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ITERATIVE ALGORITHMS FOR THE
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SYLVESTER TRANSPOSE MATRIX
EQUATIONS WITH APPLICATION IN THE
PERIODIC STATE OBSERVER DESIGN OF

LINEAR SYSTEMS
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Abstract In this work, four iterative algorithms are provided for solving gen-
eralized discrete-time periodic Sylvester transpose matrix equations. Based
on the Jacobi iterative algorithm and hierarchical identification principle, the
present work provides the full-row rank Jacobi gradient iterative (RRJGI)
algorithm, the full-row rank accelerated Jacobi gradient iterative (RRAJGI)
algorithm, the full-column rank Jacobi gradient iterative (CRJGI) algorithm
and the full-column rank accelerated Jacobi gradient iterative (CRAJGI) al-
gorithm. The convergence of the algorithms are proved, and it is concluded
that the proposed iterative methods are convergent under certain conditions
for arbitrary initial matrices. Numerical results show the feasibility of the pro-
posed algorithms and its superiority compared with other algorithms. Finally,
an application example for the periodic state observer design of linear systems
is given.
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1. Introduction

Periodic matrix equations are closely related to the analysis and synthesis of periodic
control systems for various engineering and mechanical problems. The solutions of
discrete-time period Sylvester matrix equations play an important role in engineer-
ing problems, such as modern control theory, prediction and potential applications
in signal processing [3,6,14,17,18,34]. The reason is that the discrete-time periodic
matrix equation is an important part of the analysis and design of linear discrete pe-
riodic systems, and it has also received extensive attention [1,23,33]. For instance,
the discrete-time period coupled Sylvester matrix equations A1,jXj + YjB1,j = C1,j ,

A2,jXj+1 + YjB2,j = C2,j ,
(1.1)
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is encountered in the periodic discrete-time description subsystem [5,28].
In recent years, many scholars have proposed effective methods for solving pe-

riodic matrix equations. For example, in [9], Hajarian based on the bi-conjugate
residual algorithm (BCR) proposed a new numerical method for solving discrete-
time periodic Sylveste matrix equations

AiXiBi + CiXi+1Di = Ei, i ∈ 1, γ. (1.2)

In addition, in [8] he also proposed two iterative algorithms based on the LSQR
method for solving Eq. (1.2) and Ma et al. in [21] generalized the factor gradient
iterative method (FGI) for solving Eq. (1.2). Wang and Song in [29] proposed
the Jacobi gradient iterative algorithm (JGI) and the accelerated JGI algorithm for
solving the following periodic matrix equations

p∑
s=1

Ai,sXiBi,s +

q∑
t=1

Ei,tXi+1Fi,t = Ci, i ∈ 1, γ. (1.3)

In [10], Hajarian provided four new iterative methods to find the reflexive periodic
solutions of the general periodic matrix equations

σ−1∑
s=0

(Ai,sXi+sBi,s) +

σ−1∑
t=0

(Ci,tYi+tDi,t) = Ni, i = 1, 2, · · · , σ. (1.4)

Ma et al. in [19] proposed a finite iterative algorithm to find the least squares
solutions of periodic matrix equations (1.4). Lv et al. in [24] developed the least
square method to give an iterative algorithm for solving the generalized periodic
discrete-time coupled Sylvester matrix equationsA1,jXjB1,j + C1,jYjD1,j = E1,j ,

A2,jXj+1B2,j + C2,jYjD2,j = E2,j .
(1.5)

Chen et al. in [4] constructed a conjugate gradient-based (CGB) method for solv-
ing Eq. (1.5). In [25], Ma and Yan established an improved conjugate gradient
algorithm to solve the generalized discrete-time period Sylveste matrix equations

h∑
j=1

(AijXiBij + CijXi+1Dij + EijYiFij +GijYi+1Hij) = Mi, i = 1, 2, · · · , T.

(1.6)

Moreover, in [11], Hajarian proposed the gradient based iterative (GI) algorithm to
solve Eq. (1.6). In [7], he also derived the matrix form of the conjugate gradient
normal equations residual minimizing (MCGNR) algorithm to find the least squares
solution group of discrete-time periodic coupled matrix equationsA1,tXtB1,t + C1,tXt+1D1,t + E1,tYtF1,t = G1,t,

A2,tXtB2,t + C2,tXt+1D2,t + E2,tYtF2,t = G2,t.
(1.7)

There are also many studies on the coupled Sylvestre transpose matrix equa-
tion in recent years. For example, in [2] Boonruangkan et al. based on gradients
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and hierarchical identification principle, built an iterative algorithm for solving the
generalized Sylvester-transpose matrix equation

p∑
i=1

AiXBi +

q∑
j=1

CjX
TDj = F . (1.8)

Tansri et al. in [27] developed a conjugate-gradient type algorithm to produce
approximate least-squares (LS) solution for an inconsistent generalized Sylvester-
transpose matrix equation (1.8). Kittisopaporn et al. in [20] established an effective
gradient-descent iterative algorithm for solving Eq. (1.8). At present, there have
been a lot of research results on iterative algorithms for solving various matrix
equations. Now we don’t state in detail. Please refer to references [12,13,15,16,26,
30–32].

This paper focus on the following generalized discrete-time periodic Sylvester
transpose matrix equations

m∑
j=1

(Ei,jYiFi,j +Gi,jY
T
i+1Hi,j) = Mi, i ∈ 1, ξ, (1.9)

where the coefficient matrices Ei,j , Gi,j ∈ Rm×m, Fi,j , Hi,j ∈ Rn×n, Mi ∈ Rm×n,
and unknown matrices Yi ∈ Rm×n are periodic with period ξ, i.e. Ei+ξ,j = Ei,j ,
Fi+ξ,j = Fi,j , Gi+ξ,j = Gi,j , Hi+ξ,j = Hi,j , Mi+ξ = Mi, Yi+ξ = Yi, for i ∈ 1, ξ,
j ∈ 1,m. The problem for solving periodic matrix equations appears in various
application fields, but there are few researches on the iterative solutions of periodic
matrix equations. In this paper, based on Jacobi iterative algorithm, four iterative
algorithms are proposed to solve the generalized discrete-time periodic Sylvester
transpose matrix equations (1.9). The main contributions of this paper are as
follows.

• In this present work, four iterative algorithms are presented for Eq.
(1.9), which are RRJGI algorithm, CRJGI algorithm, RRAJGI algo-
rithm and CRAJGI algorithm. Moreover, four algorithms presented
in this paper are not only suitable for solving the above generalized
discrete-time periodic Sylvester transpose matrix equations, but also
can solve the numerical solutions of the coupled discrete-time periodic
matrix equations if we give some small changes.
• Numerical examples show that the proposed algorithms have higher
convergence efficiency compared with the GI algorithm [11], the relaxed
gradient based iterative (RGI) algorithm [26] and the accelerated gra-
dient based iterative (AGI) algorithm [30] because less cost is used in
each iterative step and the data is sufficient to complete an update. And
each update uses less data, which can greatly save memory space and
improve operation efficiency.
• By applying Algorithm 2 to the linear systems, we obtain Algorithm 5
for solving robust and minimum norm observer design of linear systems
and a group of data is given to deduce the gain of the state observer,
which shows that the proposed algorithm provides a choice for solving
linear systems.

The rest of this article is arranged as follows. In Section 2, we provide several
basic notations and related theories. In Section 3, we present RRJGI algorithm,
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RRAJGI algorithm, CRJGI algorithm and CRAJGI algorithm for solving Eq. (1.9),
and also analyze the convergence of four algorithms. In addition, we prove that for
any given initial matrices, the iterative solutions obtained by the proposed algo-
rithms will converge to the exact solutions. In Section 4, we give two examples
to demonstrate the superiority of the proposed algorithms. The numerical results
indicate that these four algorithms are ascendant to the GI algorithm [11], the RGI
algorithm [26] and the AGI algorithm [30]. In Section 5, an application example for
solving the periodic state observer design of linear discrete system is given. Finally,
in Section 6, we give a short conclusion.

2. Preliminaries

Throughout this paper, we use the following notations. Let Rs×t be the set of all
matrices of size s× t over the real number field R. For A ∈ Rs×t, AT , rank(A),
ρ(A), λ(A) and tr (A) represent the transpose, the rank, the spectral radius, the
eigenvalues and the trace of A, respectively. For arbitrary integers p and q with
p ≤ q, we denote p, q = {p, p + 1, · · · , q}. For any matrices A,B ∈ Rs×t, A ⊗
B represented the Kronecker product of A and B. For X = (x1, x2, · · · , xn) ∈
Rm×n, vec (X) =

(
xT
1 , x

T
2 , · · · , xT

n

)T
is represented as the streching operator of

X. By combining vector operator with Kronecker product, we get vec (AXB) =(
BT ⊗A

)
vec (X). The real inner product of two matrices A,B ∈ Rs×t is given

by ⟨A,B⟩ = tr
(
ATB

)
. ∥A∥ stands for the Frobenious norm of the matrix A and

||A||2 =
√

λmax(ATA) represents the 2-norm of the matrix A. I stands for the
identity matrix of the appropriate dimension.

