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Abstract This paper we concern the solvability and uniqueness of higher-
order Langevin fractional differential equations subject to integral boundary
conditions. We establish the existence of solutions using Krasnoselskii’s fixed
point theorem, while uniqueness is demonstrated through the application of
the Banach fixed point theorem. The obtained results offer insights into the
solution space of these complex differential equations, shedding light on their
behavior and properties. To illustrate the practical implications of our findings,
we provide a concrete example at the end of this paper.
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1. Introduction

In the last few decades, the branch of fractional calculus has paid more attention
due to their several applications in applied mathematics and physics such as the
memory of a variety of materials, signal identification and image processing, optical
systems, thermal system materials and mechanical systems, control system, etc.
Fractional differential equations have been of great interest recently. This is due
to the intensive development of the theory of fractional calculus itself as well as its
applications. Apart from diverse areas of mathematics, fractional differential equa-
tions arise in rheology, dynamical processes in self similar and porous structures,
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electrical networks, viscoelasticity, chemical physics, and many other branches of
science, see [4, 5, 11,16,17,19,20,23,27,31] and the references therein.

Langevin fractional differential equations represent a specialized class of stochas-
tic differential equations that find relevance in various fields, including physics, en-
gineering, and finance [6,14,28]. These equations incorporate fractional derivatives
and are used to model systems characterized by random fluctuations and memory
effects. The term “Langevin” is attributed to Paul Langevin, a French physicist who
made pioneering contributions to the field of statistical mechanics and stochastic
processes. In contrast to classical differential equations, Langevin fractional dif-
ferential equations account for non-Markovian dynamics, where the future state of
a system depends not only on its present state but also on its past history. This
memory property is captured by fractional derivatives, which generalize the con-
cept of differentiation to fractional orders, allowing for the modeling of long-range
dependencies and irregular behaviors.

The study of Langevin fractional differential equations has gained prominence
due to their ability to describe complex systems exhibiting anomalous diffusion and
non-Gaussian statistical properties. Such systems can range from the motion of
particles in disordered media to the pricing of financial assets subject to market
fluctuations.

In recent years, researchers have made significant strides in understanding the
behavior and properties of Langevin fractional differential equations, developing
analytical and numerical techniques for their solution. These equations have found
applications in diverse domains, including physics, biology, and engineering, making
them a subject of growing interest and importance in the scientific community
[22,24,25,32].

This paper aims to contribute to the ongoing exploration of Langevin fractional
differential equations, specifically focusing on their solvability with integral bound-
ary conditions and addressing the fundamental issue of uniqueness. Through the
utilization of well-established fixed point theorems, we provide insights into the
existence and uniqueness of solutions for these equations, offering a valuable con-
tribution to the broader field of fractional differential equations.

In the present paper, motivated by works above, we discuss the existence of
solutions of the following problem with the boundary-value conditions

cDα
(
cDβ + γ

)
u(t) = f(t, u(t), Iσu(t)), t ∈ [0, 1],

u(0) =

∫ µ

0

u(s)ds,

u(1) =

∫ 1

ν

u(s)ds, 0 < µ < ν < 1,

u(k)(0) = 0, k = 1, 2, · · · , n− 1.

(1.1)

with 0 < α ≤ 1, n − 1 < β ≤ n, 1 ≤ σ ≤ 2, γ > 0 and cDα(·), cDβ(·) denoted
respectively the Caputo fractional derivatives of order α and β, Iσ represents the
Riemann-Liouville fractional integral of order σ, and f : [0, 1]×R2 −→ R is a given
function.

In this paper, we extend the current body of knowledge on Langevin fractional
differential equations by addressing the solvability and uniqueness of higher-order
equations subject to integral boundary conditions. While previous studies have pri-
marily concentrated on first-order equations and limited boundary conditions, our
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work explores more complex scenarios, providing a comprehensive understanding
of the solutions and their uniqueness. In this sense, through Krasnoselskii’s fixed
point theorem and the Banach fixed point theorem, we investigate the existence
and uniqueness of solutions for a class of Langevin fractional differential equation
of higher-Order with integral boundary conditions. Therefore, the results obtained
here open the doors to modeling and analyzing intricate systems exhibiting frac-
tional dynamics.

This manuscript is organised as follows. Firstly, we give preliminaries part in
which we will recall some preliminary results that we will use for the rest of the
paper. The next part is devoted to study the existence and the uniqueness result.

