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Abstract In this paper, Hopf and zero-Hopf bifurcations are investigated
for a class of three-dimensional cubic Kolmogorov systems with one positive
equilibrium. Firstly, by computing the singular point quantities and figuring
out center conditions, we determined that the highest order of the positive
equilibrium is eight as a fine focus, which yields Hopf cyclicity eight at the
positive equilibrium. Secondly, by extending the normal form method, we
discuss the existence of multiple periodic solutions via zero-Hopf bifurcation
around the positive equilibrium. At the same time, the relevance between
zero-Hopf bifurcation and Hopf bifurcation is analyzed via its special case,
which are rarely studied in detail.
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1. Introduction

Since it was proposed in 1936 [15], the Kolmogorov model has become classical and
is used widely in ecology to describe the interaction between n species occupying
certain same ecological habitat, which usually takes the following form

dxi

dt
= xifi(x1, x2, · · · , xn), i = 1, 2, · · · , n, (1.1)

where fi are polynomials with respect to x1, x2, · · · , xn. Here, xi represents the
density of the i-th species in a biosphere, and f1, f2, · · · , fn are the intrinsic growth
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rates or biotic potential of the n species, respectively. Since each species density xi

is nonnegative in reality, we only consider the behavior of the orbits in the positive
quadrant {(x1, x2, · · · , xn)

T : xi > 0, i = 1, 2, · · · , n}. Of particular significance in
applications are the existence and number of limit cycles bifurcating from positive
equilibrium points, which correspond to the key dynamic behaviors of the changes
in species quantities under the influences of internal and external factors. Therefore,
it is natural for the topic to attract the attention of many researchers in the field
of mathematical ecology [13].

For the planar Kolmogorov system, it is well known that system (1.1) does not
have limit cycles if f1 and f2 are linear, namely it is the classical Lotka-Volterra-
Gause model. When f1 and f2 are not linear, many results have been obtained
in [5, 12, 19, 28]. For the three-dimensional Kolmogorov system, if f1, f2 and f3 are
linear, then system (1.1) is a quadratic Lotka-Volterra system. The relevant results
of limit cycle bifurcation can be found in [26, 30] and references therein. When
f1, f2 and f3 are not linear, however, the works on this problem are not unusually
seen, especially for the cyclicity of Hopf bifurcation, i.e., the maximal number of
limit cycles which may exist in the vicinity of a Hopf singular point under proper
perturbations.

In 2014, Du et al. [6] investigated one class of three-dimensional cubic Kol-
mogorov systems with f1, f2 and f3 as quadratic polynomials, and got five small
limit cycles bifurcating from a positive singular point. Recently, Gu et al. [9] proved
that seven limit cycles can be generated in another class of three-dimensional cubic
Kolmogorov systems. Based on the above works, we conjecture the number of limit
cycles bifurcating from a single positive equilibrium point can be more than 7 for
the three-dimensional cubic Kolmogorov models, and will further investigate it here.

It is well known that Hopf bifurcation is closely related to center-focus deter-
mination. For the calculation of focus values on the center manifold, there exist
some available methods, such as Lyapunov-Schmidt method [11], the simple normal
form method [23], the formal first integral method [7] and the displacement map
method [1]. Notably, the authors of [8] presented a general method for bounding
the cyclicity in the center case without any kind of reduction to center manifold.
Here we will apply the method with linear recursive algorithm proposed by the au-
thors of [27] in 2010 to directly calculate the singular point quantities on the center
manifold, its some applications can be seen in [6, 9, 14,20,25].

For the zero-Hopf singular point with a zero eigenvalue and a pair of pure imagi-
nary eigenvalues, under certain perturbing conditions including small change of the
zero eigenvalue, a limit cycle can be generated around it, this is to say, the zero-
Hopf bifurcation can occur. Recently, this problem has been getting more attention,
especially in the research of many chaotic models [2, 18, 21]. The common tool for
investigating this problem is the average theory, see, e.g., [4, 18, 21]. Notably, the
authors of [32] applied the normal form theory to investigate the Rössler system,
and showed that the method of normal forms is applicable for all types of zero-Hopf
bifurcations. As for its multiple limit cycles bifurcation, there are very few results.
To our knowledge, the authors of [4,21] have discovered the multiple limit cycles by
applying averaging theory of second order and first order respectively. Generally,
zero-Hopf bifurcation is viewed as one degenerate type of Hopf bifurcation, yet the
specific relevance between the two is rarely discussed in the literatures available for
reference.

In this paper, we will investigate the multiplicity or cyclicity of Hopf and zero-
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Hopf bifurcations for a class of three-dimensional cubic Kolmogorov system, i.e.,

dxi

dt
= xifi(x1, x2, x3), (1.2)

where we have assumed that system (1.2) has a positive equilibrium point E =
(1, 1, 1), namely all fi(1, 1, 1) = 0, i = 1, 2, 3. For the convenience of discussion of
the center problem and Hopf bifurcation for the positive equilibrium E, we trans-
form the equilibrium E to the origin by means of the transformation:

x1 = x+ 1, x2 = y + 1, x3 = u+ 1,

system (1.2) can be rewritten in the following form:

dx

dt
= (x+ 1)f̃1,

dy

dt
= (y + 1)f̃2,

du

dt
= (u+ 1)f̃3, (1.3)

where f̃i = fi(x+1, y+1, u+1). Further, here we have chosen the three incomplete
quadratic polynomials as follows,

f̃1 = δx− y + (A200x
2 −A200y

2 −B101yu+A002u
2),

f̃2 = x+ δy + (B101xu+A002u
2),

f̃3 = λu+ (D200x
2 +D200y

2 +D101xu+D011yu+D002u
2),

(1.4)

with δ, λ, A002, A200, B101, D002, D011, D101 and D200 are nine real parameters.

