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SOLVABILITY OF NONLOCAL HILFER
FRACTIONAL MATRIX BOUNDARY VALUE

PROBLEMS WITH P -LAPLACIAN AT
RESONANCE IN RN
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Abstract In this paper, the solvability of boundary value problems for a class
of nonlinear Hilfer fractional differential equations at resonance in Rn is stud-
ied. In the past, research on matrix boundary value problems has consistently
been conducted within the context of linear differential equations. The main
contribution of this paper is the extension of linear problems to nonlinear ones.
We begin by defining two Banach spaces endowed with appropriate norms and
constructing suitable operators in these Banach spaces. Subsequently, by us-
ing the extension for the continuous theorem, certain sufficient conditions for
the solvability of the problem are obtained. Finally, an example is provided
to verify the effectiveness of our main results.
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1. Introduction

This work considers the solvability of the following nonlinear Hilfer fractional matrix
boundary value problems in Rn:

Dα1,β1

0+ φp(D
α2,β2

0+ u(t)) = f(t, u(t), Dα2,β2

0+ u(t)), 0 ≤ t ≤ 1,

Dα2,β2

0+ u(0) = Dγ2−2
0+ u(0) = · · · = Dγ2−m

0+ u(0) = θ,

u(1) = A

∫ 1

0

u(t)h(t)dt,

(1.1)

where 0 < α1 ≤ 1, m − 1 < α2 ≤ m, 0 ≤ β1, β2 ≤ 1, γ2 = α2 + mβ2 − α2β2,
p > 1, φp(ϑ) = |ϑ|p−2ϑ, u = (ui)n×1, A = (aii)n×n, aii ≤ 0, m,n ∈ N+, h(t) ≥ 0,

f ∈ C
(
[0, 1] × R2n,Rn

)
, θ is the zero vector in Rn and Dα,β

0+ represents the Hilfer
fractional derivative operator.

Fractional differential equations are widely used in physical and biological fields,
such as elastomers, vibration and diffusion systems [1,5–7,9,14,17–19,21,22,25,28,
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30]. Fractional boundary value problems have been extensively studied, and nu-
merous results regarding their solvability have been obtained. For example, Seal
et al. [26] analyzed the convergence of solutions of fractional differential equations
with integral boundary conditions by spline approximation method. In [31], Zaky
discussed the existence, uniqueness and stability of solutions to nonlinear tempered
fractional generalized boundary value problems. Furthermore, the method of sin-
gular spectrum collocation for obtaining the numerical solutions of these equations
has been developed and analyzed. In [2], Azouzi et al. obtained the existence of
solutions for generalized fractional boundary value problems by using the Mawhin
continuation theorem. Moreover, Wang et al. [29] derived the existence of triple
positive solutions for a class of fractional boundary value problems at resonance.
Some new height functions and spectral theory are also used to solve the positive
solutions. The main method used is the fixed point index theorem.

Mawhin’s continuation theorem [20] is a classical method often used to study the
existence of solutions for differential equations of the form Lx = Nx under resonance
conditions, where the operator L is an irreversible linear operator. Ge et al. [10] first
generalized the result of Mawhin in [20], in which the existence theory of solutions
was obtained for the non-invertible nonlinear operator L. Furthermore, Jiang [12]
considered the following nonlinear problem with integral boundary conditions in
one-dimensional space:

Dθ
0+(φp(D

γ
0+x))(t) + f(t, x(t), Dγ−1

0+ x(t), Dγ
0+x(t)) = 0,

x(0) = Dγ
0+x(0) = 0, x(1) =

∫ 1

0

g(t)x(t)dt,
(1.2)

where p > 1, 0 < θ ≤ 1, 1 < γ ≤ 2, φp(µ) = |µ|p−2µ, Dα
0+ denotes the Riemann-

Liouville derivative operator. The author improved the results in [10] and proved
the existence of the solution to the problem (1.2). Obviously, the problem (1.2) is
a particular case of the problem (1.1) when n = 1, m = 2 and β1 = β2 = 0. Sub-
sequently, Wang et al. [27] considered the solvability on the half-line at resonance
for the case n = 1 and β1 = β2 = 0 in the problem (1.1). Baitiche et al. [3] also
studied the boundary value problem similar to one of [27] by using upper and lower
solution approximation. Recently, Feng et al. [8] have discussed the solvability of
linear fractional boundary value problems in Rn without the p-Laplacian operator
in the problem (1.1).

We should mention the main results obtained in [8,12,23,24], which prompts us
to consider the problem (1.1). In [24], Phung et al. first researched the following
second-order linear boundary value problem:u′′(t) = g(t, u, u′), 0 < t < 1,

u′(0) = θ, u(1) = Au(ξ),
(1.3)

where θ is a zero vector in Rn, 0 < ξ < 1 and A is an n-order square matrix
satisfying one of the following two conditions:A2 = I (I stands for the unit matrix),

A2 = A.
(1.4)
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By using Mawhin’s continuation theorem, the solvability conditions of the problem
(1.3) were obtained. Then, Phung et al. [23] studied the following Riemann-Liouville
fractional linear boundary value problem:Dµu(t) = g(t, u(t), Dµu(t)), a.e. 0 < t < 1,

u(0) = θ, Dµ−1u(1) = ADµ−1u(ξ),
(1.5)

where 1 < µ ≤ 2, Dµ is the Riemann-Liouville differential operator of order µ.
In general, the highlights of this paper can be summarized as follows.