2. Mathematical background: Preliminaries

This part is devoted to present some basic definitions and lemmas concerning the
fractional calculus which will be used in our results. For more details, see [20, 23,
26,29,30] and the references therein.

Definition 2.1. [20, 29, 30] For a differentiable function h : [0,+∞) → R, the
Caputo derivative of fractional order α is defined by

cDαh(t) =
1

Γ(n− α)

∫ t

0

(t− s)n−α−1h(n)(s)ds, n− 1 < α < n, n = [α] + 1,

where [α] denotes the integer part of α and Γ is the gamma function.

Definition 2.2. [20, 29, 30] The Riemann-Liouville fractional integral of order α
is given by

Iαh(t) =
1

Γ(α)

∫ t

0

(t− s)α−1h(s)ds,

where h : R+ → R is a Lebesgue measurable function, provided that the integral
exists.

Lemma 2.1. [29, 30,33] Let α > 0, then the fractional differential equation

cDαh(t) = 0,

has solutions

h(t) = c0 + c1t+ c2t
2 + ...+ cn−1t

n−1,

where ci ∈ R, i = 0, 1, 2, ..., n− 1, n = [α] + 1.

Lemma 2.2. [33] Let α > 0, then

Iα cDαh(t) = h(t) + c0 + c1t+ c2t
2 + ...+ cn−1t

n−1,

where ci ∈ R, i = 0, 1, 2, ..., n− 1, n = [α] + 1.

Theorem 2.1 (Fixed point theorem of Banach [8]). Let X be a Banach space
and T : X −→ X a contracting mapping. Then T has a unique fixed point i.e.

∃!x ∈ X : Tx = x.

For more details on the basic tools, we refer to [1–3,7, 9, 10,12,13,15,18,21].
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3. Existence and uniqueness result

This section is devoted to prove the existence and uniqueness of the solution related
to our problem.

As it is noted in the previous section, we remember that the fractional integer
is given by

Iαu(t) =
1

Γ(α)

∫ t

0

(t− τ)α−1dτ.

By applying the operator Iα on both sides of the first equation of the Problem
(1.1), one has (

cDβ + γ
)
u(t) = Iαf(t, u(t), Iσu(t)) + a, a ∈ R. (3.1)

Moreover, by applying again Iβ on both sides of the Eq.(3.1), yields

u(t) = Iα+βf(t, u(t), Iσu(t))− γIβu(t) +
a

Γ(β + 1)
tβ +

n−1∑
i=0

ait
i, (3.2)

where a0, a1, · · · , an−1 are real constants to be determined.
Now, we will use the boundary conditions to determine these constants. For

this purpose, we begin by deriving both sides of the Eq.(3.2) (n− 1)−times, so we
obtain

u(n−1)(0) = (n− 1)!an−1 = 0.

Hence, based on the 4th equation of our Problem (1.1), we get an−1 = 0.
Furthermore, by deriving the Eq.(3.2) (n − 2)−times and using also the 4th

equation of our problem, we obtain

u(n−2)(0) = (n− 2)!an−2 = 0 ⇔ an−2 = 0.

Similarly, we get a1 = a2 = · · · = an−1 = 0.
Therefore, utilizing the second condition of our Problem (1.1) and the Eq.(3.2),

we infer

u(0) = a0 =

∫ µ

0

u(s)ds.

Furthermore, yields

u(1) =
1

Γ(α+ β)

∫ 1

0

(1− s)α+β−1f(s, u(s), Iσu(s))ds

− γ

Γ(β)

∫ 1

0

(1− s)β−1u(s)ds+
a

Γ(β + 1)
+ a0

=

∫ 1

ν

u(s)ds.

Consequently, we get

a0 =

∫ µ

0

u(s)ds (3.3)

and

a = Γ(β + 1)

[ ∫ 1

ν

u(s)ds+
γ

Γ(β)

∫ 1

0

(1− s)β−1u(s)ds
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− 1

Γ(α+ β)

∫ 1

0

(1− s)α+β−1f(s, u(s), Iσu(s))ds−
∫ µ

0

u(s)ds

]
. (3.4)

By substituting of Eq.(3.3) and Eq.(3.4) into the Eq.(3.2), one has

u(t) =Iα+βf(t, u(t), Iσ(t))− γIβu(t) +

∫ µ

0

u(s)ds

+

[ ∫ 1

ν

u(s)ds+
γ

Γ(β)