The rest of this paper is organized as follows. In the next section, some pre-
liminary methods and results are briefly introduced for the later discussion and
analysis on Hopf bifurcation. In section 3, the singular point quantities of the ori-
gin corresponding to the positive equilibrium of (1.2) are calculated by deriving
the recursion formula, then the center conditions of the equilibrium are determined
on the center manifold. Further, it is verified that the highest order of the fine
focus is eight for the positive equilibrium, which implies the Hopf cyclicity 8 at the
positive equilibrium. From the all literature we know, it is the maximum number of
limit cycles generated from single equilibrium point of three-dimensional systems.
In section 4, by rescaling the variables and extending the normal form method, we
investigate the zero-Hopf bifurcations around the positive equilibrium and verify
the existence of multiple periodic solutions via zero-Hopf bifurcation. At the same
time, the relevance between zero-Hopf bifurcation and Hopf bifurcation is discussed
through its special case, and some related numerical illustrations are also given.

2. Preliminary results and method

In this section, we present some basic results and methods that will be used in the
following sections. For the planar polynomial systems, Liu and Li [17] proposed a
valid method for computing singular point quantities in complex systems in 1990,
whose recent application can be found in [16]. In 2010, Wang et al. [27] general-
ized and developed the method to study the three-dimensional nonlinear dynamical
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system of the form

dx

dt
= δx− y +

∞∑
k+j+l=2

Akjlx
kyjul = X(x, y, u),

dy

dt
= x+ δy +

∞∑
k+j+l=2

Bkjlx
kyjul = Y (x, y, u),

du

dt
= −du+

∞∑
k+j+l=2

dkjlx
kyjul = U(x, y, u),

(2.1)

where x, y, u, t, d, δ, Akjl, Bkjl, dkjl ∈ R (k, j, l ∈ N), d ̸= 0, and the X,Y and U are
all analytic in a neighborhood of the origin. It is not difficult to find that system
(1.3) is a subfamily of system (2.1).

By the transformation

x =
z + w

2
, y =

(w − z)i

2
, t = −T i, i =

√
−1, (2.2)

system (2.1)|δ=0 can also be transformed into the following complex system

dz

dT
= z +

∞∑
k+j+l=2

akjlz
kwjul = Z(z, w, u),

dw

dT
= −w −

∞∑
k+j+l=2

bkjlw
kzjul = −W (z, w, u),

du

dT
= idu+

∞∑
k+j+l=2

d̃kjlz
kwjul = Ũ(z, w, u),

(2.3)

where z, w, T, akjl, bkjl, d̃kjl ∈ C , k, j, l ∈ N. Moreover, the coefficients akjl and bkjl
of system (2.3) satisfy a conjugate relationship, namely, bkjl = akjl, k, j, l ∈ N.

Furthermore, we can calculate the singular point quantities of the origin by the
method given in Theorem 3.1 of [27], and there exists the algebraic equivalence
between the m-th singular point quantity µm and the m-th focal value v2m+1 at
the origin for the bifurcation equations of system (2.3) with δ = 0, i.e.

v2m+1 ∼ iπµm, m = 1, 2, · · · . (2.4)

In order to prove the existence of multiple limit cycles, we introduce the following
lemma.

Lemma 2.1. (see [10]) Suppose that the focus values depend on k parameters,
expressed as

vj = vj(ϵ1, ϵ2, · · · , ϵk), j = 1, 3, · · · , 2k + 1,

satisfying vj(0, 0, · · · , 0) = 0 for 1 ≤ j ≤ 2k − 1, v2k+1(0, 0, · · · , 0) ̸= 0, and

det[
∂(v1, v3, · · · , v2k−1)

∂(ϵ1, ϵ2, · · · , ϵk)
(0, 0, · · · , 0)] ̸= 0, (2.5)

then the origin of the perturbed system (2.1) has k limit cycles.
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In addition, we also want to know whether the origin is center on the manifold if
the first m singular point quantities vanish for system (2.1)|δ=0. Constructing first
integrals is an effective method to determine the center conditions, and the main
tool for constructing first integrals using the Darboux method is provided by the
following notions and lemma (one can also see in [3, 22]).

Definition 2.1. Given a polynomial f ∈ C(x, y, u), a surface f = 0 is called an
invariant algebraic surface of the system (2.1)|δ=0, if the polynomial f satisfies the
equation

df

dt

∣∣∣∣
(2.1)

=
∂f

∂x
X +

∂f

∂y
Y +

∂f

∂u
U = Kff, (2.6)

for some polynomial Kf ∈ C. The polynomial Kf is called a cofactor of f .