Lemma 2.1. [13] Consider the matrix equation

A1XB1 = C, (2.1)

where A1 ∈ Rm×r, B1 ∈ Rs×n and C ∈ Rm×n are known matrices, and X ∈ Rr×s

is unknown matrix. Then, the solution of Eq. (2.1) can be obtained by the following
algorithm

X (k + 1) = X (k) + µAT
1 (C −A1X (k)B1)B

T
1 , (2.2)

with

0 < µ <
2

∥A1∥22 ∥B1∥22
. (2.3)

Lemma 2.2. [22] The unique solution of Sx = b can be given by x = S†b, where
S† is the unique Moore-Penrose inverse of S. Especially, if S is a full-column rank
matrix, then the unique solution is given by

x = (STS)−1ST b, (2.4)

if S is a full-row rank matrix, then the unique minimum norm solution is

x = ST (SST )−1b. (2.5)
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Next, we give a lemma by using of Lemma 2.2. In order to convenient expression,
the following symbols are defined.

Ej = diag(E1,j , E2,j , · · · , Eξ,j), (2.6)

Fj = diag(F1,j , F2,j , · · · , Fξ,j), (2.7)

Y = diag(Y1, Y2, · · · , Yξ), (2.8)

M = diag(M1,M2, · · · ,Mξ), (2.9)

Gj =



0 G1,j 0

...
. . .

0 0 Gξ−1,j

Gξ,j 0 · · · 0


, Hj =



0 · · · 0 Hξ,j

H1,j 0 0

. . .
...

0 Hξ−1,j 0


. (2.10)

Lemma 2.3. Let A =
m∑
j=1

[FT
j ⊗ Ej + (HT

j ⊗ Gj)P ], where P is the permutation

matrix that satisfies vec(YT ) = Pvec(Y), if A is a full-column rank matrix, then
the unique solution of Eq. (1.9) is given by

vec(Y) = (ATA)−1AT vec(M), (2.11)

if A is a full-row rank matrix, then the unique minimum norm solution of Eq. (1.9)
is

vec(Y) = AT (AAT )−1vec(M). (2.12)

Proof. Eq. (1.9) can be equivalent to

m∑
j=1

(EjYFj + GjYTHj) = M, (2.13)

where Ej ,Fj ,Gj ,Hj and Y,M are defined as (2.6)-(2.10). By the properties of
the Kronecker product and the vector function, Eq. (1.9) can be converted to the
following form

{
m∑
j=1

[FT
j ⊗ Ej + (HT

j ⊗ Gj)P ]}vec(Y) = vec(M), (2.14)

i.e.

Avec(Y) = vec(M). (2.15)

Therefore, according to Lemma 2.2 if A is a full-column rank matrix, then Eq. (1.9)
has a unique solution, and if A is a full-row rank matrix, then Eq. (1.9) has unique
minimum norm solutions and completed the proof.

3. Iterative algorithms and convergence analysis

In this section, by using the Jacobi iterative algorithm we construct four iterative
algorithms for solving Eq.(1.9). In Lemma 2.1, when the size of the coefficient



Iterative algorithms and application 291

matrix is too large, it will require longer running time and more storage space for
solving equation (2.1) by (2.2). Therefore, the big coefficient matrix is divided into
the corresponding diagonal matrix.

According to the above analysis, based on Jacobi iterative algorithm and hi-
erarchical identification principle, we propose the RRJGI algorithm, RRAJGI al-
gorithm, CRJGI algorithm and CRAJGI algorithm for computing the numerical
solutions of Eq. (1.9). First, the coefficient matrices Ei,j , Fi,j , Gi,j , Hi,j are decom-
posed into the following form:

Ei,j = D
(1)
i,j +R

(1)
i,j , (3.1)

Fi,j = D
(2)
i,j +R

(2)
i,j , (3.2)

Gi,j = D
(3)
i,j +R

(3)
i,j , (3.3)

Hi,j = D
(4)
i,j +R

(4)
i,j , (3.4)

where D
(1)
i,j , D

(2)
i,j , D

(3)
i,j , D

(4)
i,j are the diagonal part of Ei,j , Fi,j , Gi,j , Hi,j , i ∈ 1, ξ,

j ∈ 1,m , respectively. Thus, D
(1)
i,j , D

(2)
i,j , D

(3)
i,j andD

(4)
i,j satisfy the following relations

(D
(1)
i,j )

T = D
(1)
i,j , (D

(2)
i,j )

T = D
(2)
i,j , (3.5)

(D
(3)
i,j )

T = D
(3)
i,j , (D

(4)
i,j )

T = D
(4)
i,j . (3.6)

Next, we present two intermediary matrices b
(1)
i , b

(2)
i as follows:

b
(1)
i = Mi −

m∑
j=1

Gi,jY
T
i+1Hi,j , (3.7)

b
(2)
i = Mi −

m∑
j=1

Ei,jYiFi,j . (3.8)

Therefore, Eq. (1.9) can be simply written as

m∑
j=1

Ei,jYiFi,j = b
(1)
i , (3.9)

m∑
j=1

Gi,jY
T
i+1Hi,j = b

(2)
i . (3.10)

Substituting (3.1)-(3.4) into (3.9) and (3.10), respectively, we have

m∑
j=1

(D
(1)
i,j +R

(1)
i,j )Yi(D

(2)
i,j +R

(2)
i,j ) = b

(1)
i , (3.11)

m∑
j=1

(D
(3)
i,j +R

(3)
i,j )Y

T
i+1(D

(4)
i,j +R

(4)
i,j ) = b

(2)
i , (3.12)

that is,

m∑
j=1

D
(1)
i,j YiD

(2)
i,j = b

(1)
i −

m∑
i=1

(D
(1)
i,j YiR

(2)
i,j +R

(1)
i,j YiD

(2)
i,j +R

(1)
i,j YiR

(2)
i,j ), (3.13)



292 R. Qi & C. Song

m∑
j=1

D
(3)
i,j Y

T
i+1D

(4)
i,j = b

(2)
i −

m∑
i=1

(D
(3)
i,j Y

T
i+1R

(4)
i,j +R

(3)
i,j Y

T
i+1D

(4)
i,j +R

(3)
i,j Y

T
i+1R

(4)
i,j ).

(3.14)

By Lemma 2.1, we can derive the iterative algorithms for solving (3.13) and (3.14)

Y
(1)
i (k + 1) = Y

(1)
i (k) + µ

m∑
j=1

D
(1)
i,j [b

(1)
i −

m∑
j=1

(D
(1)
i,j YiR

(2)
i,j +R

(1)
i,j YiD

(2)
i,j

+R
(1)
i,j YiR

(2)
i,j )−

m∑
j=1

D
(1)
i,j Yi(k)D

(2)
i,j ]D

(2)
i,j , (3.15)

Y
(2)T
i (k + 1) = Y

(2)T
i (k) + µ

m∑
j=1

D
(3)
i−1,j [b

(2)
i−1 −

m∑
j=1

(D
(3)
i−1,jY

T
i R

(4)
i−1,j

+R
(3)
i−1,jY

T
i D

(4)
i−1,j +R

(3)
i−1,jY

T
i R

(4)
i−1,j)

−
m∑
j=1

D
(3)
i−1,jY

T
i (k)D

(4)
i−1,j ]D

(4)
i−1,j . (3.16)

Now, we take the transpose of both sides of algorithm (3.16), and we can get

Y
(2)
i (k + 1)

=Y
(2)
i (k) + µ

m∑
j=1

D
(4)
i−1,j [b

(2)
i−1 −

m∑
j=1

(D
(3)
i−1,jY

T
i R

(4)
i−1,j +R

(3)
i−1,jY

T
i D

(4)
i−1,j

+R
(3)
i−1,jY

T
i R

(4)
i−1,j)−

m∑
j=1

D
(3)
i−1,jY

T
i (k)D

(4)
i−1,j ]

TD
(3)
i−1,j . (3.17)

Substituting (3.7) and (3.8) into (3.15) and (3.17), we can obtain

Y
(1)
i (k + 1) = Y

(1)
i (k) + µ

m∑
i=1

D
(1)
i,j [Mi −

n∑
q=1

Gi,jY
T
i+1Gi,j −

m∑
j=1

(D
(1)
i,j YiR

(2)
i,j

+R
(1)
i,j YiD

(2)
i,j +R

(1)
i,j YiR

(2)
i,j )−

m∑
j=1

D
(1)
i,j Yi(k)D

(2)
i,j ]D

(2)
i,j , (3.18)

Y
(2)
i (k + 1) = Y

(2)
i (k) + µ

m∑
j=1

D
(4)
i−1,j [Mi−1 −

m∑
j=1

Ei−1,jYi−1Fi−1,j

−
m∑
j=1

(D
(3)
i−1,jY

T
i R

(4)
i−1,j +R

(3)
i−1,jY

T
i D

(4)
i−1,j +R

(3)
i−1,jY

T
i R

(4)
i−1,j)

−
m∑
j=1

D
(3)
i−1,jYi(k)

TD
(4)
i−1,j ]

TD
(3)
i−1,j . (3.19)

To make the iterative procedure operate correctly, we can substitute the un-
known matrix Yi with the iterative solution Yi (k) acquired at the kth moment, so
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we can obtain the following algorithms

Y
(1)
i (k + 1) = Yi (k) + µ

m∑
j=1

D
(1)
i,j [Mi −

m∑
j=1

(Ei,jYi (k)Fi,j +Gi,jY
T
i+1 (k)Hi,j)]D

(2)
i,j ,

(3.20)

Y
(2)
i (k + 1) = Yi (k) + µ

m∑
j=1

D
(4)
i−1,j [Mi−1 −

m∑
j=1

(Ei−1,jYi−1 (k)Fi−1,j

+Gi−1,jY
T
i (k)Hi−1,j)]

TD
(3)
i−1,j . (3.21)

3.1. The RRJGI algorithm, the RRAJGI algorithm and con-
vergence analysis

Now, we introduce the full-row rank Jacobi gradient based iterative (RRJGI) algo-
rithm for solving matrix equations (1.9).

