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Abstract In this paper we start generalizing the well known Secant and
Müller methods by using higher degree polynomials. Although such general-
ization does already exist, we prove in an original and elegant way that the
order of convergence p is limited by p = 2. The techniques used in this pa-
per could also be helpful in other contexts. We also perform some numerical
experiments to reinforce the theoretical results.
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1. Introduction

Methods to solve nonlinear equations have been defined and studied profusely from
antique times in history. It is not a surprise given its importance in addressing real
problems where such equations appear. Still nowadays a wide range of research is
carried out in relation with this subject.

Secant method is one of the first methods that is taught in undergraduate
courses, and it is simple both in its definition and in its application to solve cer-
tain equations. It is known to be a close relative to Newton method that does
not use derivatives in its computations. This fact allows the application of the
Secant method in occasions where the information about the derivative is not at
hand. Therefore, it finds its field of application. Many studies have been carried
out regarding conditions to ensure the convergence of the method, establishing an
interval or ball of convergence, considering new variants with some gain in certain
scenarios, etcetera. Recent publications show the current interest for deepening the
knowledge about this prolific method, see for example [2, 7, 12,13,15].

Engineers are quite inclined to the application of Newton method in many scien-
tific fields in order to deal with nonlinear equations. However, there are applications
where it is more suitable to apply the secant method or any other method free of
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derivatives in its formulation. We can find in the literature many situations of this
kind, as for example [1, 4–6,8].

Secant method belongs to the group of methods where the convergence of the
method is not guaranteed unless certain initial conditions are satisfied, normally
requiring starting the iterations from an initial point close enough to a solution of
the equation. Once it is assume that the method is convergent, it appears another
concept that is nothing more than the order of convergence which somehow measures
the speed at which the method converges. Studying the order of convergence is one
of the first researches carried out about a new method after its definition. In the
case of Secant method, the order of convergence coincides with the golden ratio

φ = 1+
√
5

2 ≈ 1.6. The higher the order the convergence the faster it is expected the
convergence of the method. Under this assumption, it is normal to consider methods
with higher order of convergence. Müller method appears as a generalization of
Secant method in the sense that it is derived from cutting a quadratic polynomial
with the x axis instead of a straight line as the Secant method does. Müller method
attains approximately an order of convergence p = 1.83, larger than the golden
ratio. It seems then, that this method would be superior, but it highly depends on
the problem, on the initial conditions and so on. It could happen that a method
converges and the other does not for example. Müller method gives a method
capable to compute not only real roots of a given nonlinear equation, but also
complex ones. In this sense Müller method outperforms over Secant method. Many
articles have been also written about Müller method, see for example [3, 17].

In this article we generalize Secant and Müller methods by considering higher
degree polynomials. A thorough study is carried out on these new methods and their
convergence order. These methods have been already considered in the literature
previously, but a proof for their order of convergence is not easy to find. We give
a new proof of the fact that the convergence orders of the generalized methods
originate an increasing sequence with limit p = 2.

Different but similar techniques have been used in order to obtain high order
iterative methods free of derivatives, such us [10,16].

The paper is organized as follows: Section 2 is devoted to remind the classical
Secant and Müller methods. In Section 3 we present new methods generated by
considering higher order polynomials. In Section 4 we study the convergence order
for these methods using a witty approach. In Section 5 we carry out some numerical
tests to check the performance of the presented methods. Finally, we give some
conclusions in Section 6.

2. Classical Secant and Müller methods

We start by reminding the Secant method. In order to obtain an approximation
of the solution of the equation f(x) = 0, where f is a continuous function, this
method is derived as follows. Let us consider two initial points (xn−1, f(xn−1)) and
(xn, f(xn)). Then, we construct the point-slope equation of the straight line that
contains both of them,

f(x) = f(xn) +
f(xn)− f(xn−1)

xn − xn−1
(x− xn).
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We force this straight line to intersect the x-axis, so f(xn+1) = 0. In this case,

f(xn) +
f(xn)− f(xn−1)

xn − xn−1
(xn+1 − xn) = 0.

Solving for xn+1 we find,

xn+1 = xn −
xn − xn−1

f(xn)− f(xn−1)
f(xn), n ≥ 1, (2.1)

which is the iteration of the Secant method. As it is well-known, the order of conver-

gence of this method is given by the golden ratio, 1+
√
5

2 ≈ 1.62. We continue with
Müller method. We depart in this case from three initial points (xn−2, f(xn−2)),
(xn−1, f(xn−1)) and (xn, f(xn)). And, we build the parabola that pass through
them,

p(x) = A(x− xn)2 +B(x− xn) + C. (2.2)

The coefficients of this equation are obtained by solving the following system of
equations and using the definition of divided differences,

p(xn−2) = A(xn−2 − xn)2 +B(xn−2 − xn) + C,

p(xn−1) = A(xn−1 − xn)2 +B(xn−1 − xn) + C,

p(xn) = A(xn − xn)2 +B(xn − xn) + C = C.