Definition 2.2. Let G = exp(g(x, y, u)/h(x, y, u)) ∈ C(x, y, u) with g, h ∈ C(x, y,
u), then G is an exponential factor if there exists a KG ∈ C(x, y, u) such that

dG

dt

∣∣∣∣
(2.1)

=
∂G

∂x
X +

∂G

∂y
Y +

∂G

∂u
U = KGG. (2.7)

The polynomial KG is called a cofactor of G.

Lemma 2.2. (see [3, 22]) Suppose that system (2.1)|δ=0 admits p irreducible in-
variant algebraic curves surface fi = 0 with cofactors Ki for i = 1, 2, · · · , p, and q
exponential factors exp(gi/hj) with cofactors Lj for j = 1, 2, · · · , q. If there exist
λi, ηj not all zero such that

p∑
i=1

λiKi +

q∑
j=1

ηjLj = 0, (2.8)

then system (2.1)|δ=0 admits a first integral of the form

fλ1
1 fλ2

2 · · · fλp
p (exp(g1/h1))

η1 · · · (exp(gq/hq))
ηq . (2.9)

The first integral (2.9) is called a Darboux first integral.

3. The Hopf cyclicity at the positive equilibrium

In this section, the singular point quantities of the corresponding equilibrium are
computed. The necessary conditions for the equilibrium point to be a center are
found by analyzing the singular point quantities, and the sufficiency of the center
conditions is proved by constructing the first integral. Further, the Hopf cyclicity,
namely, the maximum number of limit cycles bifurcating from the positive equilib-
rium is investigated.
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3.1. Singular point quantities

Applying transformation (2.2), system (1.3) can become the following complex sys-
tem with the same form as (2.3):

dz

dT
= z + Z2 + Z3 =: Z,

dw

dT
= −w −W2 −W3 =: −W,

du

dT
= −iλu+ U2 + U3 =: U,

(3.1)

where

Z2 = a101zu+ a200z
2 + a020w

2 + a002u
2,

Z3 = a300z
3 + a030w

3 + a120zw
2 + a102zu

2 + a210z
2w + a201z

2u+ a021w
2u,

W2 = Z2, W3 = Z3,

U2 = d110zw + d101zu+ d011wu+ d002u
2,

U3 = d111zwu+ d012wu
2 + d102zu

2 + d003u
3,

with

a101 = B101, a200 =
1− i

4
− A200i

2
, a020 = −1− i

4
− A200i

2
, a002 = A002(1− i),

a300 = a030 =a120 =a210 =−A200i

4
, a102=−A002i, a201=

1− i

4
B101, a021=−a201,

bkjl = akjl, (kjl = 101, 200, 020, 002, 300, 030, 120, 102, 210, 201, 021),

d110 = d111 =−D200i, d101 = d102 =−D011 +D101i

2
, d011 = d012 =

D011 −D101i

2
,

d002 = −(λ+D002)i, d003 = −D002i.

By using the method [27, Theorem 3.1], the recursive formulas for calculating
singular point values of system (3.1) at the origin can be obtain as follows.

Lemma 3.1. For system (3.1), the singular point values µm(m = 1, 2, · · · ) at the
origin are determined by the following recursive formula: if α ̸= β or α = β, γ ̸= 0,
cαβγ is determined by the following recursive formula:

cαβγ =
∆

β − α+ iλγ
(3.2)

where

∆ =− b030(β + 1)c[α− 3, β + 1, γ] + (a300α− 2a300 − b120β)c[α− 2, β, γ]

− b021(1 + β)c[α− 2, 1 + β, γ − 1]− b020(β + 1)c[α− 2, β + 1, γ]

+ (a210α− a210 + b210 − b210β + d111γ)c[α− 1, β − 1, γ]

+ (a201α− a201 − d102 + d102γ)c[α− 1, β, γ − 1]

+ (b200 − b200β + d011γ)c[α, β − 1, γ] + (a120α+ 2b300 − b300β)c[α, β − 2, γ]

+ (a101α− d002 − b101β + d002γ)c[α, β, γ − 1]− b002(1 + β)c[α, β + 1, γ − 2]

+ d110(1 + γ)c[α− 1, β − 1, γ + 1] + (a200α− a200 + d101γ)c[α− 1, β, γ]
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+ a030(α+ 1)c[α+ 1, β − 3, γ] + a021(α+ 1)c[α+ 1, β − 2, γ − 1]

+ a020(α+ 1)c[α+ 1, β − 2, γ] + a002(α+ 1)c[α+ 1, β, γ − 2]

+ (b201 − d012 − b201β + d012γ)c[α, β − 1, γ − 1]

+ (a102α− 2d003 − b102β + d003γ)c[α, β, γ − 2]

and each c[α, β, γ] is namely cαβγ , and for any positive integer m, µm is determined
by the following recursive formula:

µm =− b030(1 +m)c[m− 3,m+ 1, 0] + (a300m− 2a300 − b120m)c[m− 2,m, 0]

− b020(m+ 1)c[m− 2,m+ 1, 0] + (a210 − b210)(m− 1)c[m− 1,m− 1, 0]

+ (2b300 + a120m− b300m)c[m,m− 2, 0]− b200(m− 1)c[m,m− 1, 0]

+ a030(m+ 1)c[m+ 1,m− 3, 0] + a020(m+ 1)c[m+ 1,m− 2, 0]

+ d110c[m− 1,m− 1, 1] + a200(m− 1)c[m− 1,m, 0],

and when α < 0 or β < 0 or γ < 0 or γ = 0, α = β, we have let cα,β,γ = 0.