• On the one hand, compared with the linear problems (1.3) and (1.5), the
nonlinear term φp is introduced in the problem (1.1), which makes it more
complicated to study the existence of solutions. It is worth noting that we
also extend the nonlinear boundary value problem (1.3) to n-dimensional Eu-
clidean space. (To the best of the author’s knowledge, this is the first study
on nonlinear boundary value problems in Rn).

• On the other hand, the boundary condition of the problem (1.1) is presented as
an integral form with a coefficient matrix, and the constraints on the coefficient
matrix A have been weakened. It is no longer required the idempotent or
involutory matrices in (1.4). This can be regarded as a generalization of the
boundary conditions in the problem (1.3).

• In addition, the Hilfer fractional derivative in the problem (1.1) covers both
Caputo and Riemann-Liouville derivatives, and can be regarded as a general-
ization of these two types of derivatives. Therefore, the research in this paper
is not only an extension of the nonlinear boundary value problem but also
provides an interesting case for the application of Hilfer fractional derivative
in the field of calculus.

The rest of this paper includes the following sections. In Sect. 2, some definitions
and lemmas are introduced, and two Banach spaces are constructed. In Sect. 3, we
first give some preliminary results that on needed in the proof of our main theorem.
Based on the extension for the continuous theorem, we then prove the existence of
the solution of the problem (1.1). In Sect. 4, the main results are illustrated by an
example. A conclusion is introduced in Sect. 5.

2. Preliminaries

Definition 2.1 ( [10]). Suppose that Y and Z are two Banach spaces with norms
of ∥ · ∥Y and ∥ · ∥Z respectively. If the continuous operator F : domF ∩ Y → Z
satisfies the following conditions:

(a) KerF := {u ∈ domF ∩ Y : Fu = 0} is linearly homeomorphic to Rn,
(b) ImF := F (domF ∩ Y ) ⊂ Z is a closed,

where n < ∞, domF is the domain of the operator F . Then the operator F is
called quasi-linear.

Definition 2.2 ( [12]). Assuming Nκ : Ω → Z, κ ∈ [0, 1] is a bounded and contin-
uous operator, let Σκ = {x ∈ Ω : Fx = Nκx}, KerF = Y1. Suppose furthermore
that at least one vector space Z1 ⊂ Z satisfies dimY1 = dimZ1. If there exist oper-
ators P , R and Q satisfying the following conditions for any 0 ≤ κ ≤ 1:
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(a) KerQ = ImF ,
(b) QNx = θ ⇔ QNκx = θ,
(c) R(·, 0) is the zero operator, and R(·, κ) |Σκ= (I − P ) |Σκ ,
(d) F [P +R(·, κ)] = (I −Q)Nκ,

where P : Y → Y1 is a projector, R : Ω× [0, 1] → Y2 is a continuous compact oper-
ator, and Q : Z → Z1 is a continuous bounded operator satisfying Q(I − Q) = 0,
then the operator Nκ is called F-quasi-compact in Ω.

Definition 2.3 ( [13]). Suppose the function u(t) is defined on the interval (a, b),
and n − 1 < µ ≤ n, n ∈ N∗. The left Riemann-Liouville fractional derivative and
integral of order µ are defined as

Dµ
a+u(t) =

dn

dtn
(In−µ

a+ u)(t) and Iµa+u(t) =
1

Γ(µ)

∫ t

a

(t− ξ)µ−1u(ξ)dξ.

Definition 2.4 ( [11]). Suppose the function u(t) is defined on the interval (a, b),
and n − 1 < µ ≤ n, n ∈ N∗, 0 ≤ δ ≤ 1. The left/right Hilfer fractional derivative
of order µ and type δ is defined as

Dµ,δ
a±u(t) = (±)nI

δ(n−µ)
a±

dn

dtn
(I

(1−δ)(n−µ)
a± u)(t).

Remark 2.1 ( [11]). (1) The differential operator Dµ,δ
a± can be equivalently ex-

pressed as Dµ,δ
a± = I

δ(n−µ)
a± Dγ

a±, γ = µ+ nδ − µδ.
(2) The Riemann-Liouville derivative is equivalent to the Hilfer derivative when

δ = 0, that is, Dµ
a± = Dµ,0

a± .
(3) The Caputo derivative is equivalent to the Hilfer derivative when δ = 1, that

is, CDµ
a± = Dµ,1

a± .