Its solution is given by,

A = f [xn−2, xn, xn−1],

B = f [xn−1, xn] + f [xn−2, xn, xn−1](xn − xn−1),

C = f(xn).

We force the expression (2.2) to intersect the x-axis, so p(xn+1) = 0. It follows
that the next iterate will be the solution of the equation,

A(xn+1 − xn)2 +B(xn+1 − xn) + C = 0.

Solving the second degree polynomial equation we find,

xn+1 = xn −
2C

B ±
√
B2 − 4AC

, (2.3)

which is the Muller’s method algorithm. This expression is different from the most
usual one for quadratic equations due to the fact that it is needed to avoid catas-
trophic cancellation. The sign at the denominator is chosen to make the denom-
inator as large as possible with the aim of reducing the distance between xn and
xn+1.

For this method, it is known that the order of convergence is approximately
1.84.

A clear question arises immediately at this point, and it is to analyze the behav-
ior of the family of methods that appears if we raise the degree of the polynomials.
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3. Higher order methods: Secant polynomial meth-
ods

Let us consider k + 1 pairs of points

(x0, f(x0)), (x1, f(x1)), (x2, f(x2)), ..., (xk, f(xk)).

We construct the interpolation polynomial pk that contains them and we force it to
intersect the x-axis, so pk(x) = 0. Solving this equation, we find k options for the
next iteration xk+1 of the sequence that approximates the root of a given equation
f(x) = 0. We choose the one which is closer to xk.

At this point, to continue with the method we take the last k + 1 points

(x1, f(x1)), (x2, f(x2)), (x3, f(x3)), ..., (xk, f(xk)), (xk+1, f(xk+1)),

and we proceed in the same way as we have done in the previous step, we construct
the interpolation polynomial pk+1 that includes them and we intersect it with the
x-axis. Hence, we get xk+2 for the next iteration, and so on and so forth. We
repeat the process till we get a sufficiently good approximation of the root in case
of convergence. It is not expected that this method is always convergent, since the
simpler Secant method is not convergent. But in case of convergence, it is expected
that the larger k the larger the convergence order of the method. And this is true
as we will see in the next section.

Notice that the polynomial equation is more or less easily solvable for third
and fourth degrees, but special methods for polynomials must be used for higher
degrees.

In Figure 1, we show an example for cubic polynomials of how this method works.
We start with four points, (x0, f(x0)), (x1, f(x1)), (x2, f(x2)) and (x3, f(x3)), and
two iterations of the explained method are performed.

Figure 1. Two iterations of the Cubic Secant method starting with four initial points.
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4. Convergence order for the secant polynomial
methods

Before we analyze the order of convergence of these generalized methods seen in the
previous section, we prove some useful lemmas.

Lemma 4.1. Fore every k ≥ 2, the equation xk − ... − x − 1 = 0 has a unique
positive and real root in the interval (1, 2).

Proof. Let us consider the function g(x) = xk − ... − x − 1, for all k ≥ 2. We
know that,

• g ∈ C([1, 2]), because g is a polynomial function.

• g(1) · g(2) < 0 due to:

1. g(1) = 1k − ...− 1− 1 = (1k − 1)− 1− ...− 1 = −(k − 1) = 1− k < 0,

2. g(2) = 2k− ...−2−1 = 2k−
∑k−1
i=0 2i = 2k− 1−2k

1−2 = 2k + 1−2k = 1 > 0.

Applying Bolzano’s theorem it follows that there exists x0 ∈ (1, 2) such that g(x0) =
0.

On one hand, the last result shows the existence of a real root in (1, 2), and on
the other hand, the real coefficients of g ordered by descending variable exponents
are,

1 − 1 (k−1)... −1 − 1.

Since there is only a sign change in the sequence of coefficients for all k ≥ 2, we
can deduce that there is only a unique positive root of the polynomial, thanks to
Descartes rule of signs. Therefore we can conclude that for every k ≥ 2 the equation
xk − ...− x− 1 = 0 has a unique positive and real root in the interval (1, 2).

In the following lemmas we prove that all the other roots of the polynomial g
have modulus less than 1.