Algorithm 1 (The RRJGI algorithm)

Step 1. Given the coefficient matrices Ei,j , Gi,j ∈ Rm×m, Fi,j , Hi,j ∈ Rn×n and
Mi ∈ Rm×n for i ∈ 1, ξ, j ∈ 1,m, choose an appropriate convergence number µ and

the initial matricesKi(0) ∈ Rm×n, Yi(0) =
m∑
j=1

(D
(1)
i,j Ki(0)D

(2)
i,j +D

(4)
i,j K

T
i+1(0)D

(3)
i,j ).

Step 2. Set Ki+ξ(0) = Ki(0), Yi+ξ(0) = Yi(0), Ei+ξ,j = Ei,j , Fi+ξ,j = Fi,j , Gi+ξ,j

= Gi,j , Hi+ξ,j = Hi,j ,Mi+ξ = Mi, D
(1)
i+ξ,j = D

(1)
i,j , D

(2)
i+ξ,j = D

(2)
i,j , D

(3)
i+ξ,j = D

(3)
i,j , and

D
(4)
i+ξ,j = D

(4)
i,j for i ∈ 1, ξ, j ∈ 1,m. Let k := 0.

Step 3. If δ(k) =

ξ∑
i=1

||Mi−
∑m

j=1 (Ei,jYi(k)Fi,j+Gi,jY
T
i+1(k)Hi,j)||2

ξ∑
i=1

||Mi||2
< ε, stop; otherwise,

go to Step 4.

Step 4. Compute the following sequences

K1,i(k + 1) = Ki(k) + µ{Mi/2−
m∑
j=1

Ei,j [

m∑
j=1

(D
(1)
i,j Ki(k)D

(2)
i,j

+D
(4)
i,j K

T
i+1(k)D

(3)
i,j )]Fi,j},

K2,i(k + 1) = Ki(k) + µ{Mi−1/2−
m∑
j=1

Gi−1,j [

m∑
j=1

(D
(1)
i−1,jKi−1(k)D

(2)
i−1,j

+D
(4)
i−1,jK

T
i (k)D

(3)
i−1,j)]

THi−1,j},

Ki(k + 1) =
K1,i(k + 1) +K2,i(k + 1)

2
,

Ki+ξ(k + 1) = Ki(k + 1),

Yi(k + 1) =

m∑
j=1

(D
(1)
i,j Ki(k + 1)D

(2)
i,j +D

(4)
i,j K

T
i+1(k + 1)D

(3)
i,j ),

Yi+ξ(k + 1) = Yi(k + 1).
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Step 5. Let k := k + 1, go to Step 3.

Remark 3.1. The construction of Algorithm 1 is based on the splitting of matrix

equations and by the introduction of matrices b
(1)
i and b

(2)
i , we divide Eq. (1.9)

into Eq. (3.9) and Eq. (3.10), where b
(1)
i + b

(2)
i = Mi. It should be noted that the

decomposition form of Eq. (1.9) is arbitrary, and the values of b
(1)
i and b

(2)
i do not

affect the progress of the algorithm. For convenience, we take b
(1)
i = b

(2)
i = Mi/2

in Algorithm 1. Then, based on the hierarchical identification principle and Jacobi
iterative method, the iterative algorithmsK1,i(k+1) andK2,i(k+1) are constructed
to solve Eq. (3.9) and Eq. (3.10), respectively. Next combine K1,i(k + 1) and
K2,i(k + 1) to get the iterative value Ki(k + 1), and finally the iterative solution
Yi(k + 1) of Eq. (1.9) is obtained.

In order to improve the convergence speed and save time, we introduce an ap-
propriate factor ω2, 0 < ω2 < 1 on the basis of RRJGI algorithm and propose an
full-row rank accelerated Jacobi gradient based iterative (RRAJGI) algorithm for
solving Eq. (1.9).

Algorithm 2 (The RRAJGI algorithm)

Step 1. Given the coefficient matrices Ei,j , Gi,j ∈ Rm×m, Fi,j , Hi,j ∈ Rn×n and
Mi ∈ Rm×n for i ∈ 1, ξ, j ∈ 1,m, choose the initial matrices Ki(0),K2,i(0) ∈

Rm×n, Yi(0) =
m∑
j=1

(D
(1)
i,j Ki(0)D

(2)
i,j +D

(4)
i,j KT

i+1(0)D
(3)
i,j ).

Step 2. Set Ki+ξ(0) = Ki(0), Yi+ξ(0) = Yi(0), Ei+ξ,j = Ei,j , Fi+ξ,j = Fi,j , Gi+ξ,j

= Gi,j , Hi+ξ,j = Hi,j ,Mi+ξ = Mi, D
(1)
i+ξ,j = D

(1)
i,j , D

(2)
i+ξ,j = D

(2)
i,j , D

(3)
i+ξ,j = D

(3)
i,j and

D
(4)
i+ξ,j = D

(4)
i,j for i ∈ 1, ξ, j ∈ 1,m. Let k := 0.

Step 3. If δ(k) =

ξ∑
i=1

||Mi−
∑m

j=1 (Ei,jYi(k)Fi,j+Gi,jY
T
i+1(k)Hi,j)||2

ξ∑
i=1

||Mi||2
< ε, stop; otherwise,

go to Step 4.

Step 4. Compute the following sequences

K1,i(k + 1) = Ki(k) + µω2{Mi/2−
m∑
j=1

Ei,j [

m∑
j=1

(D
(1)
i,j Ki(k)D

(2)
i,j

+D
(4)
i,j K

T
i+1(k)D

(3)
i,j )]Fi,j},

K̂i(k) = (1− ω2)K1,i(k + 1) + ω2K2,i(k),

K̂i+ξ(k) = K̂i(k),

K2,i(k + 1) = K̂i(k) + µ(1− ω2){Mi−1/2−
m∑
j=1

Gi−1,j [

m∑
j=1

(D
(1)
i−1,jK̂i−1(k)D

(2)
i−1,j

+D
(4)
i−1,jK̂

T
i (k)D

(3)
i−1,j)]

THi−1,j},
Ki(k + 1) = (1− ω2)K1,i(k + 1) + ω2K2,i(k + 1),

Ki+ξ(k + 1) = Ki(k + 1),
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Yi(k + 1) =

m∑
j=1

(D
(1)
i,j Ki(k + 1)D

(2)
i,j +D

(4)
i,j K

T
i+1(k + 1)D

(3)
i,j ),

Yi+ξ(k + 1) = Yi(k + 1).

Step 5. Let k := k + 1, go to Step 3.

Theorem 3.1. Let A be a full-row rank matrix, the iterative solution K(k) =
(K1(k), K2(k), · · · ,Kξ(k)) given by Algorithm 1 (RRJGI) converges to the unique
solutions K∗(k) = (K∗

1 (k),K
∗
2 (k), · · · , K∗

ξ (k)) for arbitrary initial matrices K(0) =
(K1(0),K2(0), · · · ,Kξ(0)), if µ satisfies

0 < µ <
2

ξ∑
i=1

m∑
j=1

(∥∥∥D(1)
i,j

∥∥∥2∥∥∥D(2)
i,j

∥∥∥2 + ∥∥∥D(3)
i,j

∥∥∥2∥∥∥D(4)
i,j

∥∥∥2) . (3.22)

Proof. The error matrices are defined as follows

K̃i(k) = Ki(k)−K∗
i , K̃1,i(k) = K1,i(k)−K∗

i , K̃2,i(k) = K2,i(k)−K∗
i ,

(3.23)

and

φ̃i(k) =

m∑
j=1

(D
(1)
i,j K̃i(k)D

(2)
i,j +D

(4)
i,j K̃

T
i+1(k)D

(3)
i,j ). (3.24)

From (3.23)-(3.26), Algorithm 1 and Remark 1, it is obvious that

K̃1,i(k + 1)