Lemma 2.1 (Theorem 2.1, [12]). Assuming Y and Z are two Banach spaces with
norms ∥ · ∥Y and ∥ · ∥Z , respectively, and Ω is a bounded non-empty open subset of
Y . Suppose furthermore that the operator F : domF ∩ Y → Z is quasi-linear, and
Nκ : Ω → Z, κ ∈ [0, 1] is F-quasi-compact. If

(a) Fx ̸= Nκx, for all x ∈ domF ∩ ∂Ω and κ ∈ (0, 1),
(b) deg{KQN,Ω ∩KerF, 0} ≠ 0,

holds, where K : ImQ → KerF is a homeomorphism with K(θ) = θ, then there
exists at least one solution for the abstract equation Fx = Nx in domF ∩ Ω.

Lemma 2.2 (Lemma 2.5, [15]). Assume m − 1 ≤ µ ≤ m, m ∈ N∗, Suppose
furthermore that u ∈ L1(0, 1) and Im−µ

0+ u ∈ ACm[0, 1], then

Iµ0+D
µ
0+u(t) = u(t)−

m∑
j=1

(Im−µ
0+ u(t))(m−j)

∣∣
t=0

Γ(µ− j + 1)
tµ−j .

Lemma 2.3 (Property 2.1, [15]). Suppose µ > 0 and δ > 0, then

Dµ
0+t

δ−1 =
Γ(δ)

Γ(µ+ δ)
tµ+δ−1.

Lemma 2.4. [16] For any x and y with x, y ≥ 0, the following inequalities hold:
(1) φp(x+ y) ≤ 2p−2(φp(x) + φp(y)), p ≥ 2,
(2) φp(x+ y) ≤ φp(x) + φp(y), 1 < p ≤ 2,

where φp(x) = |x|p−2x.
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Next, we define several Banach spaces and operators. By

∥u∥X = max{∥u∥∞, ∥Dα2,β2

0+ u∥∞}

we denote the norm of u in the space

X = {u|u,Dα1,β1

0+ u ∈ C
(
[0, 1];Rn

)
},

where ∥u∥∞ = maxt∈[0,1] max1≤i≤n |ui(t)|. Furthermore, by ∥y∥∞ we denote the

norm of u in the space Y = C
(
[0, 1];Rn

)
. The operators L : domL ∩X → Y and

Nλ : X → Y are defined as follows

Lu(t) = Dα1,β1

0+ φp(D
α2,β2

0+ u(t)), t ∈ [0, 1], (2.1)

Nλu(t) = λf(t, u(t), Dα2,β2

0+ u(t)), λ ∈ [0, 1], (2.2)

where

domL =
{
u|u ∈ X,Dα1,β1

0+ φp(D
α2,β2

0+ u) ∈ Y,Dα2,β2

0+ u(0) = Dγ2−2
0+ u(0) = · · ·

= Dγ2−m
0+ u(0) = θ, u(1) = A

∫ 1

0

u(t)h(t)dt
}
. (2.3)

Therefore, we can write the problem (1.1) as Lu = Nu, u ∈ domL.

Let T = I−A
∫ 1

0
h(t)tγ2−1dt and T+ be theMoore-Penrose pseudoinverse matrix

of T . It is necessary to give the following conclusions in [4] for our subsequent
research:
(a) Im(I − T+T ) = KerT ;
(b) ImT+T = ImT ;
(c) TT+T = T ;
(d) T+TT+ = T+.

In addition, throughout this paper, we always suppose that

det
(
I −A

∫ 1

0

h(t)tγ2−1dt
)
= 0.

3. Main results

In this section, we will prove that the problem (1.1) has at least one solution. To
make the proof process clearer, six lemmas and one theorem will be given respec-
tively.

Lemma 3.1. Suppose the condition det
(
I − A

∫ 1

0
h(t)tγ2−1dt

)
= 0 holds, then the

operator L defined in (2.1) is quasi-linear.

Proof. It is not difficult to obtain that

KerL =
{
u ∈ domL|u(t) = ctγ2−1, c ∈ KerT

}
, (3.1)

where T = I −A
∫ 1

0
h(t)tγ2−1dt. Now, we prove

ImL =
{
y ∈ Y |ϕy ∈ ImT

}
, (3.2)
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where ϕ : Y → Rn is a linear operator defined by

ϕy = Iα2
0+φq(I

α1
0+y(t))

∣∣
t=1

−A

∫ 1

0

h(t)Iα2
0+φq(I

α1
0+y(t))dt, ∀y ∈ Y. (3.3)

In fact, for each y ∈ ImL, there exists a function vector u ∈ domL such that

Dα1,β1

0+ φp(D
α2,β2

0+ u(t)) = y(t).

By Lemma 2.2 and Remark 2.1, we obtain

Dα2,β2

0+ u(t) = φq

(
Iα1
0+y(t) + c0t

γ1−1
)
,

where γ1 = α1 + β1 − α1β1, q = p
p−1 . Since Dα2,β2

0+ u(0) = Dγ2−2
0+ u(0) = · · · =

Dγ2−m
0+ u(0) = θ, we can get

u(t) = Iα2
0+φq(I

α1
0+y(t)) + c1t

γ2−1, c1 ∈ Rn.