Now applying the recursive formulas in Lemma 3.1 via the software Mathemat-
ica, we obtain the first two singular point quantities of system (3.1) at the origin as
follows:

µ1 = − iA200

2
,

µ2 = −2iA002D
2
200

λ2(1 + λ2)
[λ2 − (D101 +D011)λ+D101 −D011].

(3.3)

To simplify the calculation, we set λ = −1 here, namely

µ2 = −iA002(1 + 2D101)D
2
200.

Then we do certain discussion for µ2 = 0 and continue to compute the following
singular point quantities.

Case (i). If A002D200 = 0, then

µ3 = µ4 = µ5 = µ6 = µ7 = µ8 = 0.

Case (ii). If A002D200 ̸= 0, from µ2 = 0, we have D101 = − 1
2 , then computing

yields

µ3 =
i

20400
A002D

2
200S1, (3.4)

letting µ3 = 0 yields that S1 = 0, i.e.,

A002 = − S2

81600D2
200

, (3.5)

where

S1 =S2 + 81600A002D
2
200,

S2 =− 1443 + 622D011 + 7276D2
011 + 4080D3

011 − 10200D200 + 10200B101D200

+ 40800D002D200 − 20400D011D200 + 20400B101D011D200

+ 40800D002D011D200.
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And we figure out

µ4 =
i

44146528000000
S2S3, (3.6)

where

S3 = Sn + 780B101D200Sd,

Sd = −404493 + 931472D011 + 6428516D2
011 + 4647120D3

011,

and Sn is a polynomial only with respect to D002, D011 and D200.
Next, setting µ4 = 0, we obtain S2 = 0 or S3 = 0. If S2 = 0, from (3.5),

A002 = 0 holds. This is in contradiction with the condition A002D200 ̸= 0, then
S2 ̸= 0, we just consider S3 = 0. By setting S3 = 0 and Sd ̸= 0, it follows that

B101 = − Sn

780D200Sd
. (3.7)

Further, under the above conditions we continue to compute and obtain

µ5 = − i

2583795418624000000000S3
d

S4F1,

µ6 = − i

1307381773603974954762240000000000S4
d

S4F2,

µ7 = − i

3335423757981027399988340981760000000000000S5
d

S4F3,

µ8 = − i

1569986724612541205465199290460764897280000000000000000S6
d

S4F4,

(3.8)
where S4,F1, F2, F3 and F4 are polynomials only with respect to D002, D011 and
D200. In fact, S4, F1, F2, F3 and F4 are too long to show in this paper, with terms
of 22, 106, 248, 480 and 824 elements respectively, which can be found in the
website:https://github.com/lujingping/KOL.git.

3.2. Center conditions

In this subsection, we investigate the center problem of system (3.1). Analyzing the
singular point quantities obtained in (3.3), Cases (i) and (ii), we have the following
result.

Theorem 3.2. For system (3.1) with λ = −1, the first eight singular point quan-
tities of the origin vanish simultaneously if and only if one of the following two
conditions holds:

K1 : A200 = A002 = 0, (3.9)

K2 : A200 = D200 = 0. (3.10)

Proof. From the first eight singular point quantities µ1, µ2, · · · , µ8 in (3.3) and
the cases (i) (ii), the sufficiency of the conditions in Theorem 3.2 is obvious. Then,
we only need to prove the necessity of the above conditions.

Letting the first singular point quantity µ1 = 0, we obtain A200 = 0. And taking
µ2 = 0 yields that A002 = 0 or D200 = 0 or 1 + 2D101 = 0. For the above case
(i), i.e., A002D200 = 0, it can be concluded that condition K1 or K2 is necessary for
each µi = 0, i = 1, 2, · · · , 8.
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For the case (ii), when A002D200 ̸= 0 and D101 = − 1
2 , we note that µ3 = µ4 = 0

if and only if S1 = S3 = 0. Taking µ5 = 0, generates that S4 = 0 or F1 = 0. In
fact, we compute the resultant of S2 and S3 with respect to B101, yielding

Resultant[S2, S3, B101] = −60D200S4.

Since S2 ̸= 0 in (3.5), S4 ̸= 0 hold necessarily. Thus µ5 = 0 if and only if F1 = 0.
Next, we need to investigate whether the four equations µ5 = µ6 = µ7 = µ8 = 0

have common solutions, specifically, to determine whether or not the polynomials
F1, F2, F3 and F4 share common zeros. For this purpose, computing the polynomial
resultants of F2, F3, F4 for F1 with respect to D002 via Mathematica, we have

Resultant[F2, F1, D002] = 2732274240795226681 · · · 000000D24
200S

12
d f60,

Resultant[F3, F1, D002] = −167339298139456617 · · · 000000D32
200S

16
d f76,

Resultant[F4, F1, D002] = 86915361760962704639 · · · 000000D40
200S

20
d f92,

(3.11)

where f60, f76 and f92 are all polynomials just in D011 and D200, and the degrees
of f60, f76, f92 are 60, 76, 92 respectively. Since D200Sd ̸= 0, we just need consider
whether or not the polynomials f60, f76 and f92 share common zeros. Moreover, we
compute the Gröbner basis of the ideal < f60, f76, f92 >, and we get

GroebnerBasis[{f60, f76, f92}, {D011, D200}] = {1}.