∫ 1

0

(1− s)β−1u(s)ds

− 1

Γ(α+ β)

∫ 1

0

(1− s)α+β−1f(s, u(s), Iσu(s))ds−
∫ µ

0

u(s)ds

]
tβ . (3.5)

Moreover, we integrate both sides of Eq.(3.5) on [0, µ], we have∫ µ

0

u(s)ds

=
1

Γ(α+ β + 1)

∫ µ

0

(µ− s)α+βf(s, u(s), Iσu(s)ds− γ

Γ(β + 1)

∫ µ

0

(µ− s)βu(s)ds

+

(
µ− µβ+1

β + 1

)∫ µ

0

u(s)ds+
µβ+1

β + 1

∫ 1

ν

u(s)ds

+
µβ+1

β + 1

[
γ

Γ(β)

∫ 1

0

(1− s)β−1u(s)ds

− 1

Γ(α+ β)

∫ 1

0

(1− s)α+β−1f(s, u(s), Iσu(s))ds

]
.

Equivalently, we obtain(
1− µ+

µβ+1

β + 1

)∫ µ

0

u(s)ds− µβ+1

β + 1

∫ 1

ν

u(s)ds

=
1

Γ(α+ β + 1)

∫ µ

0

(µ− s)α+βf(s, u(s), Iσu(s)ds

− γ

Γ(β + 1)

∫ µ

0

(µ− s)βu(s)ds

+
µβ+1

β + 1

[
γ

Γ(β)

∫ 1

0

(1− s)β−1u(s)ds

− 1

Γ(α+ β)

∫ 1

0

(1− s)α+β−1f(s, u(s), Iσu(s))ds

]
. (3.6)

Now, let us integrate both sides of the Eq.(3.5) on [ν, 1], yields∫ 1

ν

u(s)ds

=
1

Γ(α+ β + 1)

∫ 1

0

(1− s)α+βf(s, u(s), Iσu(s))ds

− 1

Γ(α+ β + 1)

∫ ν

0

(ν − s)α+βf(s, u(s), Iσu(s))ds+
γ

Γ(β + 1)

∫ ν

0

(ν − s)βu(s)ds
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− γ

Γ(β + 1)

∫ 1

0

(1− s)βu(s)ds+
(
1− ν − 1− νβ+1

β + 1

) ∫ µ

0

u(s)ds

+
1− νβ+1

β + 1

∫ 1

ν

u(s)ds+
1− νβ+1

β + 1

[
γ

Γ(β)

∫ 1

0

(1− s)β−1u(s)ds

− 1

Γ(α+ β)

∫ 1

0

(1− s)α+β−1f(s, u(s), Iσu(s))ds

]
.

Consequently and equivalently, we get

−
(
1− ν − 1− νβ+1

β + 1

)∫ µ

0

u(s)ds+

(
1− 1− νβ+1

β + 1

)∫ 1

ν

u(s)ds

=
1

Γ(α+ β + 1)

∫ 1

0

(1− s)α+βf(s, u(s), Iσu(s))ds

− 1

Γ(α+ β + 1)

∫ ν

0

(ν − s)α+βf(s, u(s), Iσu(s))ds+
γ

Γ(β + 1)

∫ ν

0

(ν − s)βu(s)ds

− γ

Γ(β + 1)

∫ 1

0

(1− s)βu(s)ds+
1− νβ+1

β + 1

[
γ

Γ(β)

∫ 1

0

(1− s)β−1u(s)ds

− 1

Γ(α+ β)

∫ 1

0

(1− s)α+β−1f(s, u(s), Iσu(s))ds

]
. (3.7)

To clarify the rest of the process, let us consider the following variables

x1 =

∫ µ

0

u(s)ds, x2 =

∫ 1

ν

u(s)ds,

b1 =
1

Γ(α+ β + 1)

∫ µ

0

(µ− s)α+βf(s, u(s), Iσu(s)ds

− γ

Γ(β + 1)

∫ µ

0

(µ− s)βu(s)ds

+
µβ+1

β + 1

[
γ

Γ(β)

∫ 1

0

(1− s)β−1u(s)ds

− 1

Γ(α+ β)

∫ 1

0

(1− s)α+β−1f(s, u(s), Iσu(s))ds

]
and

b2 =
1

Γ(α+ β + 1)

∫ 1

0

(1− s)α+βf(s, u(s), Iσu(s))ds

− 1

Γ(α+ β + 1)