Lemma 4.2. Let us consider the equation xk − ... − x − 1 = 0 for k ≥ 3 an odd
integer number. Then, there is not a value of α ∈ (−1, 0] such that g(α) = 0.

Proof. Given g(x) = xk − ...− x− 1 for k ≥ 3 odd, we can rewrite it as,

g(x) = xk−1(x− 1)− xk−3(x+ 1)− ...− x2(x+ 1)− (x+ 1), ∀x ∈ (−1, 0].

On one hand, since k ≥ 3 and odd, we have that xj > 0 ∀j = 2, 4, ..., k−3, k−1.
On the other hand, x− 1 < 0 y x+ 1 > 0 because x ∈ (−1, 0]. Therefore, g(x) < 0
∀x ∈ (−1, 0]. This implies, that there exists no α ∈ (−1, 0] satisfying g(α) = 0.

Lemma 4.3. Let us consider the equation xk − ... − x − 1 = 0 for k ≥ 2 an even
integer number. Then, there exists a unique α ∈ (−1, 0) such that g(α) = 0.

Proof. Let us consider g(x) = xk − ...− x− 1 for k ≥ 2 even.

• Uniqueness. Since g is a polynomial function, g ∈ C([−1, 0]) and g is derivable

in (−1, 0). In fact,

g′(x) = kxk−1− (k−1)xk−2− ...−3x2−2x−1 = kxk−1−
k−2∑
i=0

(i+1)xi. (4.1)
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We observe that,

k−2∑
i=0

(i+ 1)xi = 1 + 2x+ 3x2 + ...+ (k − 1)xk−2 (4.2)

is a aritmetico-geometric sequence, and then there is an easy way to get its
sum.
Multiplying (4.2) by x,

x ·
k−2∑
i=0

(i+ 1)xi = x+ 2x2 + 3x3 + ...+ (k − 1)xk−1, (4.3)

and substracting (4.2) and (4.3) we get,

k−2∑
i=0

(i+ 1)xi − x ·
k−2∑
i=0

(i+ 1)xi = 1 + x+ x2 + x3 + ...+ xk−2 − (k − 1)xk−1

=

k−2∑
i=0

xi − (k − 1)xk−1

=
1− xk−1

1− x
− (k − 1)xk−1.

Our term of interest,
∑k−2
i=0 (i+ 1)xi, becomes,

(1− x)

k−2∑
i=0

(i+ 1)xi =
1− xk−1

1− x
− (k − 1)xk−1

⇔
k−2∑
i=0

(i+ 1)xi =
1− xk−1

(1− x)2
− (k − 1)xk−1

1− x
. (4.4)

Plugging (4.4) into (4.1) we obtain,

g′(x) = kxk−1 − 1− xk−1

(1− x)2
+

(k − 1)xk−1

1− x

=
kxk−1(1− x)2 − 1 + xk−1 + (k − 1)xk−1(1− x)

(1− x)2
.

Thus, it is easy to inferred that g′(x) < 0,

g′(x) < 0⇔ kxk−1(1− x)2 − 1 + xk−1 + (k − 1)xk−1(1− x)

(1− x)2
< 0

⇔ kxk−1(1− x)2 − 1 + xk−1 + (k − 1)xk−1(1− x) < 0

⇔ kxk−1 + kxk+1 − 2kxk −1 + xk−1 + (k − 1)xk−1 − (k − 1)xk<0

⇔ kxk+1 + (1− 3k)xk + 2kxk−1 − 1 < 0.

Due to the fact that x ∈ (−1, 0) and k ≥ 2 even, we have,

xk+1 < 0⇒ kxk+1 < 0, xk > 0⇒ (1− 3k)xk < 0, xk−1 < 0⇒ 2kxk−1 < 0.
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Therefore, kxk+1 + (1− 3k)xk + 2kxk−1 − 1 < 0, and g′(x) < 0, what means,
g(x) is strictly decreasing. This implies that in case of existence of a root of
the equation xk − ...− x− 1 = 0, for k ≥ 2 even, this root must be unique.

• Existence. We know that g ∈ C([−1, 0]) and g(−1) · g(0) < 0 since,

g(0) = 0k − ...− 0− 1 = −1 < 0,

g(−1) = (−1)k − (−1)k−1 − ...− 12 − 1− 1

= (−1)k −
k−1∑
i=0

(−1)i

= (−1)k − 1− (−1)k

1− (−1)
.

Due to k ≥ 2 is an even number,

g(−1) = (−1)k − 1− (−1)k

1− (−1)
= 1− 1− 1

2
= 1 > 0.