= K1,i(k + 1)−K∗
i

= Ki(k)−K∗
i + µ{Mi/2−

m∑
j=1

Ei,j [

m∑
j=1

(D
(1)
i,j Ki(k)D

(2)
i,j +D

(4)
i,j K

T
i+1(k)D

(3)
i,j )]Fi,j}

= K̃i(k) + µ{
m∑
j=1

Ei,j [

m∑
j=1

(D
(1)
i,j K

∗
i D

(2)
i,j +D

(4)
i,j K

∗T
i+1D

(3)
i,j )]Fi,j}

− µ{
m∑
j=1

Ei,j [

m∑
j=1

(D
(1)
i,j Ki(k)D

(2)
i,j +D

(4)
i,j K

T
i+1(k)D

(3)
i,j )]Fi,j}

= K̃i(k) + µ{
m∑
j=1

Ei,j [

m∑
j=1

(D
(1)
i,j (K

∗
i −Ki(k))D

(2)
i,j

+D
(4)
i,j (K

∗T
i+1 −KT

i+1(k))D
(3)
i,j )]Fi,j}

= K̃i(k)− µ{
m∑
j=1

Ei,j [

m∑
j=1

(D
(1)
i,j K̃i(k)D

(2)
i,j +D

(4)
i,j K̃

T
i+1(k)D

(3)
i,j )]Fi,j}

= K̃i(k)− µ

m∑
j=1

Ei,jφ̃i(k)Fi,j , (3.25)

and

K̃2,i(k + 1)
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= K2,i(k)−K∗
i

= Ki(k)−K∗
i + µ{Mi−1/2−

m∑
j=1

Gi−1,j [

m∑
j=1

(D
(1)
i−1,jKi−1(k)D

(2)
i−1,j

+D
(4)
i−1,jK

T
i (k)D

(3)
i−1,j)]

THi−1,j}

= K̃i(k) + µ{
m∑
j=1

Gi−1,j [

m∑
j=1

(D
(1)
i−1,j(K

∗
i −Ki−1(k))D

(2)
i−1,j

+D
(4)
i−1,j(K

∗T
i −KT

i (k))D
(3)
i−1,j)]

THi−1,j}

= K̃i(k)− µ{
m∑
j=1

Gi−1,j [

m∑
j=1

(D
(1)
i−1,jK̃i−1(k)D

(2)
i−1,j +D

(4)
i−1,jK̃

T
i (k)D

(3)
i−1,j)]

THi−1,j}

= K̃i(k)− µ

m∑
j=1

Gi−1,jφ̃
T
i−1(k)Hi−1,j . (3.26)

Taking the square of the norm on both sides of (3.25) and (3.26), it can be derived

∥∥∥K̃1,i(k + 1)
∥∥∥2 =

∥∥∥K̃i(k)
∥∥∥2 − 2µtr(K̃T

i (k)

m∑
j=1

Ei,jφ̃i(k)Fi,j)

+ µ2

∥∥∥∥∥∥
m∑
j=1

Ei,jφ̃i(k)Fi,j

∥∥∥∥∥∥
2

, (3.27)

∥∥∥K̃2,i(k + 1)
∥∥∥2 =

∥∥∥K̃i(k)
∥∥∥2 − 2µtr(K̃T

i (k)

m∑
j=1

Gi−1,jφ̃
T
i−1(k)Hi−1,j)

+ µ2

∥∥∥∥∥∥
m∑
j=1

Gi−1,jφ̃
T
i−1(k)Hi−1,j

∥∥∥∥∥∥
2

. (3.28)

The function W (k) is defined as

W (k) =

ξ∑
i=1

∥∥∥K̃i(k)
∥∥∥2. (3.29)

Thus, through (3.27)-(3.29) and Algorithm 1, we have

W (k + 1)

=

ξ∑
i=1

∥∥∥K̃i(k + 1)
∥∥∥2

=

ξ∑
i=1

∥∥∥∥∥K̃1,i(k + 1) + K̃2,i(k + 1)

2

∥∥∥∥∥
2

≤
ξ∑

i=1

(1
2

∥∥∥K̃1,i(k + 1)
∥∥∥2 + 1

2

∥∥∥K̃2,i(k + 1)
∥∥∥2)
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=

ξ∑
i=1

[∥∥∥K̃i(k)
∥∥∥2 − µtr(K̃T

i (k)

m∑
j=1

Ei,jφ̃i(k)Fi,j) +
1

2
µ2

∥∥∥∥∥∥
m∑
j=1

Ei,jφ̃i(k)Fi,j

∥∥∥∥∥∥
2

− µtr(K̃T
i (k)

m∑
j=1

Gi−1,jφ̃
T
i−1(k)Hi−1,j) +

1

2
µ2

∥∥∥∥∥∥
m∑
j=1

Gi−1,jφ̃
T
i−1(k)Hi−1,j

∥∥∥∥∥∥
2]

=

ξ∑
i=1

[∥∥∥K̃i(k)
∥∥∥2 − µtr(K̃T

i (k)

m∑
j=1

Ei,jφ̃i(k)Fi,j) +
1

2
µ2

∥∥∥∥∥∥
m∑
j=1

Ei,jφ̃i(k)Fi,j

∥∥∥∥∥∥
2

− µtr(K̃T
i+1(k)

m∑
j=1

Gi,jφ̃
T
i (k)Hi,j) +

1

2
µ2

∥∥∥∥∥∥
m∑
j=1

Gi,jφ̃
T
i (k)Hi,j

∥∥∥∥∥∥
2]

=

ξ∑
i=1

[∥∥∥K̃i(k)
∥∥∥2 − µtr(φ̃i(k)

m∑
j=1

Ei,jK̃
T
i (k)Fi,j + φ̃T

i (k)

m∑
j=1

Gi,jK̃
T
i+1(k)Hi,j)

+
1

2
µ2

∥∥∥∥∥∥
m∑
j=1

Ei,jφ̃i(k)Fi,j

∥∥∥∥∥∥
2

+
1

2
µ2

∥∥∥∥∥∥
m∑
j=1

Gi,jφ̃
T
i (k)Hi,j

∥∥∥∥∥∥
2]

≤W (k)− µ

ξ∑
i=1

∥φ̃i(k)∥2 +
1

2
µ2

ξ∑
i=1

[

m∑
j=1

(∥Ei,j∥2∥Fi,j∥2 + ∥Gi,j∥2∥Hi,j∥2)]∥φ̃i(k)∥2

=W (k)− 1

2
µ{2− µ

ξ∑
i=1

[ m∑
j=1

(∥Ei,j∥2∥Fi,j∥2 + ∥Gi,j∥2∥Hi,j∥2)
]
}

ξ∑
i=1

∥φ̃i(k)∥2

≤W (0)− 1

2
µ{2− µ

ξ∑
i=1

[ m∑
j=1

(∥Ei,j∥2∥Fi,j∥2 + ∥Gi,j∥2∥Hi,j∥2)
]
}

k∑
t=0

ξ∑
i=1

∥φ̃i(t)∥2.

Furthermore, if the convergence number µ satisfies (3.22), it can be obtained

k∑
t=0

ξ∑
i=1

∥φ̃i(t)∥2 < ∞. (3.30)

Because of the conditions that the series converges, when t → ∞, it has

ξ∑
i=1

∥φ̃i(t)∥2 → 0. (3.31)

Then it follows from (3.25) and (3.31) that

lim
t→∞

φ̃i(t) = 0, (3.32)

or

lim
t→∞

[ m∑
j=1

(D
(1)
i,j K̃i(t)D

(2)
i,j +D

(4)
i,j K̃

T
i+1(t)D

(3)
i,j )

]
= 0. (3.33)
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Now, due to Lemma 2.3, it gets

lim
t→∞

K̃i(t) = 0. (3.34)

This completes the proof of Theorem 3.1.
To prove the following Theorem 3.2, we define several symbols

M = diag
( m∑

j=1

(FT
1,j ⊗ E1,j),

m∑
j=1

(FT
2,j ⊗ E2,j), · · · ,

m∑
j=1

(FT
ξ,j ⊗ Eξ,j)

)
, (3.35)

N = diag
( m∑

j=1

(D
(2)
1,j ⊗D

(1)
1,j ),

m∑
j=1

(D
(2)
2,j ⊗D

(1)
2,j ), · · · ,

m∑
j=1

(D
(2)
ξ,j ⊗D

(1)
ξ,j )

)
, (3.36)

P = diag
( m∑

j=1

(HT
ξ,j ⊗Gξ,j)P,

m∑
j=1

(HT
1,j ⊗G1,j)P, · · · ,

m∑
j=1

(HT
ξ−1,j ⊗Gξ−1,j)P

)
,

(3.37)

Q = diag
( m∑

j=1

(D
(3)
ξ,j ⊗D

(4)
ξ,j )P,

m∑
j=1

(D
(3)
1,j ⊗D

(4)
1,j )P, · · · ,

m∑
j=1

(D
(3)
ξ−1,j ⊗D

(4)
ξ−1,j)P

)
,

(3.38)

R =



0
m∑
j=1

(D
(3)
1,j ⊗D

(4)
1,j )P 0

. . .