∫ ν

0

(ν − s)α+βf(s, u(s), Iσu(s))ds

+
γ

Γ(β + 1)

∫ ν

0

(ν − s)βu(s)ds− γ

Γ(β + 1)

∫ 1

0

(1− s)βu(s)ds

+
1− νβ+1

β + 1

[
γ

Γ(β)

∫ 1

0

(1− s)β−1u(s)ds

− 1

Γ(α+ β)

∫ 1

0

(1− s)α+β−1f(s, u(s), Iσu(s))ds

]
.
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Thus, from Eq.(3.6) and Eq.(3.7), we have the following linear system

Ax = b, where x =

x1
x2

 , b =

b1
b2

 (3.8)

and

A =

 1− µ+ µβ+1

β+1 −µβ+1

β+1

−(1− ν − 1−νβ+1

β+1 ) 1− 1−νβ+1

β+1

 .

By a simple computation, we find that

detA =

[
νµβ+1 + (1− µ)(β) + νβ+1

β + 1

]
> 0.

Hence, using Cramer rule, and by substitution into the Eq.(3.5), we obtain the form
of our solution.

Explicitly, yields∫ µ

0

u(s)ds =
1

νµβ+1 + (1− µ)(β + νβ+1)

×
[
(β + νβ+1)

(
1

Γ(α+ β + 1)

∫ µ

0

(µ− s)α+βf(s, u(s), Iσu(s)ds

− γ

Γ(β + 1)

∫ µ

0

(µ− s)βu(s)ds+
µβ+1

β + 1

[ γ

Γ(β)

∫ 1

0

(1− s)β−1u(s)ds

− 1

Γ(α+ β)

∫ 1

0

(1− s)α+β−1f(s, u(s), Iσu(s))ds
])

+
µβ+1

Γ(α+ β + 1)

∫ 1

0

(1− s)α+βf(s, u(s), Iσu(s))ds

− µβ+1

Γ(α+ β + 1)

∫ ν

0

(ν − s)α+βf(s, u(s), Iσu(s))ds

+
γµβ+1

Γ(β + 1)

∫ ν

0

(ν − s)βu(s)ds

− γµβ+1

Γ(β + 1)

∫ 1

0

(1− s)βu(s)ds

+
(1− νβ+1)µβ+1

β + 1

[ γ

Γ(β)

∫ 1

0

(1− s)β−1u(s)ds

− 1

Γ(α+ β)

∫ 1

0

(1− s)α+β−1f(s, u(s), Iσu(s))ds
]]
.

Let denote by λ = νµβ+1 + (1− µ)(β + νβ+1), we have∫ µ

0

u(s)ds =
β + νβ+1

λΓ(α+ β + 1)

∫ µ

0

(µ− s)α+βf(s, u(s), Iσu(s)ds

−γ(β + νβ+1)

λΓ(β + 1)

∫ µ

0

(µ− s)βu(s)ds
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+
γµβ+1

λΓ(β)

∫ 1

0

(1− s)β−1u(s)ds

− µβ+1

λΓ(α+ β)

∫ 1

0

(1− s)α+β−1f(s, u(s), Iσu(s))ds

+
µβ+1

λΓ(α+ β + 1)

∫ 1

0

(1− s)α+βf(s, u(s), Iσu(s))ds

− µβ+1

λΓ(α+ β + 1)

∫ ν

0

(ν − s)α+βf(s, u(s), Iσu(s))ds

+
γµβ+1

λΓ(β + 1)

∫ ν

0

(ν − s)βu(s)ds

− γµβ+1

λΓ(β + 1)

∫ 1

0

(1− s)βu(s)ds. (3.9)

Similarly, we obtain∫ 1

ν

u(s)ds

=
(1 + β)(1− µ) + µβ+1

λΓ(α+ β + 1)

∫ 1

0

(1− s)α+βf(s, u(s), Iσu(s))ds

− (1− µ)(1− νβ+1) + (1− ν)µβ+1

λΓ(α+ β)

∫ 1

0

(1− s)α+β−1f(s, u(s), Iσu(s))ds

−
γ
[
(1 + β)(1− µ) + µβ+1

]
λΓ(β + 1)

∫ 1

0

(1− s)βu(s)ds

+
γ
[
(1− µ)(1− νβ+1) + (1− ν)µβ+1

]
λγ(β)

