
f1v
f2v

v0)dx+
d

µ
[2h0 − h(t) + g(t)]

+

∫ t

0

∫ h(t)

g(t)

[f1uu+ f1vv −
f1v
f2v

(f2uu+ f2vv)]dx

=

∫ h0

−h0

(u0 −
f1v
f2v

v0)dx+
d

µ
[2h0 − h(t) + g(t)] +

∫ t

0

∫ h(t)

g(t)

[f1u − f1vf2u
f2v

]udx.

In view of ∆ ≤ 0, we have

h(t)− g(t) ≤ µ

d

∫ h0

−h0

(u0 −
f1v
f2v

v0)dx+ 2h0 < ∞.

Thus h∞ − g∞ < ∞. Combining with Lemma 4.2, we obtain that

lim
t→∞

∥u(·, t), v(·, t)∥C([g(t),h(t)]) = 0.

The proof is finished.

Lemma 4.4. Assume that ∆ > 0. If λ1(h0) > 0, then vanishing happens if u0 and
v0 are sufficiently small.

Proof. Let ϕ be the corresponding eigenfunction of λ1(h0). Since λ1(h0) > 0, we
can choose δ small enough such that

−δ − βh0δ
2

2d(2 + δ)
+

3λ1

4(1 + δ)2
> 0.
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Define

σ(t) := h0(1 + δ − δ

2
e−δt), t ≥ 0,

w(x, t) := ϵe−δte
β
2d (1−

h0
σ(t)

)xϕ(
xh0

σ(t)
), x ∈ [σ(t), σ(t)], t > 0,

z(x, t) :=
1

f1v(1 + δ)2
[−δ(2 + δ)f1u − f1vf2u

f2v
+

λ1

4
]w, x ∈ [−σ(t), σ(t)], t > 0.

Direct computations yield that

wt − dwxx + βwx − f1(w, z)

≥w[−δ − βh0x

2d

σ′

σ2
− h0x

σ′

σ2

ϕ′

ϕ
+ (

h0

σ
)2(

−dϕ′′

ϕ
+

βϕ′

ϕ
)− β2

4d
(1− h2

0

σ2
)]

− f1uw − f1vz

≥w[−δ − βh0

2d

σ′

σ
+ (

h0

σ
)2λ1 −

β2

4d
(1− h2

0

σ2
)]− f1u(1−

h2
0

σ2
)w − h2

0

σ2

f1vf2u
f2v

w − f1vz

≥w[−δ − βh0δ
2

2d(2 + δ)
+

3λ1

4(1 + δ)2
]

>0

and

zt − f2(w, z)

≥z(−δ − βh0x

2d

σ′

σ2
− h0x

σ′

σ2

ϕ′

ϕ
)− f2uw − f2vz

≥w[
δ

(1 + δ)2
(1 +

βh0δ

2d(2 + δ)
)(
δ(2 + δ)f1u

f1v
+

f2u
f2v

)− f2u +
f2u

(1 + δ)2
− λ1

4(1 + δ)2
f2v
f1v

]

>0

for x ∈ (σ(t), σ(t)) and t > 0. Moreover,

σ′(t) =
δ2

2
h0e

−δt, wx(t,±σ(t)) = ϵe−δtϕ′(±h0)
h0

σ
e±

β
2d (σ−h0).

Set

ϵ = h0(2 + δ)
δ2

4µ
min{−e−

β
2d δh0

ϕ′(h0)
,
e

β
4d δh0

ϕ′(−h0)
}.

If u0 and v0 are sufficiently small such that

u0(x) ≤ ϵϕ(
x

1 + δ/2
)e

βδx
2d(2+δ) , x ∈ [−h0(1 + δ/2), h0(1 + δ/2)]

and

v0(x) ≤
1

f1v(1 + δ)2
[−δ(2 + δ)f1u − f1vf2u

f2v
+

λ1

4
]ϵϕ(

x

1 + δ/2
)e

βδx
2d(2+δ)
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for x ∈ [−h0(1 + δ/2), h0(1 + δ/2)]. Then we have

wt ≥ dwxx − βwx + f1(w, z), −σ(t) < x < σ(t), t > 0,

zt ≥ f2(w, z), −σ(t) < x < σ(t), t > 0,

w(−σ(t), t) = w(σ(t), t) = 0 t ≥ 0,

z(−σ(t), t) = z(σ(t), t) = 0 t ≥ 0,

−σ(0) ≤ −h0,−σ′(t) ≤ −µwx(−σ(t), t), t > 0,

σ(0) ≥ h0, σ
′(t) ≥ −µwx(σ(t), t), t > 0,

w(x, 0) ≥ u0(x), z(x, 0) ≥ v0(x), −h0 < x < h0.

Applying Lemma 2.3, g(t) ≥ −σ(t) and h(t) ≤ σ(t). Obviously, h∞ − g∞ ≤
2h0(1 + δ) < ∞. Lemma 4.2 implies that limt→∞ ∥u(·, t), v(·, t)∥C([g(t),h(t)]) = 0.
The proof is complete.

Lemma 4.5. Assume that ∆ > 0. If λ1(h0) < 0, then spreading happens.