0 0
m∑
j=1

(D
(3)
ξ−1,j ⊗D

(4)
ξ−1,j)P

m∑
j=1

(D
(3)
ξ,j ⊗D

(4)
ξ,j )P 0 · · · 0


,

(3.39)

V =



0 · · · 0
m∑
j=1

(D
(2)
ξ,j ⊗D

(1)
ξ,j )

m∑
j=1

(D
(2)
1,j ⊗D

(1)
1,j ) 0 0

. . .

0
m∑
j=1

(D
(2)
ξ−1,j ⊗D

(1)
ξ−1,j) 0


. (3.40)

Theorem 3.2. If A is a full-row rank matrix, then the iterative solution K(k) =
(K1(k),K2(k), · · · ,Kξ(k)) given by Algorithm 1 (RRJGI) converges to the unique
solution K∗ = (K∗

1 ,K
∗
2 , · · · ,K∗

ξ ) for arbitrary initial matrices K(0) = (K1(0),
K2(0), · · · ,Kξ(0)), if and only if

0 < µ <
4

λmax(MN +MR+ PV + PQ)
. (3.41)

Proof. From Algorithm 1 (RRJGI), (3.25) and (3.26), we have

K̃i(k + 1) =
K̃1,i(k + 1) + K̃2,i(k + 1)

2
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= K̃i(k)−
µ

2

m∑
j=1

Ei,jφ̃i(k)Fi,j −
µ

2

m∑
j=1

Gi−1,jφ̃
T
i−1(k)Hi−1,j . (3.42)

Taking the vec operator on both sides of (3.24) and (3.42), we can obtain

vec(φ̃i(k)) =

m∑
j=1

(D
(2)
i,j ⊗D

(1)
i,j )vec(K̃i(k)) +

m∑
j=1

(D
(3)
i,j ⊗D

(4)
i,j )Pvec(K̃i+1(k)),

(3.43)

and

vec(K̃i(k + 1))

= vec(K̃i(k))−
µ

2

m∑
j=1

(FT
i,j ⊗ Ei,j)vec(φ̃i(k))

− µ

2

m∑
j=1

(HT
i−1,j ⊗Gi−1,j)Pvec(φ̃i−1(k))

= vec(K̃i(k))−
µ

2

m∑
j=1

(FT
i,j ⊗ Ei,j)

m∑
j=1

(D
(2)
i,j ⊗D

(1)
i,j )vec(K̃i(k))

− µ

2

m∑
j=1

(FT
i,j ⊗ Ei,j)

m∑
j=1

(D
(3)
i,j ⊗D

(4)
i,j )Pvec(K̃i+1(k))

− µ

2

m∑
j=1

(HT
i−1,j ⊗Gi−1,j)P

m∑
j=1

(D
(2)
i−1,j ⊗D

(1)
i−1,j)vec(K̃i−1(k))

− µ

2

m∑
j=1

(HT
i−1,j ⊗Gi−1,j)P

m∑
j=1

(D
(3)
i−1,j ⊗D

(4)
i−1,j)Pvec(K̃i(k)). (3.44)

It follows from (3.35)-(3.40) and (3.44) that

vec(K̃1(k + 1))

vec(K̃2(k + 1))

...

vec(K̃ξ(k + 1))


= [I − µ

2
(MN +MR+ PV + PQ)]



vec(K̃1(k))

vec(K̃2(k))

...

vec(K̃ξ(k))


. (3.45)

Eq. (3.45) shows that Algorithm 1 is convergent if and only if

ρ[I − µ

2
(MN +MR+ PV + PQ)] < 1. (3.46)

Then, it is obvious that

λ[I − µ

2
(MN +MR+ PV + PQ)]

={1− µ

2
λs(MN +MR+ PV + PQ), s = 1, 2, · · · , r}, (3.47)
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where r = rank(MN+MR+PV+PQ). Since ρ[I−µ
2 (MN+MR+PV+PQ)] < 1,

it can be derived

−1 < 1− µ

2
λs(MN +MR+ PV + PQ)] < 1, (3.48)

i.e.

0 < µ <
4

λs(MN +MR+ PV + PQ)
, s = 1, 2, · · · , r, (3.49)

and using the yields from the intersection (3.41). Thus, the proof of the conclusion
is complete.

Theorem 3.3. Let A be a full-row rank matrix, the iterative solution K(k) =
(K1(k),K2(k), · · · ,Kξ(k)) given by Algorithm 2(RRAJGI) converges to the unique
solution K∗(k) = (K∗

1 (k),K
∗
2 (k), · · · ,K∗

ξ (k)) for arbitrary initial matrices K(0) =
(K1(0),K2(0), · · · ,Kξ(0)), if µ satisfies

0 < µ < min


2

ω2

ξ∑
i=1

m∑
j=1

∥∥∥D(1)
i,j

∥∥∥2∥∥∥D(2)
i,j

∥∥∥2 ,
2

(1− ω2)
ξ∑

i=1

m∑
j=1

∥∥∥D(3)
i,j

∥∥∥2∥∥∥D(4)
i,j

∥∥∥2
 .

(3.50)

Proof. The error matrices are defined as

K̃i(k) = Ki(k)−K∗
i ,

˜̂
Ki(k) = K̂i(k)−K∗

i , (3.51)

K̃1,i(k) = K1,i(k)−K∗
i , K̃2,i(k) = K2,i(k)−K∗

i , (3.52)

and

φ̃i(k) =

m∑
j=1

(D
(1)
i,j K̃i(k)D

(2)
i,j +D

(4)
i,j K̃

T
i+1(k)D

(3)
i,j ), (3.53)

δ̃i(k) =

m∑
j=1

(D
(1)
i,j

˜̂
Ki(k)D

(2)
i,j +D

(4)
i,j

˜̂
K

T

i+1(k)D
(3)
i,j ). (3.54)

From (3.51)-(3.54) and Algorithm 2, we can get the following relations

K̃1,i(k + 1) = K̃i(k)− µω2

m∑
j=1

Ei,jφ̃i(k)Fi,j , (3.55)

K̃2,i(k + 1) =
˜̂
Ki(k)− µ(1− ω2)

m∑
j=1

Gi−1,j δ̃
T
i−1(k)Hi−1,j . (3.56)

Taking the square of the norm on both sides of (3.55) and (3.56), it has

∥∥∥K̃1,i(k + 1)
∥∥∥2 =

∥∥∥K̃i(k)
∥∥∥2 − 2µω2tr

(
K̃T

i (k)

m∑
j=1

Ei,jφ̃i(k)Fi,j

)
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+ µ2ω2
2

∥∥∥∥∥∥
m∑
j=1

Ei,jφ̃i(k)Fi,j

∥∥∥∥∥∥
2

, (3.57)

∥∥∥K̃2,i(k + 1)
∥∥∥2 =

∥∥∥∥ ˜̂Ki(k)

∥∥∥∥2 − 2µ(1− ω2)tr
( ˜̂
K

T

i (k)

m∑
j=1

Gi−1,j δ̃
T
i−1(k)Hi−1,j

)

+ µ2(1− ω2)
2

∥∥∥∥∥∥
m∑
j=1

Gi−1,j δ̃
T
i−1(k)Hi−1,j

∥∥∥∥∥∥
2

. (3.58)

The function W (k) is defined as

W (k) =

ξ∑
i=1

∥∥∥K̃i(k)
∥∥∥2. (3.59)

Thus, through (3.57)-(3.59) and Algorithm 2, we have

W (k + 1)

=

ξ∑
i=1

∥∥∥K̃i(k + 1)
∥∥∥2

=

ξ∑
i=1

∥∥∥(1− ω2)K̃1,i(k + 1) + ω2K̃2,i(k + 1)
∥∥∥2

≤
ξ∑

i=1

[
(1− ω2)

2
∥∥∥K̃1,i(k + 1)

∥∥∥2 + ω2
2

∥∥∥K̃2,i(k + 1)
∥∥∥2]

=

ξ∑
i=1

[(1− ω2)
2
∥∥∥K̃i(k)

∥∥∥2 + ω2
2

∥∥∥ ˜̂Ki(k)
∥∥∥2

− 2µω2(1− ω2)
2tr(K̃T

i (k)

m∑
j=1

Ei,jφ̃i(k)Fi,j)

+ µ2ω2
2(1− ω2)

2

∥∥∥∥∥∥
m∑
j=1

Ei,jφ̃i(k)Fi,j

∥∥∥∥∥∥
2

− 2µω2
2(1− ω2)tr(

˜̂
K

T

i (k)

m∑
j=1

Gi−1,j δ̃
T
i−1(k)Hi−1,j)

+ µ2ω2
2(1− ω2)

2

∥∥∥∥∥∥
m∑
j=1

Gi−1,j δ̃
T
i−1(k)Hi−1,j

∥∥∥∥∥∥
2

]

=

ξ∑
i=1

[
(1− ω2)

2
∥∥∥K̃i(k)

∥∥∥2 + ω2
2

∥∥∥∥ ˜̂Ki(k)

∥∥∥∥2
− 2µω2(1− ω2)

2
tr(φ̃i(k)

m∑
j=1

Ei,jK̃
T
i (k)Fi,j)
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+ µ2ω2
2(1− ω2)