From u(1) = A
∫ 1

0
h(t)u(t)dt, it can be deduced that

Iα2
0+φq(I

α1
0+y(t))|t=1 −A

∫ 1

0

h(t)Iα2
0+φq(I

α1
0+y(t))dt+

(
I −A

∫ 1

0

h(t)tγ2−1dt
)
c1 = θ.

(3.4)
Consequently,

ImL ⊆
{
y ∈ Y |ϕy ∈ ImL

}
. (3.5)

On the other hand, let u(t) = Iα2
0+φq(I

α1
0+y(t)) + ξtγ2−1, ξ ∈ Rn, and assume

that y ∈ Y satisfies (3.4). By simple calculation, we can infer that u(t) satisfies the
boundary conditions of the problem (1.1) and

Lu(t) = Dα1,β1

0+ φp

(
Dα2,β2

0+

(
Iα2
0+φq(I

α1
0+y(t))+ξt

γ2−1
))

= Dα1,β1

0+ φp(φqI
α1
0+y(t)) = y(t).

Thus,

ImL ⊇
{
y ∈ Y |ϕy ∈ ImL

}
. (3.6)

Combining (3.5) and (3.6), we can get

ImL =
{
y ∈ Y |ϕy ∈ ImL

}
. (3.7)

Clearly, ImL ⊂ Y is closed. Thus, the operator L is called a quasi-linear operator.

The operator P : X → KerL is defined as

(Pu)(t) = (I − T+T )
tγ2−1

Γ(γ2)
Dγ2−1

0+ u(0). (3.8)

It can be derived by simple calculation that P 2u = Pu and ImP = KerL, then
KerP ⊕KerL = X. Hence, P : X → KerL is a projector.

The operator Q : Y → Rn is defined as

Qy = c, (3.9)
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where c satisfies

1

Γ(α2)

∫ 1

0

(1− s)α2−1φq

(
1

Γ(α1)

∫ s

0

(s− τ)α1−1[y(τ)− c]dτ

)
ds+ Tξ

−A

∫ 1

0

h(t)

Γ(α2)

∫ t

0

(t− s)α2−1φq

( 1

Γ(α1)

∫ s

0

(s− τ)α1−1[y(τ)− c]dτ
)
dsdt = θ.

(3.10)

It can be proved that c is the unique constant vector satisfying (3.10). In fact, let

F (c) =
1

Γ(α2)

∫ 1

0

(1− s)α2−1φq

(
1

Γ(α1)

∫ s

0

(s− τ)α1−1[y(τ)− c]dτ

)
ds+ Tξ

−A

∫ 1

0

h(t)

Γ(α2)

∫ t

0

(t− s)α2−1φq

( 1

Γ(α1)

∫ s

0

(s− τ)α1−1[y(τ)− c]dτ
)
dsdt

(3.11)

for all y ∈ Y . Since

T = I −A

∫ 1

0

h(t)tγ2−1dt

=



1

1

. . .

1


−



a11
∫ 1

0
h(t)tγ2−1dt

a22
∫ 1

0
h(t)tγ2−1dt

. . .

ann
∫ 1

0
h(t)tγ2−1dt



=



1− a11
∫ 1

0
h(t)tγ2−1dt

1− a22
∫ 1

0
h(t)tγ2−1dt

. . .

1− ann
∫ 1

0
h(t)tγ2−1dt


,

we have

Tξ =



1− ka11

1− ka22
. . .

1− kann





ξ1

ξ2
...

ξn


=



ξ1(1− ka11)

ξ2(1− ka22)

...

ξn(1− kann)


, (3.12)

where k =
∫ 1

0
h(t)tγ2−1dt. Substituting (3.12) into F (c) =

(
Fi(c)

)
1×n

defined in

(3.11), we can obtain

Fi(c) =

∫ 1

0

(1− s)α2−1

Γ(α2)
φq

(
1

Γ(α1)

∫ s

0

(s− τ)α1−1[yi(τ)− ci]dτ

)
ds+ ξi(1− kaii)

− aii
Γ(α2)

∫ 1

0

h(t)

∫ t

0

(t− s)α2−1φq

(∫ s

0

(s− τ)α1−1

Γ(α1)
[yi(τ)− ci]dτ

)
dsdt.
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Obviously, Fi(c) is continuous and strictly decreasing in R. Define a cone Λ in Rn

as

Λ =
{
(Λ1,Λ2, · · · ,Λn)

⊤,Λi ≥ 0,Λi ∈ R, i = 1, 2, · · · , n
}
. (3.13)

Take
bi = min

t∈[0,1]
yi(t) +mi, di = max

t∈[0,1]
yi(t) +mi, i = 1, 2, · · ·n,

wheremi =
ξi(1−kaii)φq(Γ(α1+1))Γ(α2+α1q−α1+1)

Γ(α1q−α1+1)(1−aii

∫ 1
0
h(t)tα2+α1q−α1dt)

, bi, di ∈ R. If bi = mint∈[0,1] yi(t)+

mi, then

Fi(b) ≥0− mi

Γ(α2)