Using Bolzano theorem, there exist at least a value α ∈ (−1, 0) such that
g(α) = 0.

Once we have proven existence and uniqueness, we can affirm that for all k ≥ 2
even, there exists a unique α ∈ (−1, 0) such that g(α) = 0.

Before proving the next lemma, we give without proof a useful calculus result
that can be found for example in [11,14].

Theorem 4.1. (Cauchy theorem) Let us consider a polynomial xn−bn−1xn−1−
...− b1x− b0 with a unique real root r and bi > 0, |bi| ≥ |ai| ∀i = 0, 1, 2, ..., n. Then,
the roots of xn + an−1x

n−1 + ...+ a1x+ a0 are located inside the ball |x| ≤ r.

Lemma 4.4. Let us consider the polynomial equation xk − ... − x − 1 = 0 for all
integer number k ≥ 2. Let us call αk the unique real root in (1, 2). If α is another
root of the equation, then |α| < 1.

Proof. We define the polynomial,

pk(x) = xk+bk−1x
k−1+bk−2x

k−2+...+b2x
2+b1x+b0 = (x−α1)(x−α2) · · · (x−αk).

According to the Cardano Vieta formulas for this polynomial we get,

bj = (−1)k−jSkk−j ∀j = 0, 1, ..., k − 1, (4.5)

where

Skj :=
∑
i∈V k

j

αi1αi2 · · ·αij ,

with V kj standing for the set containing all possible j−tuples among k indexes

without repetition. This means that
(
k
j

)
is the number of addends.

In our case, pk(x) = xk − ... − x − 1 for all k ≥ 2, and then bj = −1, j =
0, 1, 2, ..., k − 1.
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We also consider the following polynomial,

qk−1(x) = xk−1 + ck−2x
k−2 + ...+ c2x

2 + c1x+ c0 = (x−α1)(x−α2) · · · (x−αk−1),
(4.6)

and we search for its Cardano Vieta formulas.

cj = (−1)k−j−1Sk−1k−j−1 ∀j = 0, 1, ..., k − 2. (4.7)

Given now bj = (−1)k−jSkk−j = −1 for j = 0, 1, 2, ..., k − 1, we decompose Skk−j
in two terms:

• One term comprising the sum of all products of roots including αk, that is,
αkS

k−1
k−j−1.

• Another term avoiding αk, that is, Sk−1k−j .

It follows that, bj = (−1)k−j(αkS
k−1
k−j−1 + Sk−1k−j ) = −1.

By successive equivalences, we get,

(−1)k−j(αkS
k−1
k−j−1 + Sk−1k−j ) = −1⇔

(−1)k−j(αkS
k−1
k−j−1 + Sk−1k−j )

−1
=
−1

−1

⇔ (−1)k−j−1(αkS
k−1
k−j−1 + Sk−1k−j ) = 1

⇔ (−1)k−j−1αkS
k−1
k−j−1 = 1− (−1)k−j−1Sk−1k−j

⇔ (−1)k−j−1Sk−1k−j−1 =
1 + (−1)k−jSk−1k−j

αk
,

and this allows us to define a recurrence equation for cj ,

cj = (−1)k−j−1Sk−1k−j−1 =
1 + (−1)k−jSk−1k−j

αk
∀j = 1, 2, ..., k − 2, (4.8)

and using the expression of cj in (4.7), the equation (4.8) can be written,

cj =
1 + cj−1
αk

∀j = 1, 2, ..., k − 2.

Moreover, for j = 0, using (4.7), c0 = (−1)k−1Sk−1k−1 = (−1)k−1 ·α1 ·α2 · · ·αk−1.
Taking into account that b0 = −1, by (4.5), we get,

(−1)kSkk = −1⇔ (−1)k · α1 · α2 · · ·αk−1αk = −1

⇔ (−1)k · Sk−1k−1αk = −1

⇔ (−1)k−1Sk−1k−1 =
1

αk
.

Then, c0 = (−1)k−1Sk−1k−1 = 1
αk

.

We obtain the Cardano Vieta formulas for the polynomial (4.6),
c0 =

1

αk
, aaaaaaaaaaaaaaaaaa

cj =
1 + cj−1
αk

∀j = 1, 2, ..., k − 2.

We notice that these coefficients present noticeable properties,
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1. cj > 0, ∀j = 0, 1, ..., k − 2.

2. cj <
1

αk−1 , ∀j = 0, 1, ..., k − 2.