2

∥∥∥∥∥∥
m∑
j=1

Ei,jφ̃i(k)Fi,j

∥∥∥∥∥∥
2

− 2µω2
2(1− ω2)tr(δ̃

T
i (k)

m∑
j=1

Gi,j
˜̂
K

T

i+1(k)Hi,j)

+ µ2ω2
2(1− ω2)

2

∥∥∥∥∥∥
m∑
j=1

Gi,j δ̃
T
i (k)Hi,j

∥∥∥∥∥∥
2]

≤
ξ∑

i=1

[
(1− ω2)

2
∥∥∥K̃i(k)

∥∥∥2 + ω2
2

∥∥∥∥ ˜̂Ki(k)

∥∥∥∥2 − 2µω2(1− ω2)
2∥φ̃i(k)∥2

+ µ2ω2
2(1− ω2)

2
m∑
j=1

∥Ei,j∥2∥Fi,j∥2∥φ̃i(k)∥2

− 2µω2
2(1− ω2)

∥∥∥δ̃Ti (k)∥∥∥2 + µ2ω2
2(1− ω2)

2
m∑
j=1

∥Gi,j∥2∥Hi,j∥2
∥∥∥δ̃Ti (k)∥∥∥2]

=(1− ω2)
2W (k) + ω2

2

ξ∑
i=1

∥∥∥∥ ˜̂Ki(k)

∥∥∥∥2

− µω2(1− ω2)
2
[
2− µω2

ξ∑
i=1

m∑
j=1

∥Ei,j∥2∥Fi,j∥2
]

ξ∑
i=1

∥φ̃i(k)∥2 − µω2
2(1− ω2)

[
2− µ(1− ω2)

ξ∑
i=1

m∑
j=1

∥Gi,j∥2∥Hi,j∥2
] ξ∑

i=1

∥∥∥δ̃Ti (k)∥∥∥2

≤(1− ω2)
2W (0) + ω2

2

ξ∑
i=1

k∑
t=0

∥∥∥∥ ˜̂Ki(t)

∥∥∥∥
2

− µω(1− ω2)
2
[
2− µω2

ξ∑
i=1

m∑
j=1

∥Ei,j∥2∥Fi,j∥2
] ξ∑

i=1

k∑
t=0

∥φ̃i(t)∥2

− µω2
2(1− ω2)

[
2− µ(1− ω2)

ξ∑
i=1

m∑
j=1

∥Gi,j∥2∥Hi,j∥2
] ξ∑

i=1

k∑
t=0

∥∥∥δ̃Ti (t)∥∥∥2.
Furthermore, if the convergence number µ satisfies (3.50), it can be obtained

k∑
t=0

ξ∑
i=1

∥φ̃i(t)∥2 < ∞,

k∑
t=0

ξ∑
i=1

∥∥∥δ̃Ti (t)∥∥∥2 < ∞. (3.60)

Because of the conditions that the series converges, when t → ∞, it is derived

ξ∑
i=1

∥φ̃i(t)∥2 → 0,

ξ∑
i=1

∥∥∥δ̃Ti (t)∥∥∥2 → 0. (3.61)

It follows from (3.53), (3.54) and (3.61) that

lim
t→∞

φ̃i(k − t) = 0, lim
t→∞

δ̃Ti (k − t) = 0, (3.62)
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or

lim
t→∞

[ m∑
j=1

(D
(1)
i,j K̃i(t)D

(2)
i,j +D

(4)
i,j K̃

T
i+1(t)D

(3)
i,j )

]
= 0, (3.63)

lim
t→∞

[ m∑
j=1

(D
(1)
i,j

˜̂
Ki(t)D

(2)
i,j +D

(4)
i,j

˜̂
K

T

i+1(t)D
(3)
i,j )

]T
= 0. (3.64)

Now, from Lemma 2.3, it gets

lim
t→∞

K̃i(t) = 0. (3.65)

This completes the proof of Theorem 3.3.

3.2. The CRJGI algorithm, the CRAJGI algorithm and con-
vergence analysis

In the following, first we introduce the full-column rank Jacobi gradient based itera-
tive (CRJGI) algorithm and the full-collumn rank accelerated Jacobi gradient based
iterative algorithm (CRAJGI) for solving Eq. (1.9). Then we give the convergence
analysis on these two iterative algorithms.

Algorithm 3 (The CRJGI algorithm)

Step 1. Given the coefficient matrices Ei,j , Gi,j ∈ Rm×m, Fi,j , Hi,j ∈ Rn×n and
Mi ∈ Rm×n for i ∈ 1, ξ, j ∈ 1,m, choose an appropriate convergence number µ and
the initial matrices Yi(0) ∈ Rm×n.

Step 2. Set Yi+ξ(0) = Yi(0), Ei+ξ,j = Ei,j , Fi+ξ,j = Fi,j , Gi+ξ,j = Gi,j , Hi+ξ,j =

Hi,j ,Mi+ξ = Mi, D
(1)
i+ξ,j = D

(1)
i,j , D

(2)
i+ξ,j = D

(2)
i,j , D

(3)
i+ξ,j = D

(3)
i,j , and D

(4)
i+ξ,j = D

(4)
i,j

for i ∈ 1, ξ, j ∈ 1,m. Let k := 0.

Step 3. If δ(k) =

ξ∑
i=1

||Mi−
∑m

j=1 (Ei,jYi(k)Fi,j+Gi,jY
T
i+1(k)Hi,j)||2

ξ∑
i=1

||Mi||2
< ε, stop; otherwise,

go to Step 4.

Step 4. Compute the following sequences

Y1,i(k + 1) = Yi(k) + µ

m∑
j=1

D
(1)
i,j [Mi −

m∑
j=1

(Ei,jYi(k)Fi,j +Gi,jY
T
i+1(k)Hi,j)]D

(2)
i,j ,

Y2,i(k + 1) = Yi(k) + µ

m∑
j=1

D
(4)
i−1,j [Mi−1 −

m∑
j=1

(Ei−1,jYi−1(k)Fi−1,j

+Gi−1,jY
T
i (k)Hi−1,j)]

TD
(3)
i−1,j ,

Yi(k + 1) =
Y1,i(k + 1) + Y2,i(k + 1)

2
,

Yi+ξ(k + 1) = Yi(k + 1).

Step 5. Let k := k + 1, go to Step 3.

Similar to the construction of RRAJGI algorithm, we introduce an appropriate
factor ω1, 0 < ω1 < 1 on the basis of CRJGI algorithm, and propose the following
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full-column rank accelerated Jacobi gradient based iterative (CRAJGI) algorithm
for solving Eq. (1.9).

Algorithm 4 (The CRAJGI algorithm)

Step 1. Given the coefficient matrices Ei,j , Gi,j ∈ Rm×m, Fi,j , Hi,j ∈ Rn×n and
Mi ∈ Rm×n for i ∈ 1, ξ, j ∈ 1,m, choose the initial matrices Yi(0), Y2,i(0) ∈ Rm×n.

Step 2. Set Yi+ξ(0) = Yi(0), Ei+ξ,j = Ei,j , Fi+ξ,j = Fi,j , Gi+ξ,j = Gi,j , Hi+ξ,j =

Hi,j ,Mi+ξ = Mi, D
(1)
i+ξ,j = D

(1)
i,j , D

(2)
i+ξ,j = D

(2)
i,j , D

(3)
i+ξ,j = D

(3)
i,j , and D

(4)
i+ξ,j = D

(4)
i,j

for i ∈ 1, ξ, j ∈ 1,m. Let k := 0.

Step 3. If δ(k) =

ξ∑
i=1

||Mi−
∑m

j=1 (Ei,jYi(k)Fi,j+Gi,jY
T
i+1(k)Hi,j)||2

ξ∑
i=1

||Mi||2
< ε, stop; otherwise,

go to Step 4.

Step 4. Compute the following sequences

Y1,i(k + 1) = Yi(k) + µω1

m∑
j=1

D
(1)
i,j [Mi −

m∑
j=1

(Ei,jYi(k)Fi,j +Gi,jY
T
i+1(k)Hi,j)]D

(2)
i,j ,

Ŷi(k) = (1− ω1)Y1,i(k + 1) + ω1Y2,i(k),

Ŷi+ξ(k) = Ŷi(k),

Y2,i(k + 1) = Ŷi(k) + µ(1− ω1)

m∑
j=1

D
(4)
i−1,j [Mi−1 −

m∑
j=1

(Ei−1,j Ŷi−1(k)Fi−1,j

+Gi−1,j Ŷ
T
i (k)Hi−1,j)]

TD
(3)
i−1,j ,

Yi(k + 1) = (1− ω1)Y1,i(k + 1) + ω1Y2,i(k + 1),

Yi+ξ(k + 1) = Yi(k + 1).

Step 5. Let k := k + 1, go to Step 3.