∫ 1

0

(1− s)β−1u(s)ds

+
γ
[
(1 + β)(1− µ) + µβ+1

]
λΓ(β + 1)

∫ ν

0

(ν − s)βu(s)ds

− (1 + β)(1− µ) + µβ+1

λΓ(α+ β + 1)

∫ ν

0

(ν − s)α+βf(s, u(s), Iσu(s))ds

+
β(1− ν) + νβ+1 − ν

λγ(α+ β + 1)

∫ µ

0

(µ− s)α+βf(s, u(s), Iσu(s))ds

−
γ
[
β(1− ν) + νβ+1 − ν

]
λΓ(β + 1)

∫ µ

0

(µ− s)βu(s)ds. (3.10)

Now, let denote by F (t) := f(t, u(t), Iσu(t)). So, the main result is.

Lemma 3.1. Let u satisfy the Problem (1.1). For F ∈ C([0, 1]), our problem has
a unique solution given as follows

u(t) =Iα+βf(t, u(t), Iσu(t))− γIβu(t) + ϕ(t)

[
γIβu(1) + Iα+β+1F (1) + γIβ+1u(ν)

− Iα+βF (1)− γIβ+1u(1)− Iα+β+1F (ν)

]
+ ψ(t)

[
Iα+β+1F (µ)− γIβ+1u(µ)

]
,
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where 
ϕ(t) =

µβ+1 + (1− µ)(1 + β)tβ

λ
,

ψ(t) =
β + νβ+1 − ν(1 + β)tβ

λ
.

Proof. By putting at mind all the previous part. Hereafter, by substitution of
Eq.(3.9) and Eq.(3.10) into Eq.(3.5), one has

u(t)

=Iα+βf(t, u(t), Iσu(t))− γIβu(t)

+
γ

λΓ(β)

[
µβ+1 + (1− µ)(1 + β)tβ

] ∫ 1

0

(1− s)β−1u(s)ds

− 1

λΓ(α+ β)

[
µβ+1 + (1− µ)(1 + β)tβ

] ∫ 1

0

(1− s)α+β−1f(s, u(s), Iσu(s))ds

+
1

λΓ(α+ β + 1)

[
µβ+1 + (1− µ)(1 + β)tβ

] ∫ 1

0

(1− s)α+βf(s, u(s), Iσu(s))ds

− γ

λΓ(β + 1)

[
µβ+1 + (1− µ)(1 + β)tβ

] ∫ 1

0

(1− s)βu(s)ds

+
γ

λΓ(β + 1)

[
µβ+1 + (1− µ)(1 + β)tβ

] ∫ ν

0

(ν − s)βu(s)ds

− 1

λΓ(α+ β + 1)

[
µβ+1 + (1− µ)(1 + β)tβ

] ∫ ν

0

(ν − s)α+βf(s, u(s), Iσu(s))ds

+
1

λΓ(α+ β + 1)

[
β + νβ+1 − ν(1 + β)tβ

] ∫ µ

0

(µ− s)α+βf(s, u(s), Iσu(s))ds

− γ

λΓ(β + 1)

[
β + νβ+1 − ν(1 + β)tβ

] ∫ µ

0

(µ− s)βu(s)ds

=Iα+βf(t, u(t), Iσu(t))− γIβu(t) + ϕ(t)

[
γIβu(1) + Iα+β+1F (1) + γIβ+1u(ν)

− Iα+βF (1)− γIβ+1u(1)− Iα+β+1F (ν)

]
+ ψ(t)

[
Iα+β+1F (µ)− γIβ+1u(µ)

]
,

ϕ(t) =
µβ+1 + (1− µ)(1 + β)tβ

λ
,

ψ(t) =
β + νβ+1 − ν(1 + β)tβ

λ
.

Now, in order to prove our main result by applying the Theorem 2.1, let
consider X = C([0, 1],R) the space of all continuous functions on [0, 1] equipped
with the norm ∥u∥ = sup

t∈[0,1]

|u(t)|. So, (X, ∥.∥) is a Banach space.

Moreover, we assume the following requirements

(A1) : There exist Kf , Lf > 0 such that for all t ∈ I, we have

|f(t, u, v)− f(t, u′, v′)| ≤ Kf |u− u′|+ Lf |v − v′|, ∀u, v, u′, v′ ∈ R.