Proof. Let ϕ be the corresponding eigenfunction of λ1(h0). Define

u(x, t) := εϕ(x), v(x, t) := −f2u
f2v

u(x, t), x ∈ [−h0, h0], t ≥ 0.

By direct computations, we have

ut − duxx + βux − f1(u, v)

=ε(−dϕ′′ + βϕ′)− f1(u, v)

=ε(λ1ϕ+ f1uϕ− f1vf2u
f2v

ϕ)− ∂

∂u
f1(ξ(x, t), η(x, t))u− ∂

∂v
f1(ξ(x, t), η(x, t))v

=εϕ(λ1 + f1u − ∂

∂u
f1(ξ(x, t), η(x, t)) +

f2u
f2v

∂

∂v
f1(ξ(x, t), η(x, t))−

f1vf2u
f2v

)

and

vt − f2(u, v) = εϕ(− ∂

∂u
f2(ξ(x, t), η(x, t))−

∂

∂v
f2(ξ(x, t), η(x, t))

f2u
f2v

)

for x ∈ (−h0, h0) and t > 0, where ξ ∈ (0, u) and η ∈ (0, v). Since λ1 < 0, we can
choose ε small enough such that u0(x) ≥ εϕ, v0(x) ≥ −εϕf2u/f2v and

ut ≤ duxx − βux + f1(u, v), −h0 < x < h0, t > 0,

vt ≤ f2(u, v), −h0 < x < h0, t > 0,

u(−h0, t) = u(h0, t) = 0, t ≥ 0,

v(−h0, t) = v(h0, t) = 0, t ≥ 0,

0 ≥ −µux(−h0, t), 0 ≤ −µux(h0, t), t > 0,

u(x, 0) ≤ u0(x), v(x, 0) ≤ v0(x), −h0 < x < h0.
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By applying comparison principle, u(x, t) ≥ u(x, t) and v(x, t) ≥ v(x, t) for x ∈
[−h0, h0] and t ≥ 0. Then

lim
t→∞

∥u(·, t), v(·, t)∥C([g(t),h(t)]) > 0.

It follows from Lemma 4.2 that h∞ − g∞ = ∞. This completes the proof.

Lemma 4.6. Assume that ∆ > 0 and 0 < β < 2
√

d(f1u − f1vf2u
f2v

). If h0 < l∗, then

spreading happens if u0 and v0 are sufficiently large.

Proof. By Theorem 3.1, there exists
√
T ∗ > l∗ such that λ0(

√
T ∗) < 0. Considerλ0ϕ = −dϕ′′ − ( 12 + β

√
T ∗ + 1)ϕ′, 0 < x < 1,

ϕ′(0) = ϕ(1) = 0.

It is well known that the first eigenvalue λ0 > 0 and the corresponding eigenfunction
ϕ > 0, ϕ′ < 0 in (0, 1], and ∥ϕ∥L∞([0,1)) = 1. We extend ϕ to [−1, 1] as an even
function, then we haveλ0ϕ = −dϕ′′ − ( 12 + β

√
T ∗ + 1)sgn(x)ϕ′, −1 < x < 1,

ϕ(−1) = ϕ(1) = 0.

Now we construct a suitbale lower solution of (1.4). Define

h(t) =
√
t+ σ, 0 ≤ t ≤ T ∗,

u(x, t) =


ρ

(t+ σ)k
ϕ(

x√
t+ σ

),−h(t) ≤ x ≤ h(t), 0 ≤ t ≤ T ∗,

0, |x| > h(t), 0 ≤ t ≤ T ∗,

and

v(x, t) =


ρ

(t+ σ)k
ϕ(

x√
t+ σ

),−h(t) ≤ x ≤ h(t), 0 ≤ t ≤ T ∗,

0, |x| > h(t), 0 ≤ t ≤ T ∗,

where σ, k and ρ are positive constants that are choosen later. Due to Lemma 2.2,
0 < u(x, t), v(x, t) < C1. Then there exists L > 0 such that f1(u, v) ≥ −Lu and
f2(u, v) ≥ −Lv. Now we choose

0 < σ < min{1, h2
0}, k > λ0 + L(T ∗ + 1), ρ ≥ (T ∗ + 1)k

2µmin{ϕ′(−1),−ϕ′(1)}
.

Direct computations yield

ut − duxx + βux − f1(u, v)

≤− ρ

(t+ σ)k+1
[kϕ+

x

2
√
t+ σ

ϕ′ + dϕ′′ − β
√
t+ σϕ′ − L(t+ σ)ϕ]

≤− ρ

(t+ σ)k+1
[kϕ+ (

1

2
+ β

√
T ∗ + 1)sgn(x)ϕ′ + dϕ′′ − L(t+ σ)ϕ]

≤− ρ

(t+ σ)k+1
[(
1

2
+ β

√
T ∗ + 1)sgn(x)ϕ′ + dϕ′′ + λ0ϕ]

=0
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and
v − f2(u, v) ≤ − ρ

(t+ σ)k+1
[kϕ+

x

2
√
t+ σ

ϕ′ − L(t+ σ)ϕ] ≤ 0

for x ∈ [−h(t), h(t)] and t ∈ (0, T ∗]. On the other hand,

h′(t) + µux(h(t), t) =
1

2
√
t+ σ

+
µρ

(t+ σ)k+
1
2

ϕ′(1) ≤ 0, t ∈ (0, T ∗),

h′(t)− µux(h(t), t) =
1

2
√
t+ σ

− µρ

(t+ σ)k+
1
2

ϕ′(−1) ≤ 0, t ∈ (0, T ∗).