This means that the polynomials f60, f76 and f92 have no common zeros, then
yielding that F1, F2, F3 and F4 have no common root. Therefore, apart from the
condition K1 or K2, there are no other conditions such that all µi vanish, i =
1, 2, · · · , 8. The proof of Theorem 3.2 is complete.

However, we should note that there may exist some real values of D002, D011 and
D200 such that F1 = F2 = F3 = 0, which will be discussed in the next subsection.

Furthermore, we will prove that K1 in (3.9) and K2 in (3.10) are two sets of
center conditions of system (3.1) restricted to the center manifold. Then we give
the corresponding theorem.

Theorem 3.3. The origin of system (3.1) with λ = −1, i.e, the positive equilibrium
(1, 1, 1) of its corresponding real system (1.2) with δ = 0 and λ = −1 is a center
on the local center manifold if and only if the condition K1 or K2 in Theorem 3.2
holds.

Proof. From the Theorem 3.2, the necessity is obvious. Now, we prove the suffi-
ciency of the two conditions.

(I) If the condition K1 holds, the system (1.3) can be rewritten as

dx

dt
= −y(1 + x)(1 +B101u),

dy

dt
= x(1 + y)(1 +B101u),

du

dt
= (1 + u)(−u+D200x

2 +D200y
2 +D101xu+D011yu+D002u

2).

(3.12)

For system (3.12), there exists a center manifold u = u(x, y), which can be expressed
as the polynomial series in x and y formally as follows:

u = u2(x, y) + h.o.t.,
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where u2 is a homogeneous quadratic polynomial, h.o.t. expresses higher-order
terms. Substituting u = u(x, y) into the first two equations of system (3.12), it
can be transformed into two-dimensional system. Thus, to prove that system (3.12)
is integrable on the center manifold, we only need to find a first integral. It is easy
to see that system (3.12) has two invariant surfaces

f1(x, y, u) = 1 + x,

f2(x, y, u) = 1 + y,

with the corresponding cofactors

k1(x, y, u) = −y(1 +B101u),

k2(x, y, u) = x(1 +B101u).

At the same time, we also find an exponential factor

G = ex+y,

with cofactor

l = (x− y)(1 +B101u).

Now the solution of the relevant equation (2.8) in the lemma 2.2 is as follows:

λ1 = −η, λ2 = −η.

Choosing η = 1, we obtain one first integral of system (3.12):

H = (1 + x)−1(1 + y)−1ex+y,

then its origin is a center on the local center manifold.
(II) If the condition K2 holds, the system (1.3) can be rewritten as

dx

dt
= (1 + x)(A002u

2 −B101yu− y),

dy

dt
= (1 + y)(x+B101xu+A002u

2),

du

dt
= u(1 + u)(D101x+D011y +D002u− 1).

(3.13)

It is not difficulty to find that system (3.13) admits an invariant algebraic surface
f(x, y, u) = u = 0 with cofactor k = (1 + u)(D101x + D011y + D002u − 1). And
we note that the surface f(x, y, u) = u = 0 is actually a global center manifold of
system (3.13). By substituting u = 0 into the first and second equations of system
(3.13), we can obtain the following planar system,

dx

dt
= −y(1 + x),

dy

dt
= x(1 + y),

(3.14)

which has a first integral

H = x+ y − ln(1 + x)(1 + y).

This means that the origin of systems (3.14) is a center. Hence, the origin is a
center for the flow of system (3.13) restricted to the center manifold. The proof of
Theorem 3.3 is complete.
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3.3. Hopf bifurcation at the equilibrium E

In this section, we turn to the investigation on the maximum number of limit cycles
bifurcating from the origin of system (1.3). For this purpose, we need to determine
the highest order of the origin as a fine focus. From the discussion of no common zero
for F1, F2, F3 and F4 in Theorem 3.2 and the center conditions given in Theorem
3.3, we still cannot determine that the upper bound of the order of fine focus at
the origin of system (1.3) is eight. If and only if F1, F2 and F3 can disappear at the
same time, then it is true.

Next, we will figure out whether or not F1, F2 and F3 share common zeros by
solving the two equations f60 = f76 = 0 with respect to D011 and D200, given
by (3.11). Thus 164 groups of real solutions satisfying f60 = f76 = 0 are found,
which can rigorously verified by applying Sturm’s theorem of polynomial. Further,
substituting them into the expression of F1, F2 and F3, the real numerical solutions
of D002 can be obtained with the aid of algebraic system Mathematica, whose
existence can also be strictly verified. In this way, we get only 24 groups of real
solutions satisfying the equations F1 = F2 = F3 = 0. One of them is chosen as
follows:

D011 = −3.750360888650362352649717750421812656087513 · · · ,

D200 = 1.40458192675347223668165571468462062186928975 · · · ,

D002 = −0.122153124966806311914532973314463612609215 · · · ,

(3.15)

at this time,
F1 = F2 = F3 = 0, F4 = 2.17049 · · · ∗ 1071 ̸= 0.