(A2) : There exists a function w ∈ C(I,R+) satisfying

|f(t, u, v)| ≤ w(t), ∀t ∈ I, ∀u, v ∈ R.
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The existence of solutions is reformulated as follow:

Theorem 3.1. Assume that the hypotheses (A1) and (A2) are hold. We suppose
also that

K :=
1

Γ(α+ β + 1)

[
Kf +

Lf

Γ(σ + 1)

]
+

γ

Γ(β + 1)
< 1

and

η1 :=
γ
[
(β + ν)∥ϕ∥+ µ∥ψ∥+ β + 1

]
Γ(β + 2)

< 1.

Then the Problem (1.1) has at least one solution.

Proof. Let us consider the following closed ball Be = {u ∈ X : ∥u∥ ≤ e} where

e ≥ η2
1− η1

with η2 :=
∥w∥

[
(α+ β + ν)∥ϕ∥+ µ∥ψ∥+ α+ β + 1

]
Γ(α+ β + 2)

.

Now, we define the operator Θ by

Θu(t) = Iα+βf(t, u(t), Iσu(t))− γIβu(t)

+ ϕ(t)

[
γIβu(1) + Iα+β+1F (1) + γIβ+1u(ν)

− Iα+βF (1)− γIβ+1u(1)− Iα+β+1F (ν)

]
+ ψ(t)

[
Iα+β+1F (µ)− γIβ+1u(µ)

]
.

It is remarkable that Θ can be written as Θu(t) = Θ1u(t) + Θ2u(t) where

Θ1u(t) = Iα+βf(t, u(t), Iσu(t))− γIβu(t),

and

Θ2u(t) =ϕ(t)

[
γIβu(1) + Iα+β+1F (1) + γIβ+1u(ν)

− Iα+βF (1)− γIβ+1u(1)− Iα+β+1F (ν)

]
+ ψ(t)

[
Iα+β+1F (µ)− γIβ+1u(µ)

]
.

(i) Firstly, for u, v ∈ Be, Θu+Θv ∈ Be.
Indeed, we have

∥Θ1u+Θ2v∥
≤ sup

t∈I

[
Iα+βf(t, u(t), Iσu(t))− γIβu(t)

]
+sup

t∈I
|ϕ(t)|

[
γ|Iβ+1v(1)− Iβv(1)|+ γ|Iβ+1v(ν)|
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+|Iα+β+1F (1)− Iα+βF (1)|+ |Iα+β+1F (ν)|
]

+sup
t∈I

|ψ(t)|
[
|Iα+β+1F (µ)|+ γ|Iβ+1v(µ)|

]
.

Furthermore, we note that

|Iα+βf(t, u(t), Iσu(t))| ≤ ∥w∥
Γ(α+ β + 1)

, ∀t ∈ I.

Also, we have

|Iβu(t)| ≤ e

Γ(β + 1)
, ∀t ∈ I,

|Iβ+1v(1)− Iβv(1)| ≤ βe

Γ(β + 2)
,

|Iβ+1v(ν)| ≤ νe

Γ(β + 2)
,

|Iα+β+1F (1)− Iα+βF (1)| ≤ (α+ β)∥w∥
Γ(β + 2)

and

|Iα+β+1F (ν) ≤ ν∥w∥
Γ(α+ β + 2)

,

|Iα+β+1F (µ) ≤ µ∥w∥
Γ(α+ β + 2)

,

|Iβ+1v(µ) ≤ µe

Γ(β + 2)
.

Consequently, we get

∥Θ1u+Θ2v∥ ≤ η1e+ η2 ≤ e.

(ii) We show that Θ1 is a contraction.
In fact, for u, v ∈ Be, yields

∥Θ1u−Θ1v∥

≤ sup
t∈I

[
1

Γ(α+ β)

∫ t

0

(t− s)α+β−1|f(s, u(s), Iσu(s)− f(s, v(s), Iσv(s)|ds

+
γ

Γ(β)

∫ t

0

(t− s)β−1|u(s)− v(s)|ds
]

≤ sup
t∈I

[
1

Γ(α+ β)

∫ t

0

(t− s)α+β−1
(
Kf |u(s)− v(s)|+ Lf |Iσu(s)− Iσv(s)|

)
ds

]
+

γ

Γ(β + 1)
∥u− v∥

≤
[

1

Γ(α+ β + 1)

(
Kf +

Lf

Γ(σ + 1)

)
+

γ

Γ(β + 1)

]
∥u− v∥

≤ K∥u− v∥,
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which prove that Θ1 is a contraction.
(iii) Now, we show that Θ2 is compact.
Note that Θ2 is continuous and similarly to (i), for u ∈ Be, one has

∥Θ2u∥ ≤
[
γ(β + ν)

Γ(β + 2)
+

(α+ β + ν)∥w∥
Γ(α+ β + 2)

]
∥ϕ∥+ µ

[
1

Γ(β + 2)
+

∥w∥
Γ(α+ β + 2)

]
∥ψ∥,

which means that Θ is uniformly bounded on Be.
Denote by Mf = sup

(t,u,v)∈I×B2
e

|f(t, u, v)|.