Theorem 3.4. Assumed that A be a full-column rank matrix, then the iterative
solution Y (k) = (Y1(k), Y2(k), · · · , Yξ(k)) given by Algorithm 3 (CRJGI) converges
to the unique solution Y ∗(k) = (Y ∗

1 (k), Y
∗
2 (k), · · · , Y ∗

ξ (k)) of Eq. (1.9) for arbitrary
initial matrix group Y (0) = (Y1(0), Y2(0), · · · , Yξ(0)), if

0 < µ <
2

ξ∑
i=1

m∑
j=1

(∥∥∥D(1)
i,j

∥∥∥2∥∥∥D(2)
i,j

∥∥∥2 + ∥∥∥D(3)
i,j

∥∥∥2∥∥∥D(4)
i,j

∥∥∥2) . (3.66)

Proof. We can prove this result by using the same line as Theorem 3.1. Hence,
it has been omitted here.

Similarly, in order to prove the following Theorem 3.5, we define the following
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notations

B =



0
m∑
j=1

(HT
1,j ⊗G1,j)P 0

. . .

0 0
m∑
j=1

(HT
ξ−1,j ⊗Gξ−1,j)P

m∑
j=1

(HT
ξ,j ⊗Gξ,j)P 0 · · · 0


,

(3.67)

C =



0 · · · 0
m∑
j=1

(FT
ξ,j ⊗ Eξ,j)

m∑
j=1

(FT
1,j ⊗ E1,j) 0 0

. . .

0
m∑
j=1

(FT
ξ−1,j ⊗ Eξ−1,j) 0


. (3.68)

Theorem 3.5. If A is a full-column rank matrix, Y ∗(k) = (Y ∗
1 (k), Y

∗
2 (k), · · · ,

Y ∗
ξ (k)) is the unique solution group of Eq. (1.9), then the Algorithm 3 (CRJGI)

obtains limk→∞Yi(k) = Y ∗
i (k), i ∈ 1, ξ, for arbitrary initial matrix group Y (0) =

(Y1(0), Y2(0), · · · , Yξ(0)), if and only if

0 < µ <
4

λmax(NM+NB +QC +QP)
. (3.69)

Proof. We can use the same line as Theorem 3.2 to demonstrate this result. So,
it is not included here.

Theorem 3.6. Supposed that A be a full-column rank matrix, then the iterative so-
lution Y (k) = (Y1(k), Y2(k), · · · , Yξ(k)) given by Algorithm 4 (CRAJGI) converges
to the unique solution Y ∗(k) = (Y ∗

1 (k), Y
∗
2 (k), · · · , Y ∗

ξ (k)) of Eq. (1.9) for arbitrary
initial matrix group Y (0) = (Y1(0), Y2(0), · · · , Yξ(0)), if

0 < µ < min


2

ω1

ξ∑
i=1

m∑
j=1

∥∥∥D(1)
i,j

∥∥∥2∥∥∥D(2)
i,j

∥∥∥2 ,
2

(1− ω1)
ξ∑

i=1

m∑
j=1

∥∥∥D(3)
i,j

∥∥∥2∥∥∥D(4)
i,j

∥∥∥2
 .

(3.70)

Proof. We can prove this result by using the same line as Theorem 3.3. Therefore,
it has been omitted here.

4. Numerical experiments

In this section, we give two examples to illustrate the performance of the proposed
algorithms. All algorithms are calculated using MATLAB R2020a.
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Example 4.1. Consider the discrete-time periodic Sylvester transpose matrix equa-
tions

AiXiBi + CiX
T
i+1Ei = Gi, i = 1, 2,

where the coefficient matrices are given by

A1 = tril (rand (m) ,m) + diag (1.5 + diag (rand (m))) ,

B1 = −triu (rand (m) ,m)− b× diag (2.6 + diag (rand (m))) ,

C1 = tril (rand (m) ,m)− diag (1 + diag (rand (m))) ,

E1 = −triu (rand (m) ,m) + diag (2 + diag (rand (m))) ,

G1 = rand (m)− eye (m)× b,

A2 = triu (rand (m) ,m) + diag (1.8 + diag (rand (m))) ,

B2 = −tril (rand (m) ,m) + b× diag (4.4 + diag (rand (m))) ,

C2 = triu (rand (m) ,m) + diag (2.8 + diag (rand (m))) ,

E2 = −tril (rand (m) ,m) + diag (3.4 + diag (rand (m))) ,

G2 = −rand (m)− eye (m)× b.

The initial matrices are chosen as Xi(0) = zeros(m), i = 1, 2 and the iterative
residual is defined as

ri(k) := log10
∥∥Gi −AiXi(k)Bi − CiX

T
i+1(k)Ei

∥∥ , i = 1, 2,

where Xi(k) are the kth iterative solutions of the Algorithms 1-4. In this example,
let m = 4, b = 4.
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Figure 1. Comparison of the convergence curves for Example 4.1.

Figure 1 compares the convergence curves of GI algorithm, RGI algorithm, AGI
algorithm, CRJGI algorithm, RRJGI algorithm, CRAJGI algorithm, and RRAJGI
algorithm. It can be seen from Figure 1 that the four algorithms proposed in this
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Table 1. Iterative steps, residual and CPU time of Figure 1.

Method Step r1(k) r2(k) Time

GI algorithm 631 −13.0101 −13.5179 0.0140

RGI algorithm 554 −14.0144 −14.2214 0.0126

AGI algorithm 448 −14.0020 −14.2179 0.0121

CRJGI algorithm 354 −14.0002 −14.2403 0.0104

RRJGI algorithm 275 −14.0050 −14.6148 0.0100

CRAJGI algorithm 185 −14.0513 −14.3357 0.0095

RRAJGI algorithm 126 −14.0956 −14.6313 0.0092

paper are effective for solving matrix equations, which shows the correctness of the
algorithms and the convergence speed of these four algorithms are obviously faster
than other algorithms which also shows the superiority of the algorithms.

Table 1 compares the number of iterative steps, iterative residual and compu-
tation time of several algorithms. It is showed from the Table 1 that the four
algorithms proposed in this paper have more advantages than other algorithms in
terms of convergence efficiency, convergence accuracy and calculation time. Espe-
cially, the advantage of RRAJGI algorithm is more obvious, which shows that this
algorithm can save a lot of computing time and storage space.
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Figure 2. Comparison of the convergence curves for Example 4.2.

Example 4.2. Consider the discrete-time periodic Sylvester transpose matrix equa-
tions A11X1B11 + C11X

T
2 D11 +A12X1B12 + C12X

T
2 D12 = M1,

A21X2B21 + C21X
T
1 D21 +A22X2B22 + C22X

T
1 D22 = M2,



308 R. Qi & C. Song

where the coefficient matrices are given by

A11 = tril (rand (m) ,m) + diag (2.5 + diag (rand (m))) ,

B11 = −triu (rand (m) ,m)− a ∗ diag (1.6 + diag (rand (m))) ,

C11 = tril (rand (m) ,m)− diag (3.1 + diag (rand (m))) ,

D11 = −triu (rand (m) ,m) + diag (1 + diag (rand (m))) ,

A12 = tril (rand (m) ,m) + diag (1.5 + diag (rand (m))) ,

B12 = −triu (rand (m) ,m)− a ∗ diag (0.6 + diag (rand (m))) ,

C12 = tril (rand (m) ,m)− diag (1 + diag (rand (m))) ,

D12 = −triu (rand (m) ,m) + diag (2.2 + diag (rand (m))) ,

M1 = rand (m)− eye (m) ∗ a,
A21 = tril (rand (m) ,m) + diag (0.5 + diag (rand (m))) ,

B21 = −triu (rand (m) ,m)− a ∗ diag (1.6 + diag (rand (m))) ,

C21 = tril (rand (m) ,m)− diag (1 + diag (rand (m))) ,

D21 = −triu (rand (m) ,m) + diag (2 + diag (rand (m))) ,

A22 = tril (rand (m) ,m) + diag (1.5 + diag (rand (m))) ,

B22 = −triu (rand (m) ,m)− a ∗ diag (2.6 + diag (rand (m))) ,

C22 = tril (rand (m) ,m)− diag (1 + diag (rand (m))) ,

D22 = −triu (rand (m) ,m) + diag (2 + diag (rand (m))) ,

M2 = rand (m)− eye (m) ∗ a.

The initial matrices are chosen as Xi(0) = zeros(m), i = 1, 2 and the iterative
residual are defined as

r1(k) := log10||M1 −A11X1(k)B11 − C11X
T
2 (k)D11 −A12X1(k)B12

− C12X
T
2 (k)D12||,

r2(k) := log10||M2 −A21X2(k)B21 − C21X
T
1 (k)D21 −A22X2(k)B22

− C22X
T
1 (k)D22||,

where Xi(k) are the kth iterative solutions of the Algorithms 1-4. In this example,
let m = 7, a = 5.

Table 2. Iterative steps, residual and CPU time of Figure 2.