3. cj forms an increasing sequence ∀j = 0, 1, ..., k − 2 : cj+1 > cj , ∀j =
0, 1, ..., k − 2.

Let us prove it by induction,

• First, we verify the properties for j = 0,

1. Since αk ∈ (1, 2), then c0 = 1
αk

> 0.

2. αk ∈ (1, 2) implies c0 = 1
αk

< 1
αk−1 .

3. We now check that c1 > c0,

c1 = 1+c0
αk

= 1
αk

+ c0
αk

= c0 + c0
αk

> c0, because αk ∈ (1, 2) and c0 > 0.

• By induction hypothesis we suppose the result true for j ∈ N, that is,

1. cj > 0.

2. cj <
1

αk−1 .

3. cj is and increasing sequence, cj+1 > cj .

• Let us prove it for j + 1,

1. Since αk ∈ (1, 2) and cj > 0 by the induction hypothesis, then cj+1 =
1+cj
αk

> 0.

2. Also, from cj <
1

αk−1 by induction hypothesis, we get,

cj+1 =
cj + 1

αk
<

1
αk−1 + 1

αk
=

1 + αk − 1

αk(αk − 1)
=

αk
αk(αk − 1)

=
1

αk − 1
.

3. Finally, we prove that cj+2 > cj+1,

cj+2 =
cj+1 + 1

αk
> cj+1 ⇔ cj+1 + 1 > cj+1αk

⇔ 1 > cj+1(αk − 1)

⇔ 1

αk − 1
> cj+1.

And since the last inequality holds as we have just seen in the previous
point, then cj+2 > cj+1.

Now, we build a k degree polynomial which posseses α = 1 as root, apart from
the same roots as pk(x) except αk, being αk the unique root of pk(x) in (1, 2).

gk(x) =(x− 1)(xk−1 + ck−2x
k−2 + ...+ c2x

2 + c1x+ c0)

=xk + (ck−2 − 1)xk−1 + (ck−3 − ck−2)xk−2 + (ck−4 − ck−3)xk−3 + ...− c0

=xk + (ck−2 − 1)xk−1 +

1∑
i=k−2

(ci−1 − ci)xi − c0.

In order to apply the Cauchy theorem, Theorem 4.1, we also define the following
auxiliary polynomial,

g̃k(x) = xk − (1 + ck−2)xk−1 −
1∑

i=k−2

(ci − ci−1)xi − c0.
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It is easy to see that g̃k has also α = 1 as root. Moreover, its coefficients, except the
leading coefficient, are all negative. In fact, these coefficients in decreasing order
are,

1− (1 + ck−2)− (ck−2 − ck−3)...− c0, where

• 1 > 0.

• −(1 + ck−2) < 0, since ck−2 > 0.

• −(cj − cj−1) < 0, because cj > cj−1, ∀j = 0, 1, ..., k − 2.

• −c0 < 0, due to the fact that cj > 0, ∀j = 0, 1, ..., k − 2.

Again using Descartes rule, since there is only one change of signs in the sequence
of the coefficients, g̃k(x) has a unique positive real root, and it is α = 1.

Applying now Theorem 4.1, we get that for any other root α of gk(x) we have
|α| ≤ 1. It just remain to see that the equality is not possible, and then |α| < 1.

Evaluating pk(x) = xk − ...− x− 1 = 0 at x = α we get,

αk − ...− α− 1 = 0⇔ αk −
k−1∑
i=0

αi = 0

⇔ αk − 1− αk

1− α
= 0

⇔ αk − αk+1 − 1 + αk = 0

⇔ αk(2− α) = 1.

Taking absolute values, |α|k|2− α| = 1.
Let us suppose by reduction to absurdity that |α| = 1. In this case, it must be

satisfied that |2 − α| = 1. Thus, α ∈ B((2, 0), 1). Together with |α| ≤ 1, that is,
α ∈ B((0, 0), 1), means that α = 1. However, this reaches an absurd since,

pk(1) = 1k − ...− 1− 1 = −(k − 1) 6= 0.

From this observation we get that |α| < 1.

The next result gives us a key equation to prove the order of convergence for
the secant polynomial method defined.

Proposition 4.1. Let us suppose that the secant polynomial method with polyno-
mials of degree k is convergent for a given set of initial points towards a simple
root α of a k + 1 differentiable function f, that is, f(α) = 0, f ′(α) 6= 0. The errors
en = α− xn committed by the iterations xn, n ∈ N satisfy the following equation,

en+1 = Mk,nenen−1en−2 · · · en−k, (4.9)

where Mk,n is a constant dependent on n and k. Moreover, if en+1 6= 0, then there
exists,

mk = lim
n→∞

Mk =
−f (k+1)(α)

f ′(α)(k + 1)!
. (4.10)

Proof. Notice that equation (4.9) is already known for the secant method (k = 1)
and for Müller method (k = 2).