Hereafter, for u ∈ Be, we have

∥Iσu∥ ≤ ∥u∥
Γ(σ + 1)

≤ e,

because Γ(σ + 1) ≥ 1 for all σ ∈ [1, 2].
Thus, we obtain that Iσu ∈ Be.
Moreover, for 0 < τ1 < τ2 < 1, yields

∥Θ2u(τ2)−Θ2u(τ1)

≤
∣∣γIβu(1) + Iα+β+1F (1) + γIβ+1u(ν)− Iα+βF (1)− γIβ+1u(1)− Iα+β+1F (ν)

∣∣
|ϕ(τ2)− ϕ(τ1)|+

∣∣Iα+β+1F (µ)− γIβ+1u(µ)
∣∣|ψ(τ2)− ψ(τ1)|.

On the other hand, we have

|ϕ(τ2)− ϕ(τ1)| ≤
(1− µ)(1 + β)

λ
|τβ2 − τβ1 |,

and

|ψ(τ2)− ψ(τ1)| ≤
ν(1 + β)

λ
|τβ2 − τβ1 |,

which insure that Θ2 is equicontinuous.
Hence, it is relatively compact on Be. So, Θ2 is compact due to Arzela-Ascoli

theorem. Finally, according to Krasnoselskii’s fixed point theorem, we deduce that
our Problem (1.1) admits at least one solution.

Now, let denote by

K̃ :=

(
Kf +

Lf

Γ(σ + 1)

)
(α+ β + ν)∥ϕ∥+ µ∥ψ∥

Γ(α+ β + 2)
,

and

η̃2 =
(α+ β + ν)∥ϕ∥+ µ∥ψ∥+ α+ β + 1

Γ(α+ β + 2)
.

So, we have the following result:

Theorem 3.2. Let assume that the hypothesis (A1) is satisfied. Suppose also that

ε := K + K̃ + η1 < 1. (3.11)

Then, the Problem (1.1) has a unique solution.



328 A. E. Allaoui, L. Mbarki, Y. Allaoui & J. Vanterler da C. Sousa

Proof. We consider as precedently the closed ball Be of radius e satisfying

e ≥ η̃2Λf

1− ε
,

where Λf := sup
t∈I

|f(t, 0, 0)|.

Let us firstly claim that the operator Θ maps Be into itself.
For t ∈ I and x, y ∈ R, we have

|f(t, x, y)| ≤ |f(t, x, y)− f(t, 0, 0)|+ |f(t, 0, 0)|
≤ Kf |x|+ Lf |y|+ Λf .

Thus, for all (t, u) ∈ I ×Be, we obtain

|f(t, u(t), Iσu(t))| ≤ K|u(t)|+ Lf |Iσu(t)|+ Λf

≤ Kfe+
Lf

Γ(σ + 1)
e+ Λf

=
(
Kf +

Lf

Γ(σ + 1)

)
e+ Λf .

So, one has

|Iα+βf(t, u(t), Iσu(t))| ≤ 1

Γ(α+ β + 1)

[
(Kf +

Lf

Γ(σ + 1)

)
e+ Λf

]
.

For t ∈ I and u ∈ Be, yields that

|Θu(t)| ≤|Iα+βf(t, u(t), Iσu(t))|+ γ|Iβu(t)|

+ ∥ϕ∥
[
γ|Iβ+1u(1)− Iβu(1)|+ γ|Iβ+1u(ν)|

+ |Iα+β+1F (1)− Iα+βF (1)|+
∣∣Iα+β+1F (ν)

∣∣ ]
+ ∥ψ∥

[
|Iα+β+1F (µ)|+ γ|Iβ+1u(µ)|

]
≤ 1

Γ(α+ β + 1)

[(
Kf +

Lf

Γ(σ + 1)