Method Step r1(k) r2(k) Time

GI algorithm 1098 −13.7999 −13.8522 0.0686

RGI algorithm 854 −13.9414 −13.9744 0.0556

AGI algorithm 665 −13.9424 −14.0249 0.0518

CRJGI algorithm 541 −13.9487 −14.0915 0.0445

RRJGI algorithm 456 −14.2657 −14.3814 0.0375

CRAJGI algorithm 308 −13.9626 −14.2871 0.0293

RRAJGI algorithm 237 −14.4063 −14.5005 0.0260
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Figure 2 shows the comparison of the convergence curves of several algorithms.
From Figure 2 we can conclude that the iterative residual decreases gradually as the
number of iterative steps increases, which indicates that these four algorithms are
given by this paper can obtain the exact solutions of the equations under a limited
number of iterative steps, and the algorithm proposed in this paper is better than
other algorithms in terms of both the running time and the iterative residual.

Table 2 compares the number of iterative steps, iterative residuals and calcu-
lation time of several algorithms. Table 2 shows that RRJGI algorithm, RRAJGI
algorithm, CRJGI algorithm and CRAJGI algorithm have significantly better com-
putational efficiency than other algorithms. In addition, it can be obtained that the
RRAJGI algorithm needs the minimum number of iterative steps and the shortest
calculation time when convergence is achieved.

5. Application in state observer design of periodic
linear systems

Example 5.1. We consider the following linear discrete-time periodic system

qk+1 = Akqk +Bkuk, (5.1)

where Ak ∈ Rn×n is the state matrix, Bk ∈ Rn×r is the input matrix, and both
Ak, Bk are matrices with period T .

Periodic state observer based on state error feedback is the most widely used,
which can be expressed as follows

x̂t+1 = Atx̂t +Btut + Lt(yt − ŷt), (5.2)

where x̂t ∈ Rn is the observer state, ŷt = Ctx̂t is the observer output and Lt ∈ Rn×m

is observer gain.
Obviously, the system (5.2) is equivalent to the following periodic closed-loop

system

x̂t+1 = (At − LtCt)x̂t +Btut + Ltyt, (5.3)

its univalued matrix is written as

ΦA = ÃT−1ÃT−2 · · · Ã0,

where Ãt = At − LtCt, t ∈ 0, T − 1. Then the problem of state-observer design for
first-order linear periodic discrete system (5.1) can be described as follows.

Consider a fully observable first-order linear periodic discrete system (5.1) and
find a periodic matrix Lt ∈ Rn×m so that the observer system (5.2) can give a
asymptotic approximation to the state xt of the system (5.1).

Next, we solve the periodic matrix Lt according to Algorithm 2 proposed in this
paper, which is summarized as follows.

Algorithm 5 (The periodic state observer design in linear systems)

Step 1. Choose the appropriate matrices Ft ∈ Rn×n with periodic T that satisfies
Λ(ΦF ) = Γ and Λ(ΦF ) ∩ Λ(ΦA) = ∅, and choose the periodic matrices Gt ∈ Rr×n
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satisfying that the matrix pair (Ãt, Gt) is fully observable, give an appropriate

convergence factor µ and an appropriate relaxation factor ω, where 0 < ω < 1, D
(1)
t

and D
(2)
t are the diagonal matrices corresponding to AT

t and −Ft, respectively.

Step 2. Set tolerance error ε, the initial matrices are chosen as Yt(0), Y2,t(0) ∈
Rn×n, Xt(0) = D

(1)
t Yt(0) + Yt+1(0)D

(2)
t , compute

Rt(0) = CT
t Gt −AT

t Xt(0) +Xt+1(0)Ft,

k := 0.

Step 3. When ||Rt(k)|| ≤ ε, compute

Y1,t(k + 1) = Yt(k) + µω{(CT
t Gt)

/
2−AT

t [D
(1)
t Y

t
(k) + Yt+1(k)D

(2)
t ]},

Ŷt(k) = (1− ω)Y1,t(k + 1) + ωY2,t(k),

Ŷt+T (k) = Ŷt(k),

Y2,t(k + 1) = Ŷt(k) + µ(1− ω){
(
CT

t−1Gt−1

)/
2

−
[
D

(1)
t−1Ŷt−1(k) + Ŷt(k)D

(2)
t−1

]
(−Ft−1)},

Y (k + 1) = (1− ω)Y1,t(k + 1) + ωY2,t(k + 1),

Yt+T (k + 1) = Yt(k),

Xt(k + 1) = D
(1)
t Yt(k + 1) + Yt+1(k + 1)D

(2)
t ,

Xt+T (k + 1) = Xt(k),

k = k + 1.

Step 4. Let X∗
t = Xt(k), calculate the periodic state observer gain Lt

Lt = (Gt(X
∗
t )

−1)T .

We know that the solution matrixX∗
t generated by Algorithm 5 are the solutions

of the following Sylvester matrix equations

AT
t Xt −Xt+1Ft = CT

t Gt, t ∈ 1, T . (5.4)

If we choose T = 2 and

A1 =


3.3856 0.8913 0.8214 0.9218

0.2311 2.6150 0.4447 0.7382

0.6068 0.4565 2.3142 0.1763

0.4860 0.0185 0.7919 2.6525

 ,

A2 =


−2.0185 0.0000 0.0000 0.0000

0.0000 −2.9667 0.0000 0.0000

0.0000 0.0000 −4.2146 0.0000

0.0000 0.0000 0.0000 −3.3796

 ,
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F1 =


−1.0768 0.3412 0.8385 0.5466

0.6602 −1.5457 0.5681 0.4449

0.3420 0.7271 −0.8661 0.6946

0.2897 0.3093 0.7027 −1.1401

 ,

F2 =


2.7833 0.0000 0.0000 0.0000

0.0000 2.0592 0.0000 0.0000

0.0000 0.0000 2.8744 0.0000

0.0000 0.0000 0.0000 2.7889

 ,

C1 =


−3.1951 0.3200 0.7446 0.6833

0.4983 −3.1150 0.2679 0.2126

0.2140 0.7266 −3.0729 0.8392

0.6435 0.4120 0.9334 −3.4836

 ,

C2 =


3.8078 0.5869 0.7176 0.4418

0.0158 3.0083 0.6927 0.3533

0.0164 0.3676 3.4497 0.1536

0.1901 0.6315 0.4544 3.4150

 ,

G1 =


6.1085 11.7455 9.8025 7.8521

−7.8425 −15.6279 −20.9538 −11.7712

−11.1380 −20.4830 −25.4317 −13.8007

12.9317 28.7359 39.4289 28.1247

 ,

G2 =


17.8223 14.8889 19.9818 4.8605

22.1746 22.0385 29.7235 14.8262

20.8185 20.0357 19.5413 11.9351

−29.7677 −17.8096 −28.6271 15.9366

 .

By Algorithm 5, we get

X∗
1 =


8.6666 −16.4843 −9.8988 −32.8552

−9.5983 21.3601 −1.8898 31.9227

11.9932 61.3474 81.4414 −0.0952

−19.1405 −44.7243 −74.8887 12.3186

 ,
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X∗
2 =


−43.1103 −9.9278 −21.2932 34.5128

−13.2501 −38.8111 −28.5908 −50.8758

−28.4303 −50.6079 −76.7389 −14.6883

40.2481 40.0852 86.0114 −28.9959

 .

Then we can derive periodic state observer gain

L1 =


0.2221 0.2190 0.0746 −0.7496

1.0525 −0.8458 −1.3244 1.4393

−1.2140 1.4337 1.9888 −2.7621

−1.5071 1.8314 2.5259 −3.4675

 ,

L2 =


1.2435 3.1756 0.2750 1.4361

−4.1305 −9.2566 −2.0688 −2.2803

6.7149 15.3388 2.8153 4.2151

5.1582 11.7399 2.1194 3.0254

 .

Remark 5.1. Explanation of convergence factors of several algorithms in this paper
is as follows. The convergence factor µ is used in Algorithms 1-5. In addition, In
Algorithm 2, the relaxation factor ω2 is used. The the relaxation factor ω1 is used
in Algorithm 4, and in Algorithm 5, the relaxation factor ω is used. It should be
noted that the convergence factors in the several algorithms can be chosen to be
the same or different under conditions that satisfy the theorems. The relaxation
factors are selected to be any number between 0 and 1.

Remark 5.2. The idea of solving linear systems is to transform general linear
systems into corresponding Sylvester matrix equations. The algorithm proposed
in this paper can be used to solve a variety of Sylvester matrix equations, so it is
suitable for solving systems that can be transformed into Sylvester matrix equations.

6. Concluding remark

In this paper, RRJGI algorithm, RRAJGI algorithm, CRJGI algorithm and CRA-
JGI algorithm are proposed for the discrete-time periodic Sylvester transpose ma-
trix equations. Furthermore, the convergence theorems of the algorithms under
arbitrary initial matrices are given by using the Frobenious norm. Two numerical
examples show that the algorithms have faster convergence speed than GI algo-
rithm, RGI algorithm and AGI algorithm which shows that the cost of computing
time and storage space can be saved. At the end of this paper, the control appli-
cation on the proposed Algorithm 2 is given. Therefore, our proposed algorithm is
benefit to solve the observer design problem. In addition, our proposed algorithm
can also solve the iterative solution of the other matrix equations, for example, the
periodic coupled Sylvester conjugate matrix equations, the coupled discrete-time
periodic Sylvester conjugate (transpose) matrix equations.
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