Let us consider the interpolating polynomial pk(x) of degree k which passes
through the points (xn, f(xn)), (xn−1, f(xn−1)), . . ., (xn−k, f(xn−k)). The next
iteration xn+1 of the method is built by choosing the root of pk(x) closest to the
previous iteration, that is,
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1. pk(xn+1) = 0,

2. xn+1 is chosen such that |xn+1 − xn| = min
s
|s− xn| with pk(s) = 0.

On one hand, if xn+1 = α, then Mk = 0 and equation (4.9) is trivially true. On the
other hand, if xn+1 6= α, by using the Lagrange mean value theorem, there exists
τn between xn+1 and α such that

p′k(τn) =
pk(α)− pk(xn+1)

α− xn+1
.

Due to the fact that pk(xn+1) = 0, we get

p′k(τn) =
pk(α)

α− xn+1
,

what amounts to,

en+1 =
pk(α)

p′k(τn)
. (4.11)

Let us now prove by induction on k that pk(α) = −f [xn−k, . . . , xn, α]enen−1 . . .
× en−k. The base case for k = 1 comes from the secant method in this way,

p1(α) = f(xn) + f [xn, xn−1](α− xn)

=
f(xn)− f(α)

α− xn
(α− xn) + f [xn, xn−1](α− xn)

= (α− xn)(
−f [xn, α] + f [xn−1, xn]

α− xn−1
)(α− xn−1)

= −f [xn−1, xn, α]enen−1.

Let us suppose the result true for k, that is, pk(α) = −f [xn−k, . . . , xn, α]enen−1 . . .
× en−k, and let us prove it for k + 1.

pk+1(α) = pk(α) + f [xn−k−1, xn−k, . . . , xn](α− xn−k) . . . (α− xn)

= pk(α) + f [xn−k−1, xn−k, . . . , xn]en . . . en−k

= −f [xn−k, . . . , xn, α]enen−1 . . . en−k + f [xn−k−1, xn−k, . . . , xn]en . . . en−k

=
f [xn−k−1, xn−k, . . . , xn]− f [xn−k, . . . , xn, α]

(α− xn−k−1)
(α− xn−k−1)en . . . en−k

= −f [xn−k−1, xn−k, . . . , xn, α]en . . . en−ken−k−1.

And the proof by induction is done. By plugging this result into (4.11) we get,

en+1 =
pk(α)

p′k(τn)
(4.12)

=
pk−1(α)

p′k(τn)
+
f [xn, xn−1, xn−2, ..., xn−k+1, xn−k]enen−1en−2 · · · en−k+1

p′k(τn)

= enen−1en−2 · · · en−k+1 ·
−f [xn, ..., xn−k+1, α]

p′k(τn)

+
f [xn, xn−1, xn−2, ..., xn−k+1, xn−k]enen−1en−2 · · · en−k+1

p′k(τn)



256 V. Candela, N. Expósito, P. J. Mart́ınez−Aparicio & J. C. Trillo

=
enen−1en−2 · · · en−k+1

p′k(τn)

× (−f [xn, ..., xn−k+1, α] + f [xn, xn−1, xn−2, ..., xn−k+1, xn−k]) .

By using the property of symmetry of the divided differences and their definition
we reach from (4.12) to,

en+1 =
enen−1en−2 · · · en−k+1

p′k(τn)
(α− xn−k)(−f [xn−k, xn, xn−1, xn−2, ..., xn−k+1, α])

=
enen−1en−2 · · · en−k+1en−k

p′k(τn)
(−f [xn−k, xn, xn−1, xn−2, ..., xn−k+1, α])

= Mk,nenen−1en−2 · · · en−k+1en−k,

with

Mk,n =
−f [xn−k, xn, xn−1, xn−2, ..., xn−k+1, α]

p′k(τn)
.