If u0 and v0 are sufficiently large such that

u(x, 0) =
ρ

σk
ϕ(

x√
σ
) ≤ u0(x), v(x, 0) =

ρ

σk
ϕ(

x√
σ
) ≤ v0(x),

for x ∈ [−
√
σ,

√
σ]. Since h(0) =

√
σ ≤ h0, then (u, v;−h, h) is a lower solution

of (1.4). By Lemma 2.4, we conclude that h(t) ≥ h(t) and g(t) ≤ −h(t) in [0, T ∗].
So h(T ∗) ≥ h(T ∗) =

√
T ∗ + σ ≥

√
T ∗ and g(T ∗) ≤ −

√
T ∗. Then (−l∗, l∗) ⊆

(−
√
T ∗,

√
T ∗) ⊆ (g(t), h(t)) for t ≥ T ∗. Due to Lemma 4.5, we have h∞− g∞ = ∞,

that is, spreading happens.

Theorem 4.1. Assume that ∆ > 0 and 0 < β < 2
√
d(f1u − f1vf2u

f2v
). If (u0, v0) =

δ(θ, ω) for θ and ω ∈ Σ(h0), then there exists δ∗ ≥ 0 such that spreading happens
if δ > δ∗, and vanishing happens if 0 < δ ≤ δ∗. Moreover, δ∗ = 0 provided h0 ≥ l∗,
and δ∗ > 0 provided h0 < l∗.

Proof. This theorem follows from Lemmas 4.4 and 4.6, the detailed proof is similar
to Theorem 5.2 in [46].

5. Numerical illustrations

In this section, we present some numerical simulations of problem (1.4). As the
boundary is unknown, it is difficult to present the numerical solution of free bound-
ary compared with the fixed boundary problem. Here, we use a similar way in [25]
to deal with the problem. Firstly, we carry out the discretization by finite differ-
ences. Secondly, we use the standard implicit scheme to deal with the equation
(1.4), then we get a nonlinear algebraic system with the same number of equations
and unknowns. Finally, we use the Newton-Raphson method to solve this nonlinear
algebraic system.

Now we fix some coefficients and initial functions. Assume that

d = 1, µ = 1, β = 0.3;u0(x) = a cos(
πx

2h0
), v0(x) = b cos(

πx

2h0
),

f1(u, v) = −a11u+ a12v, f2(u, v) = −a22v + a21u(1− u).

Now we consider the long time behavior of solutions (u, v).

Example 5.1. Choose a11 = 2, a12 = a21 = 1, a22 = 1.2, we have ∆ ≤ 0. Lemma
4.3 shows that vanishing happens if ∆ ≤ 0. The numerical solutions of problem (1.4)
with a = 0.5, b = 0.8 and a = 5, b = 6 are shown in Figures 1 and 2 respectively.
We observe that the free boundaries x = h(t) and x = g(t) increase slow, and the
solution decays to zero quickly.
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Figure 1. a11 = 2, a12 = a21 = 1, a22 = 1.2, a = 0.5, b = 0.8, h0 = 5.
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Figure 2. a11 = 2, a12 = a21 = 1, a22 = 1.2, a = 5, b = 6, h0 = 5.
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Figure 3. a11 = 1, a12 = 2, a21 = 2.1, a22 = 1, a = 8, b = 1, h0 = 5.

Example 5.2. Fix a11 = 1, a12 = 2, a21 = 2.1, a22 = 1, a = 8, b = 1, h0 = 5, then
∆ > 0 and h0 ≥ l∗. The simulation results are shown in Figure 3. It is easy to
see that the free boundaries increase fast, and the solution stabilizes to a positive
solution, which confirms to Theorem 4.1 (spreading always happens when h0 ≥ l∗).

Example 5.3. Let a11 = 1, a12 = 2.5, a21 = 2, a22 = 2, h0 = 0.8, we have ∆ > 0
and h0 < l∗. The numerical solutions of problem (1.4) with a = 0.1, b = 0.2
and a = 1, b = 0.5 are shown in Figures 4 and 5 respectively. It is easy to see
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Figure 4. a11 = 1, a12 = 2.5, a21 = 2, a22 = 2, a = 0.1, b = 0.2, h0 = 0.8.
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Figure 5. a11 = 1, a12 = 2.5, a21 = 2, a22 = 2, a = 1, b = 0.5, h0 = 0.8.

that in Figure 4 the solution decays to zero quickly; in Figure 5 the free boundaries
increase fast and the solutions stabilize to positive equilibria.They support Theorem
4.1 (If ∆ > 0 and h0 < l∗, spreading happens if δ > δ∗ > 0, vanishing happens if
0 < δ ≤ δ∗).
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