∫ 1

0

(1− s)α2−1φq

(
1

Γ(α1)

∫ s

0

(s− τ)α1−1dτ

)
ds+ ξi(1− kaii)

+
aiimi

Γ(α2)

∫ 1

0

h(t)

∫ t

0

(t− s)α2−1φq

(
1

Γ(α1)

∫ s

0

(s− τ)α1−1dτ

)
dsdt

=− miΓ(α1(q − 1) + 1)

φq(Γ(α1 + 1))Γ(α2 + α1(q − 1) + 1)

+
miaiiΓ(α1(q − 1) + 1)

∫ 1

0
h(t)tα2+α1q−α1dt

φq(Γ(α1 + 1))Γ(α2 + α1(q − 1) + 1)
+ ξi(1− kaii)

=−
miΓ(α1(q − 1) + 1)

(
1− aii

∫ 1

0
h(t)tα2+α1q−α1dt

)
φq(Γ(α1 + 1))Γ(α2 + α1(q − 1) + 1)

+ ξi(1− kaii)

=− ξi(1− kaii) + ξi(1− kaii)

=0.

Similarly, if di = maxt∈[0,1] yi(t) + mi, then Fi(d) ≤ 0. It is not difficult to see

that F (b) ∈ Λ and −F (d) ∈ Λ, where b = (b1, b2, · · · , bn)⊤, d = (d1, d2, · · · , dn)⊤.
Hence, there must be a unique c satisfying c − b ∈ Λ and d − c ∈ Λ, such that
F (c) = θ. In addition, the boundedness of Q(Ω) can be deduced from the fact that
space Ω ⊂ Y is bounded.

Remark 3.1. By the definition of Q in (3.9), it is not difficult to conclude that Q
is not a projector but satisfies Q(I −Q)y = θ for all y ∈ Y .

Lemma 3.2. The operator Q by (3.9) is continuous in Y .

Proof. For any g, y ∈ Y , suppose Qg = d, Qy = b, where b, d ∈ Rn. Since φq is
strictly increasing, if di − bi > maxt∈[0,1]

(
gi(t)− yi(t)

)
, i = 1, 2, · · · , n, then

0 =
1

Γ(α2)

∫ 1

0

(1− s)α2−1φq

(
1

Γ(α1)

∫ s

0

(s− τ)α1−1[gi(τ)− di]dτ

)
ds+ ξi(1− kaii)

− aii

∫ 1

0

h(t)
1

Γ(α2)

∫ t

0

(t− s)α2−1φq

(
1

Γ(α1)

∫ s

0

(s− τ)α1−1[gi(τ)− di]dτ

)
dsdt

=

∫ 1

0

(1− s)α2−1

Γ(α2)
φq

(∫ s

0

(s− τ)α1−1

Γ(α1)
[(yi(τ)− bi) + (gi(τ)− yi(τ))

− (di − bi)]dτ

)
ds+ ξi(1− kaii)

− aii

∫ 1

0

h(t)
1

Γ(α2)

∫ t

0

(t− s)α2−1φq

(
1

Γ(α1)

∫ s

0

(s− τ)α1−1[(yi(τ)− bi)
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+ (gi(τ)− yi(τ))− (di − bi)]dτ

)
dsdt

<
1

Γ(α2)

∫ 1

0

(1− s)α2−1φq

(
1

Γ(α1)

∫ s

0

(s− τ)α1−1[yi(τ)− bi]dτ

)
ds+ ξi(1− kaii)

− aii

∫ 1

0

h(t)

Γ(α2)

∫ t

0

(t− s)α2−1φq

(∫ s

0

(s− τ)α1−1

Γ(α1)
[yi(τ)− bi]dτ

)
dsdt

=0.

This is a contradiction. Conversely, if di − bi < mint∈[0,1](gi(t)− yi(t)), then

0 =

∫ 1

0

(1− s)α2−1

Γ(α2)
φq

(
1

Γ(α1)

∫ s

0

(s− τ)α1−1[gi(τ)− di]dτ

)
ds+ ξi(1− kaii)

− aii

∫ 1

0

h(t)

Γ(α2)

∫ t

0

(t− s)α2−1φq

(
1

Γ(α1)

∫ s

0

(s− τ)α1−1[gi(τ)− di]dτ

)
dsdt

>

∫ 1

0

(1− s)α2−1

Γ(α2)
φq

(
1

Γ(α1)

∫ s

0

(s− τ)α1−1[yi(τ)− bi]dτ

)
ds+ ξi(1− kaii)

− aii

∫ 1

0

h(t)

Γ(α2)

∫ t

0

(t− s)α2−1φq

(∫ s

0

(s− τ)α1−1

Γ(α1)
[yi(τ)− bi]dτ

)
dsdt

=0,

the contradiction appears. Consequently,

min
t∈[0,1]

(
gi(t)− yi(t)

)
≤ di − bi ≤ max

t∈[0,1]

(
gi(t)− yi(t)

)
.