By using again the properties of the divided differences, we get,

Mk,n =
−f [xn−k, xn, xn−1, xn−2, ..., xn−k+1, α]

p′k(τn)
=
−f (k+1)(ψn)

p′k(τn)(k + 1)!
,

where ψn is an intermediate point among xn−k, xn, xn−1, xn−2, ..., xn−k+1, α.
Since pk(x) = f(xn) + f [xn, xn−1](x − xn) + . . . + f [xn, xn−1, . . . , xn−k](x −

xn) . . . (x− xn−k−1), then,

p′k(x) = f [xn, xn−1] + f [xn, xn−1, xn−2](x− xn)(x− xn−1) + . . . . (4.13)

Since τn is an intermediate point among xn, xn−1, xn−2, ..., xn−k+1, xn−k, α, taking
limits,

lim
n→∞

p′k(τn) = f [α, α] = f ′(α) 6= 0.

Thus, there exists the limit,

mk = lim
n→∞

Mk =
−f (k+1)(α)

f ′(α)(k + 1)!
.

Before addressing the main theorem proving the order of convergence of a secant
polynomial method of degree k, we introduced also the following lemma.

Lemma 4.5. Let us consider for each polynomial gk(x) = xk − xk−1 − . . .− x− 1
the unique real root αk in the interval (1, 2). Then, the sequence (αk)∞k=1 is strictly
increasing and it has limit equal to 2.

Proof. Evaluating gk+1(x) at αk we get,

gk+1(αk) = αk+1
k −αkk−αk−1k − . . .−αk−1 = αk+1

k −2αkk+(αkk−αk−1k − . . .−αk−1).

Since αk is a root of gk(x) we have αkk − αk−1k − ... − αk − 1 = 0. Thus,

pk+1(αk) = αk+1
k − 2αkk = αkk(αk − 2). Taking into account that αk ∈ (1, 2), then

pk+1(αk) = αkk(αk − 2) < 0.
We already know because of Lemma 4.1 that αk+1 is the unique positive root

of gk+1, and it is placed in (1, 2). Moreover, lim
k→+∞

pk+1(x) = +∞ and αk > 0
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with pk+1(αk) < 0. Then, in order not to contradict Bolzano’s theorem, it must be
αk < αk+1.

Let us now see that lim
k→+∞

αk = 2. We have just proven that,

α1 < α2 < ... < αk < αk+1 < . . . ,

and therefore we deal with a strictly increasing sequence contained in the interval
[1, 2], and consequently upper bounded by 2. This means that there exists L =

lim
k→+∞

αk ≤ 2. Let us suppose by reduction to absurdity that L = lim
k→+∞

αk < 2.

We compute lim
k→+∞

gk(L) where,

gk(L)=Lk−
k−1∑
j=0

Lj=Lk− 1−Lk

1−L
=Lk−L

k−1

L−1
=
Lk+1−Lk−Lk+1

L−1
=
Lk+1−2Lk+1

L−1
,

and thus,

lim
k→+∞

gk(L) = lim
k→+∞

Lk+1 − 2Lk + 1

L− 1
= lim
k→+∞

Lk(L− 2) + 1

L− 1
=−∞ < 0.

It follows that ∃k0 ≥ 2 : gk0(L) < 0. By Lemma 4.1, gk0 has a unique posi-
tive root αk0 located in (1, 2). As gk0(L) < 0, it must be L < αk0 , what gives a
contradiction since the sequence of αk is strictly increasing and αk ≤ L ∀k. Thus,
L = lim

k→+∞
αk = 2.

Theorem 4.2. Let us suppose that the secant oynomial method with polynomials
of degree k is convegent for a given set of initial points towards a simple root α of
a k + 1 differentiable function f, that is, f(α) = 0, f ′(α) 6= 0. Then, the order of
convergence of the method is at most 2.

Proof. From Proposition 4.1, we obtain

en+1(mk)
1
k = en(mk)

1
k · en−1(mk)

1
k · en−2(mk)

1
k · · · en−k(mk)

1
k · Mk

mk
.

Actually, we deduce

ln
(
en+1(mk)

1
k

)
=ln

(
en(mk)

1
k · en−1(mk)

1
k · en−2(mk)

1
k · · · en−k(mk)

1
k · Mk

mk

)
=ln

(
en(mk)

1
k

)
+ ln

(
en−1(mk)

1
k

)
+ ln

(
en−2(mk)

1
k

)
+ ...

+ ln
(
en−k(mk)

1
k

)
+ ln

(
Mk

mk

)
. (4.14)

Calling Fi = ln(ei(mk)
1
k ), where i = n, n − 1, n − 2, ..., n − k, the expression

(4.14) can be rewritten as

Fn+1 = Fn + Fn−1 + Fn−2 + ...+ Fn−k + ln

(
Mk

mk

)
.