This means that there is at least a solution such that µ5 = µ6 = µ7 = 0, but µ8 ̸= 0.
On the other hand, according to the proof of theorem 3.2, we know that µ1 =

µ2 = µ3 = µ4 = 0 hold if A002D200S2Sd ̸= 0 and

A200 = 0, D101 = −1

2
, A002 = − S2

81600D2
200

, B101 = − Sn

780D200Sd
. (3.16)

Then under the given value conditions of (3.15), we can figure out

B101 = −0.159816022767920418580982329332306655787827 · · · ,

A002 = −0.065943769804169647996394101019544501795068 · · · ,
(3.17)

and easily verify A002D200S2Sd ̸= 0.
Thus a group of critical values is imposed as follows,

η = (A200, A002, B101, D101, D002, D011, D200)

= (0, A∗
002, B

∗
101,−

1

2
, D∗

002, D
∗
011, D

∗
200)

=: η∗ (3.18)

where all A∗, B∗, D∗ are the given parameter values in (3.15) and (3.17). Therefore,
if η = η∗, then µ1 = · · · = µ7 = 0 and µ8 ̸= 0 hold necessarily, yielding the following
result.
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Theorem 3.4. The highest order of the origin of system (3.1) with λ = −1, namely,
the positive equilibrium (1, 1, 1) of its corresponding real system (1.2) with δ = 0
and λ = −1 is eight as a fine focus on the center manifold.

According to the algebraic equivalence shown in (2.4), we can easily get the first
eight focal values of the origin for system (3.1) or its conjugate real system (1.3)
with λ = −1:

v2m+1 = iπµm,m = 1, 2, · · · , 8,

where for each v2m+1, we have set v2j−1 = 0, j = 1, 2, · · · ,m.

Furthermore, under the conditions (3.18), v17(η
∗) ̸= 0 holds, and directly cal-

culating the Jacobian determinant of the function group (v3, v5, v7, v9, v11, v13, v15)
with respect to the variable group η yields

J =

∣∣∣∣ ∂(v3, v5, v7, v9, v11, v13, v15)

∂(A200, D101, B101, A002, D002, D011, D200)

∣∣∣∣
η=η∗

=70543.3321233808035450521580979721349

̸=0. (3.19)

By Lemma 2.1, it implies that system (3.1) can have 7 small-amplitude limit cycles
bifurcating from the origin. According to the above analysis, we have the following
theorem.

Theorem 3.5. There exist seven and at most seven limit cycles bifurcating from
the origin of system (3.1) with λ = −1 or the positive equilibrium (1, 1, 1) of its cor-
responding real system (1.2) with δ = 0 and λ = −1 via Hopf bifurcation restricted
to a center manifold.

Remark 1. In Theorem 3.5, since the linear parts are not involved in the perturba-
tion of coefficients, only seven small-amplitude cycles restricted to a center manifold
can appear. Just when 0 < |δ| ≪ 1, the first two equations of the system (1.3) are
perturbed in their linear parts just as system (2.1), then the multiple bifurcations
of eight limit cycles from the equilibrium can occur.

4. Zero-Hopf bifurcation around the equilibrium E

Now, we consider zero-Hopf bifurcation of the positive equilibrium E. To guarantee
that its eigenvalues are 0 and ±i, the necessary condition: λ = 0 and δ = 0 should
be satisfied in system (1.2). Further, we let 0 < |λ| ≪ 1 and |δ| ≪ 1 such that the
system (1.3) are perturbed in their linear parts, this is also called unfolding.

4.1. Existence of multiple periodic orbits via Zero-Hopf bifur-
cation

Similar to the previous research on Hopf bifurcation, we will investigate the trans-
lated system (1.3) for the zero-Hopf bifurcation problem around the origin, which
responds to the positive equilibrium E of system (1.2). Via the rescaling of the vari-
ables: (x, y, u) 7→ (εx, εy, εu), then the corresponding perturbation form of system
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(1.3) becomes as follows:

dx

dt
= (1 + εx)[δx− y + ε(A200x

2 −A200y
2 −B101yu+A002u

2)],

dy

dt
= (1 + εy)[x+ δy + ε(B101xu+A002u

2)],

du

dt
= (1 + εu)[λu+ ε(D200x

2 +D200y
2 +D101xu+D011yu+D002u

2)].

(4.1)

Now, we shall use the normal form theory to investigate the zero-Hopf bifurca-
tion of system (4.1). The following conclusion can be obtained.

Theorem 4.1. For system (1.2), the zero-Hopf bifurcation can occur around the
positive equilibrium E at the critical value: λ = δ = 0. And under the perturbing
condition: 0 < |λ| ≪ 1 and 0 < |δ| ≪ 1, at least two limit cycle can bifurcate via
setting appropriate parameter values.

Proof. Applying the Maple program in [24,29], for system (4.1) with the unfolding
added, we obtain the following normal form expressed in cylindrical coordinates [31]
(for convenience, the notation u is still used in the normal form),

u̇ = λu+ εV2 + ε2V3 + o(ε2),

ṙ = δr + ε2rR2 + o(ε2),

θ̇ = 1 + εB101u+ ε2E2 + o(ε2),

(4.2)

where

V2 = D200R
2 +D002u

2,

V3 = D200R
2u+ (D002 +A002D011 −A002D101)u

3,

R2 = 1
4A200R

2 −A002(A200 +D011 −D101)u
2,

E2 = 1
12 (2A200 − 2A2

200 − 1)R2 +A002(A200 −D011 −D101)u
2.