Then, it can be concluded that Q : Y → Rn is continuous.

Lemma 3.3. The definition of the operator R : X × [0, 1] → X2 is

R(u, λ)(t) = Iα2
0+φq

(
Iα1
0+(Nλu(t)−QNλu(t))

)
− T+ϕ

(
Nλu(t)−QNλu(t)

)
tγ2−1,
(3.14)

where ϕ is defined in (3.3), KerL⊕X2 = X. Then the operator R : Ω× [0, 1] → X2

is continuous and compact, where Ω ⊂ X is an open bounded set.

Proof. Obviously, R is continuous. Next, we show that R is compact. In fact,
for any u ∈ Ω, by the boundedness of f on a bounded closed domain and the
boundedness of Q, we obtain that there exist constants k1 > 0, k2 > 0 such that
max(t,u)∈[0,1]×Ω |f(t, u(t), Dα2,β2

0+ u(t))| ≤ k1, |Qf(t, u(t), Dα2,β2

0+ u(t))| ≤ k2, then

|R(u, λ)(t)| =
∣∣∣ ∫ t

0

(t− s)α2−1

Γ(α2)
φq

( 1

Γ(α1)

∫ s

0

(s− r)α1−1[Nλu(r)−QNλu(r)]dr
)
ds

− T+ϕ
(
Nλu(t)−QNλu(t)

)
tγ2−1

∣∣∣
≤
∫ t

0

(t− s)α2−1

Γ(α2)
φq

( k1 + k2
Γ(α1 + 1)

)
ds+ ∥T+∥∗

∣∣ϕ(Nλu(t)−QNλu(t))
∣∣

≤ 1

Γ(α2 + 1)
φq

(
k1 + k2

Γ(α1 + 1)

)
+

∣∣∣∣Iα2
0+φq

(
Iα1
0+[Nλu(t)−QNλu(t)]

)
|t=1
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−A

∫ 1

0

h(t)Iα2
0+φq

(
Iα1
0+[Nλu(t)−QNλu(t)]

)
dt

∣∣∣∣∥T+∥∗

≤ 1

Γ(α2 + 1)
φq

(
k1 + k2

Γ(α1 + 1)

)
+

∥T+∥∗
Γ(α2 + 1)

φq

(
k1 + k2

Γ(α1 + 1)

)

+
∥T+∥∗∥A∥∗
Γ(α2 + 1)

φq

(
k1 + k2

Γ(α1 + 1)

)∫ 1

0

h(t)dt

≤
(
1 + ∥T+∥∗ + ∥T+∥∗∥A∥∗

∫ 1

0

h(t)dt

)φq

(
k1+k2

Γ(α1+1)

)
Γ(α2 + 1)

and

|Dα2,β2

0+ R(u, λ)(t)| =
∣∣Iβ2(n−α2)

0+ Dγ2

0+R(u, λ)(t)
∣∣

=
∣∣φq

(
Iα1
0+[Nλu(t)−QNλu(t)]

)∣∣
≤ φq

(
k1 + k2

Γ(α1 + 1)

)
,

where ∥ · ∥∗ stand for the max-norm of matrices, |x| = max{|xi|, i = 1, 2, · · ·n}.
Therefore, R is bounded.

For any u ∈ Ω̄, 0 ≤ λ ≤ 1 and 0 ≤ t1 < t2 ≤ 1, there are∣∣∣R(u, λ)(t2)−R(u, λ)(t1)
∣∣∣

=

∣∣∣∣∣ 1

Γ(α2)

∫ t2

0

(t2 − s)α2−1φq

( 1

Γ(α1)

∫ s

0

(s− r)α1−1
(
Nλu(r)−QNλu(r)

)
dr
)
ds

− 1

Γ(α2)

∫ t1

0

(t1 − s)α2−1φq

( 1

Γ(α1)

∫ s

0

(s− r)α1−1
(
Nλu(r)−QNλu(r)

)
dr
)
ds

− T+

[
Iα2
0+φq(I

α1
0+[Nλu(t)−QNλu(t)])|t=1 −A

∫ 1

0

h(t2)

Γ(α2)

∫ t2

0

(t2 − s)α2−1

× φq

( ∫ s

0

(s− r)α1−1

Γ(α1)
[Nλu(r)−QNλu(r)]dr)dsdt2

]
tγ2−1
2

+ T+

[
Iα2
0+φq(I

α1
0+[Nλu(t)−QNλu(t)])|t=1 −A

∫ 1

0

h(t1)

Γ(α2)

∫ t1

0

(t1 − s)α2−1

× φq

( ∫ s

0

(s− r)α1−1

Γ(α1)
[Nλu(r)−QNλu(r)]dr)dsdt1

]
tγ2−1
1

∣∣∣∣∣
≤ 1

Γ(α2)

∣∣∣ ∫ t1

0

[(t2 − s)α2−1 − (t1 − s)α2−1]

× φq

( 1

Γ(α1)

∫ s

0

(s− r)α1−1[Nλu(r)−QNλu(r)]dr
)
ds

+

∫ t2

t1

(t2 − s)α2−1φq

( 1

Γ(α1)