It is a linear and complete difference equation with constant coefficients.
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As we are dealing with the order of convergence, we will work with limits, so we
calculate limn→∞ ln

(
Mk

M

)
,

lim
n→∞

ln

(
Mk

M

)
= lim

n→∞
[ln(Mk)− ln(mk)]

= lim
n→∞

[ln(Mk)]− lim
n→∞

[ln(mk)]

= ln
(

lim
n→∞

Mk

)
− ln(mk)

= ln(mk)− ln(mk)

= 0.

Thus, we can consider the linear and homogeneous difference equation with
constant coefficients Fn+1 = Fn + Fn−1 + Fn−2 + ... + Fn−k. Its characteristic
equation is xk+1 − xk − xk−1 − xk−2 − ...− x− 1 = 0, whose positive roots provide
us the order of convergence.

Using Lemma 4.1, we know that its unique positive root αk+1 is in the interval
(1, 2). In the meantime, Lemma 4.4 ensures that any other root verifies that it
is strictly smaller than 1 in absolute value. Therefore, the order of convergence
becomes at most 2.

Remark 4.1. A strategy for increasing the approximation order for higher order
polynomials of the family introduced in this article is to initiate the method by
choosing adequately the starting points, taking profit of the previous methods of
lower order of approximation. That is, the first two points are chosen as close as
possible to the existing root, the next iterate is then obtained by applying Secant
method, which gives three starting points, and then Müller method can be consid-
ered to give another point, after this step the cubic method is used, and so on and
so forth to reach the desired polynomial degree, see [9].

5. Numerical experiments

In this section we carry out some simple numerical experiments to reinforce the
theoretical results, and see if the methods perform as expected. Our first experi-
ments deals with the function f1(x) = x sin (x3 + 7), which presents a simple root
at x = 0. We apply the cubic secant method, and the results can be seen in Table
1. We have used variable precision arithmetic with 200 digits. We give the ini-
tial starting points and the numerical convergence order attained. The iterations
were run until two consecutive iterates were closer than 10−150 in absolute value.
For example, for the cubic secant method the iteration was started with the points
−1,−0.5, 0.5, 1 and the attained order of convergence was 1.929 which corresponds
with the root of the polynomial g4(x) = x4 − x3 − x2 − x− 1 in the interval (1, 2),
just as pointed out by Theorem 4.2.

Since these methods are based on high degree polynomials, it is expected that
they work fine for functions with a chiefly similar polynomial form, and this is
what we try to show with our next experiment. We consider the function f3(x) =
x3− 5 ∗x2− 10 ∗x− 30 + 0.02 ∗ cos(x), and we run the generalized secant methods:
secant, Müller and cubic secant methods respectively. We want to approximate
the root of f3(x) close to x = 7. The results can be observed in Table 2. In order
to compute the convergence order in this experiment we have taken as exact root
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Table 1. Results obtained approximating the root x = 0 of the function f1(x) = x sin (x3 + 7) with an

error smaller than 10−150 between successive iterations.

Method Initial Points Number of iterations Error Order p

Cubic [−1,−0.5, 0.5, 1] 10 4.9553 · 10−187 1.929

Table 2. Results obtained by approximating the root close to x = 7 of the function f2(x) = x3 − 5 ∗
x2 − 10 ∗ x− 30 + 0.02 ∗ cos(x) with an error smaller than 10−50 between successive iterations.

Method Initial Points Iterations Error Order p CPU time

Secant [5, 100] 15 1.680 · 10−58 1.618 0.891

Müller [5, 10, 100] 11 2.800 · 10−57 1.833 1.047

Cubic [−5, 5, 8, 12] 6 4.445 · 10−70 1.908 1.203

the previously approximated root with a much higher precision. Again, the results
obtained are consistent with the developed theory.

Since polynomials of degree 5 or higher are not algebraically solvable, the imple-
mentation of the family of methods in Proposition 4.1 would require the approxima-
tion of roots of such polynomials by using specialized methods for polynomials, and
this in turn would increase significantly the overall computational cost. This com-
putational cost could be reduced by refining the methods via the strategy explained
in Remark 4.1.

6. Conclusions

A complete study on the order of convergence of the family of methods that arise
from the secant and Müller methods by considering higher degree polynomials have
been carried out. Rigorous proofs of the main results have been derived, observing
that the methods give a sequence of orders of convergence which are strictly increas-
ing and with limit 2. To obtain the theoretical results about the boundedness of
the absolute value of the complex roots of a polynomial we have used an interesting
new approach based on Cardano-Vieta’s formulas and the Cauchy theorem. Fi-
nally, some numerical results have been shown indicating that the numerical results
reinforce the proven theoretical results.
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