)
e+ Λf

]
+

γ

Γ(β + 1)
e+ ∥ϕ∥

[
βγe

Γ(β + 2)
+

γνe

Γ(β + 2)

+
α+ β

Γ(α+ β + 2)

[(
Kf +

Lf

Γ(σ + 1)

)
e+ Λf

]
+

ν

Γ(α+ β + 2)

[(
Kf +

Lf

Γ(σ + 1)

)
e+ Λf

]
+ ∥ψ∥

[ µ

Γ(α+ β + 2)

[(
Kf +

Lf

Γ(σ + 1)

)
e+ Λf

]]
+

µγe

Γ(β + 2)

]
≤
[(
Kf +

Lf

Γ(σ + 1)

)( 1

Γ(α+ β + 1)
+

(α+ β + ν)∥ϕ∥+ µ∥ψ∥
Γ(α+ β + 2)

)
+
γ(β + 1)

Γ(β + 2)
+
γν∥ϕ∥+ γµ∥ψ∥+ βγ∥ϕ∥

Γ(β + 2)

]
e
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+
(α+ β + 1) + (α+ β + ν)∥ϕ∥+ µ∥ψ∥

Γ(α+ β + 2)
Λf

≤εe+ η̃2Λf

≤e.

Now, let us show that Θ is a contraction.

For u, v ∈ Be and t ∈ I, we have

|Θu(t)−Θv(t)| ≤ |Iα+βf(t, u(t), Iσu(t))− Iα+βf(t, v(t), Iσv(t))|
+ γ|Iβu(t)− Iβv(t)|

≤
[

1

Γ(α+ β + 1)

(
Kf +

Lf

Γ(σ + 1)

)
+

γ

Γ(β + 1)

]
∥u− v∥

≤ K∥u− v∥
≤ ε∥u− v∥,

which prove that Θ is a contraction.

Therefore, according to the Banach fixed point theorem, we infer the result.

Remark 3.1. Note that the assumption (3.11) leads the one given in Theorem
(3.1).

Now, we give two examples to illustrate our obtained results.

Example 3.1. We can consider the following problem

cD
1
4

(
cD

3
2 + 1

2

)
u(t) =

|u(t)|
(t+ 3)2

(
|u(t)|

|u(t)|+ 3
+ 3

)
+

cD
3
2u(t)

(t+ 2)2
− 1, t ∈ [0, 1],

u(0) =

∫ 1
4

0

u(s)ds,

u(1) =

∫ 1

1
2

u(s)ds,

u′(0) = 0.

This problem can be abstracted into the Problem (1.1), where

f(t, x, y) =
|x|

(t+ 3)2

(
|x|

|x|+ 3
+ 3

)
+

y

(t+ 2)2
− 1.

One can easily show that all assumptions of Theorem 3.1 are satisfied with

α =
1

4
, β =

3

2
, n = 2, γ = ν =

1

2
, µ =

1

4
, Kf =

4

9
, Lf =

1

4
.

And K ≈ 0, 7693 < 1, η1 ≈ 0, 8198 < 1.

So, this problem has at least one solution.

Moreover, one note that K̃ ≈ 0, 5288 and ε ≈ 2, 1180 > 1.

Consequently, one cannot ensure the uniqueness of the solution by theTheorem
3.2.
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Example 3.2. Let the following problem,

cD
1
2

(
cD

5
2 + 1

8

)
u(t) =

3 + |u(t)|+ |cD 3
2u(t)|

5
(
2 + |u(t) + |cD 3

2u(t)|
) , t ∈ [0, 1],

u(0) =

∫ 1
2

0

u(s)ds,

u(1) =

∫ 1

3
4

u(s)ds,

u′(0) = u′′(0) = 0.

The above problem can be seen as system of the Problem (1.1), where

f(t, x, y) =
3 + |x|+ |y|

5(2 + |x|+ |y|)
.

In this case, we have taken

α =
1

2
, β =

5

2
, n = 3, γ =

1

8
, σ =

3

2
, µ =

1

2
, ν =

3

4
, Kf = Lf =

1

5
.

In addition, after simple computations, we get

K ≈ 0, 0960, η1 ≈ 0, 0874, K̃ ≈ 0, 0811.

Moreover, we obtain ε ≈ 0, 2645 < 1.
Thus, we see that, in this case, all assumptions of theTheorem 3.2 are satisfied.

So, we infer that this problem has a unique solution.
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