∫ s

0

(s− r)α1−1[Nλu(r)−QNλu(r)]dr)ds
∣∣∣

+
∥T+∥∗

Γ(α2 + 1)
φq

(
k1 + k2

Γ(α1 + 1)

)
(tγ2−1

2 − tγ2−1
1 )
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+
∥T+A∥∗

∫ 1

0
h(t)dt

Γ(α2 + 1)
(tγ2−1

2 − tγ2−1
1 )φq

(
k1 + k2

Γ(α1 + 1)

)

≤ 1

Γ(α2 + 1)
φq

(
k1 + k2

Γ(α1 + 1)

)
(tα2

2 − tα2
1 )

+
(
∥T ∗∥∗ + ∥T ∗A∥∗

∫ 1

0

h(t)dt
) 1

Γ(α2 + 1)
φq

(
k1 + k2

Γ(α1 + 1)

)
(tγ2−1

2 − tγ2−1
1 )

and ∣∣∣Dα2,β2

0+ R(u, λ)(t2)−Dα2,β2

0+ R(u, λ)(t1)
∣∣∣

=

∣∣∣∣∣φq

( 1

Γ(α1)

∫ t2

0

(t2 − s)α1−1(Nλu(s)−QNλu(s))ds
)

− φq

( 1

Γ(α1)

∫ t1

0

(t1 − s)α1−1(Nλu(s)−QNλu(s))ds
)∣∣∣∣∣.

Since ∣∣∣∣∣ 1

Γ(α1)

∫ t2

0

(t2 − s)α1−1(Nλu(s)−QNλu(s))ds

− 1

Γ(α1)

∫ t1

0

(t1 − s)α1−1(Nλu(s)−QNλu(s))ds

∣∣∣∣∣
=

1

Γ(α1)

∣∣∣∣∣
∫ t1

0

[(t2 − s)α1−1 − (t1 − s)α1−1](Nλu(s)−QNλu(s))ds

+

∫ t2

t1

(t2 − s)α1−1(Nλu(s)−QNλu(s))ds

∣∣∣∣∣
≤k1 + k2

Γ(α1)

∣∣∣∣∣
∫ t1

0

[(t2 − s)α1−1 − (t1 − s)α1−1]ds+

∫ t2

t1

(t2 − s)α1−1ds

∣∣∣∣∣
≤ k1 + k2
Γ(α1 + 1)

(tα1
2 − tα1

1 ),

∣∣∣ ∫ t

0

(t− s)α1−1

Γ(α1)
(Nλu(s)−QNλu(s))ds

∣∣∣ ≤ k1 + k2
Γ(α1 + 1)

and φq(ϑ) is uniformly continuous on
[
− k1+k2

Γ(α1+1) ,
k1+k2

Γ(α1+1)

]
. Consequently, {R(u, λ) |

(u, λ) ∈ Ω× [0, 1]} and {Dα2,β2

0+ R(u, λ) | (u, λ) ∈ Ω× [0, 1]} are equicontinuous. In

view of the Arzela-Ascoli Theorem, it yields that R : Ω × [0, 1] → X2 is compact.

Lemma 3.4. Suppose that Ω is a bounded, open subset of X. Then the operator
Nλ defined in (2.2) is L-quasi-compact in Ω̄.

Proof. It is not difficult to deduce that dimKerL = dimImQ, KerQ = ImL,
R(·, 0) = θ and QNλu(t) = θ ⇔ QNu(t) = θ. Then (a) and (b) of Definition 2.2
hold.
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For each u ∈ Σλ = {u ∈ Ω | Lu = Nλu}, there is Nλu ∈ ImL = KerQ, so

QNλu = θ. It follows from Nλu = Lu(t) = Dα1,β1

0+ φp

(
Dα2,β2

0+ u(t)
)
and R(u, 0)(t) =

Dα2,β2

0+ R(u, 0)(t) = θ that

R(u, λ)(t) =Iα2
0+φq(I

α1
0+(Nλu(t)−QNλu(t))− T+ϕ

(
Nλu(t)−QNλu(t)

)
tγ2−1

=Iα2
0+φq

(
Iα1
0+(Nλu(t)

)
− T+ϕ

(
Nλu(t)

)
tγ2−1

=Iα2
0+φq

(
Iα1
0+I

β1(1−α1)
0+ Dγ1

0+φp(D
α2,β2

0+ u(t)
)
− T+ϕ

(
Nλu(t)

)
tγ2−1

=u(t)− tγ2−1

Γ(γ2)
Dγ2−1

0+ u(0) + T+T
tγ2−1

Γ(γ2)
Dγ2−1

0+ u(0)

=u(t)− (I − T+T )
tγ2−1

Γ(γ2)
Dγ2−1

0+ u(0)

=(I − P )u.