(4.3)

The first two equations in the normal form (4.2) can be used for bifurcation anal-
ysis, while the third equation can be used to determine the frequency of periodic
solutions.

Next, we will search for the steady-state solutions by setting u̇ = ṙ = 0 in (4.2).

Case (I). Considering the truncated 1-jet of the first equation and the truncated
2-jet of the second equation with respect to ε, and more by letting λ = λ1ε and
δ = δ1ε

2, then we have  u̇ = ε(λ1u+ V2),

ṙ = ε2r(δ1 +R2),
(4.4)

which can be called (ε, ε2)-order reduced equations of system (4.2). And its all the
steady-state solutions can be obtained, generally, Equations (4.4) have two groups of
solutions with r > 0, and two unstable positive solutions, i.e., two unstable periodic
orbits can be obtained easily. For example, when setting δ1 = 1, λ1 = 1

25 , A200 =
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0, D200 = 1, A002 = 1, D011 = 1 +D101, D002 = − 1
5 , there exists such two solutions

as follows

(u, r) = (1,
2

5
), (−1,

√
6

5
).

The stability of the steady-state solutions are determined by the Jacobian of the
first two equations of (4.2), evaluated at the solutions (u, r), resulting in two group

of eigenvalues: {− 4
5 ,

4
5} and { 2

√
6

5 , 2
√
6

5 }, respectively. Hence, we can determine the
solutions, i.e., the two possible periodic orbits of (4.2) are unstable. Unfortunately,
we can not find its stable periodic orbit of (4.2) in this case.

Case (II). Considering the truncated 2-jet of the first equation with the 1-jet part
V2 = 0, and the truncated 2-jet of the second equation with respect to ε, by letting
λ = λ2ε

2 and still δ = δ1ε
2, then we have u̇ = ε2(λ2u+ V3),

ṙ = ε2r(δ1 +R2),
(4.5)

which can be called (ε2, ε2)-order reduced equations of system (4.2). And its all
the steady-state solutions can also be obtained, similarly we only need the solutions
with positive r. And two unstable periodic orbits and one stable periodic orbit can
be obtained easily. For example, when setting δ1 = 1, λ2 = −2, A200 = −3, A002 =
1, D200 = 0, D002 = 0, D101 = 0, D011 = 1, there exists such there solutions as
follows

(u, r) = (0,
2
√
3

3
), (

√
2,

2
√
15

3
), (−

√
2,

2
√
15

3
),

we calculate the Jacobian of the first two equations of (4.2), evaluated at the solu-
tions (u, r), resulting in three groups of eigenvalues:

{−2, 2}, {2
√
30,

2
√
30

3
}, {−2

√
30, −2

√
30

3
},

respectively. Hence, we can determine the solutions, i.e., the first two possible
periodic orbits of (4.2) are unstable, the third is stable.

Therefore, the proof of the theorem has been completed.

4.2. Relevancy of Zero-Hopf and Hopf bifurcation

Here, we will probe the relevancy of Hopf and zero-Hopf bifurcation by analyzing
a class of special case of system (4.1) under the condition Case (II), where the
parameters are chosen as follows

D200 = 0, D002 = 0, D101 = 0, D011 = 1, B101 = 0, A002 = 1. (4.6)

Then the corresponding system (4.1) becomes the following form

dx

dt
= (1 + εx)[δx− y + ε(A200x

2 −A200y
2 + u2)],

dy

dt
= (1 + εy)(x+ δy + εu2),

du

dt
= (1 + εu)(λu+ εyu),

(4.7)
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namely, its corresponding system (1.3) without rescaling the variables is

dx

dt
= (1 + x)[δx− y + (A200x

2 −A200y
2 + u2)],

dy

dt
= (1 + y)(x+ δy + u2),

du

dt
= (1 + u)(λu+ yu).

(4.8)

When letting λ = λ2ε
2 and δ = δ1ε

2, then system (4.7) has the form of Eq.(4.5),
i.e.,  u̇ = ε2u(λ2 + u2),

ṙ = ε2r[δ1 +
1

4
A200r

2 + (A200 + 1)u2],
(4.9)

there exists its three groups of real solutions with r > 0 as follows

(u0, r0)=(0, 2
√
−δ1/A200), (u1, r1)=(

√
−λ2,

√
−κ1), (u2, r2)=(−

√
−λ2,

√
−κ1)

where κ1 = [(1+A200)λ2+δ1]/A200, and the following conditions should be satisfied

λ2 < 0, δ1 < 0, A200 < 0, κ1 < 0 (4.10)

i.e., −δ1 < λ2 < 0, A200 < 0 or λ2 ≤ −δ1 < 0, A200 < −λ2+δ1
λ2

.
Further, we evaluate the Jacobian matrix at (u, r) = (u∗, r∗), then yielding−2(1 +A200)u

∗r∗
3

4
A200r

∗2 − (1 +A200)u
∗2 + δ1

λ2 + 3u∗2 0

 , (4.11)

and more the Jacobian matrix (4.11) has the following determinant and trace:

Det = (λ2 + 3u∗2)[
3

4
A200r

∗2 − (1 +A200)u
∗2 + δ1], Tr = −2(1 +A200)u

∗r∗.

Then its two eigenvalues are all negative if and only if Det > 0,Tr < 0, namely
the stability conditions of the periodic orbit. It is not difficult to verify that only
the two solutions:(u1, r1) and (u2, r2) can correspond to the stable periodic orbits
in the original three dimensional space. For the solution (u1, r1) under conditions
(4.10), when 1

2 (
√
5 − 3) < A200 < 0, then (1 + A200) >

√
1 + 3A200 +A2

200 holds,
yielding that its Jacobian has two negative eigenvalues, i.e.,

{−2
√
κ1λ2[(1 +A200)−

√
κ2], −2

√
κ1λ2[(1 +A200) +

√
κ2]}, (4.12)

where κ2 = 1+3A200 +A2
200. Under the conditions (4.10), for the solution (u2, r2),

when A200 < − 1
2 (
√
5 + 3), its Jacobian has two negative eigenvalues, i.e.,

{2
√
κ1λ2[(1 +A200)−

√
κ2], 2

√
κ1λ2[(1 +A200) +

√
κ2]}. (4.13)

While the other solution (u0, r0) always has positive eigenvalue.
On the one hand, from the singular quantities (3.3), we have the first two focal

values for the origin of (4.8) with λ < 0:

v3 =
π

2
A200, v5 = 0, (4.14)
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where for the expression of v5, we have already let v3 = 0, i.e., A200 = 0. Obviously,
when v3 ̸= 0, the origin of (4.8) or the equilibrium E of system (1.2) is a fine focus
of order one, and if δ is disturbed sufficiently small, i.e., 0 < δ ≪ 1, then Hopf
bifurcation can occur, yielding a small amplitude limit cycle from the origin. By
setting λ = −1.5, δ = 0.02, A200 = −2, one small-amplitude cycle can appear, as
shown in Figure 1. At this time, since |λ| is not tending towards zero and relatively
big, then zero-Hopf bifurcation can not occur.
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Figure 1. Projection of phase portraits on the plane x-y for system (4.8) with λ = −1.5, δ = 0.02,
A200 = −2, converging to the stable limit cycle around the origin with the initial conditions: (a)
(x0, y0, u0) = (0.05, 0, 0.05) and (b) (x0, y0, u0) = (0.2, 0, 0.15).
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Figure 2. Simulations of system (4.8) for λ = −0.01, δ = 0.02, A200 = −0.3, converging to the stable
periodic orbit around the origin with the initial conditions: (a) (x0, y0, u0) = (0.05, 0, 0.08) and (b)
(x0, y0, u0) = (0.5, 0, 0.05).

On the other hand, here we give a numerical example of one stable periodic
orbit corresponding to the above solution (u1, r1) around the origin of (4.8), i.e.,
the equilibrium E of system (1.2) via zero-Hopf bifurcation, as shown in Figure 2.
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Figure 3. Simulations of system (4.8) with λ = −0.01, δ = 0, A200 = −3, converging to the stable
limit cycle around the origin with the initial conditions: (a) (x0, y0, u0) = (0.0001, 0, 0.001) and (b)
(x0, y0, u0) = (0.1, 0, 0.02).

In this example, we have set λ = −0.01, δ = 0.02, i.e., λ2 = −1, δ1 = 2, ε = 0.1 and
A200 = −0.3. In fact, at this time, |δ| ≪ |A200|, and v3δ < 0, which implies that
Hopf bifurcation occur around the origin, that is to say, the zero-Hopf bifurcation
and Hopf bifurcation are indistinguishable around the origin.

In addition, we note that if δ1 = 0, and set λ2 < 0, A200 < 0, κ1 < 0, then there
still exists the two groups of real solutions (u1, r1) and (u2, r2) with r1 > 0, r2 > 0.
And when A200 < − 1

2 (
√
5+3), the Jacobian at (u2, r2) has two negative eigenvalues

with the same form as (4.13).
We give also its numerical example of one stable periodic orbit corresponding to

the above solution (u2, r2) around the origin of (4.8), as shown in Figure 3, where
by letting λ = −0.01, δ = 0, i.e., λ2 = −1, δ1 = 0, ε = 0.1 and A200 = −3. At this
time, the zero-Hopf bifurcation can occur around the origin. However, since δ = 0
and |v3| is relatively big, then Hopf bifurcation can not occur.

Based on the above analysis, we have the following conclusion.

Proposition 1. For the zero-Hopf bifurcation and Hopf bifurcation of system (4.8),
there exists certain parameter space where the two occur but cannot be distinguished,
as well as the parameter spaces where only one of the two can occur.

5. Conclusion and discussion

In this paper, we have studied Hopf bifurcation and zero-Hopf bifurcation around
the positive equilibrium of a class of cubic Kolmogorov systems. Via the calcula-
tion of the singular point quantities and the determination of center conditions, the
highest order fine focus is obtained, which just indicates the Hopf cyclicity 8 at the
positive equilibrium as a new result. At the same time, extending the normal form
theory to investigate the zero-Hopf bifurcation around the positive equilibrium, we
obtain multiple periodic orbits. Further, by analyzing a class of special case of the
original system, we have discussed the relevancy of zero-Hopf and Hopf bifurcation,
and figured out the parameter conditions under which only one or both of the two
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can occur. And for the latter, there is no strict distinction between Hopf bifur-
cation and zero-Hopf bifurcation. We believe that there are still other interesting
relevancies between the two, and further exploration is needed.
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