Consequently, (c) in Definition 2.2 is satisfied.
For any u ∈ Ω, there is

L[Pu+R(u, λ)](t) =Dα1,β1

0+ φp

(
Dα2,β2

0+

(
pu(t) +R(u, λ)(t)

))
=Dα1,β1

0+ φp

[
Dα2,β2

0+ (I − T+T )
tγ2−1

Γ(γ2)
Dγ2−1

0+ u(0)

+Dα2,β2

0+

(
Iα2
0+φq

(
Iα1
0+(Nλu(t)−QNλu(t))

)
− T+ϕ

(
Nλu(t)−QNλu(t)

)
tγ2−1

)]
=Dα1,β1

0+ φp

(
Dα2,β2

0+ Iα2
0+φq

(
Iα1
0+(Nλu(t)−QNλu(t))

))
=(I −Q)Nλu(t),

then (d) of Definition 2.2 holds. Thus, the operator Nλ is L-quasi-compact in Ω.

Next, we will give the main theorem.

Theorem 3.1. Suppose the following conditions hold:
(H1) There exists a constant M > 0 such that for every u ∈ domL, if |t1−γ2u(t)| >
M , t ∈ [0, 1], then either

(1) ⟨t1−γ2u,Qf⟩ > 0 or (2) ⟨t1−γ2u,Qf⟩ < 0, ∀t ∈ [0, 1]

holds, where ⟨·, ·⟩ is the scalar product in Rn.
(H2) There exist three non-negative functions a, ψ, ς ∈ C[0, 1] such that∣∣∣f(t, ω,ϖ)

∣∣∣ ≤ a(t)φp(|ω|) + ψ(t)φp(|ϖ|) + ς(t), 0 ≤ t ≤ 1,

where max{1, 2q−2}
[
φq(∥ψ∥∞) +

2φq(∥a∥∞)
Γ(α2+1)

]
< φq(Γ(α1 + 1)).

Then there exists at least one solution in X for the problem (1.1).

To prove Theorem 3.1, the following lemmas are first established.

Lemma 3.5. Assume that (H1) and (H2) hold. Let Ω1 = {u ∈ domL|Lu =
Nλu, λ ∈ (0, 1)}, then Ω1 is bounded in X.
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Proof. For any u ∈ Ω1, we have Lu = Nλu, Nλu ∈ ImL = KerQ, then
QNλu(t) = θ. It is known from (H1) that there exists t0 ∈ [0, 1] such that∣∣t1−γ2

0 u(t0)
∣∣ ≤M . Since Lu = Nλu, there is

u(t) = Iα2
0+φq(λI

α1
0+Nu(t)) + ξtγ2−1, (3.15)

and then by (H2), it follows that

|ξ| ≤|t1−γ2

0 u(t)|+ |t1−γ2

0 Iα2
0+φq(I

α1
0+Nu(t))|

≤M +
t1−γ2

0

Γ(α2)

∫ t0

0

(t0 − s)α2−1φq

( ∫ s

0

(s− ϱ)α1−1

Γ(α1)
|f(ϱ, u(ϱ), Dα2,β2

0+ u(ϱ))|dϱ
)
ds

≤M +
t1−γ2

0

Γ(α2)

∫ t0

0

(t0 − s)α2−1

× φq

(∥a∥∞φp(∥u∥∞) + ∥ψ∥∞φp(∥Dα2,β2

0+ u∥∞) + ∥ς∥∞
Γ(α1 + 1)

)
ds

≤M +
max{1, 2q−2}

[
φq(∥a∥∞)∥u∥∞ + φq(∥ψ∥∞)∥Dα2,β2

0+ u∥∞ + φq(∥ς∥∞)
]

Γ(α2 + 1)φq(Γ(α1 + 1))
.

Since

|Dα2,β2

0+ u(t)|

=|Dα2,β2

0+ Iα2
0+φq

(
λIα1

0+Nu(t)
)
+Dα2,β2

0+ ξtγ2−1|

≤
max{1, 2q−2}

[
φq(∥a∥∞)∥u∥∞ + φq(∥ς∥∞) + φq(∥ψ∥∞)∥Dα2,β2

0+ u∥∞
]

φq(Γ(α1 + 1))
,

we can get

∥Dα2,β2

0+ u∥∞ ≤
max{1, 2q−2}

[
φq(∥a∥∞)∥u∥∞ + φq(∥ς∥∞)

]
φq(Γ(α1 + 1))−max{1, 2q−2}φq(∥ψ∥∞)

. (3.16)

Therefore,

|ξ| ≤M +
max{1, 2q−2}[φq(∥a∥∞)∥u∥∞ + φq(∥ς∥∞)]

Γ(α2 + 1)φq(Γ(α1 + 1))

+
max{1, 2q−2}φq(∥ψ∥∞)[φq(∥a∥∞)∥u∥∞ + φq(∥ς∥∞)]

Γ(α2 + 1)φq(Γ(α1 + 1))[φq(Γ(α1 + 1))−max{1, 2q−2}φq(∥ψ∥∞)]

=M +
max{1, 2q−2}φq(Γ(α1 + 1))

[
φq(∥a∥∞)∥u∥∞ + φq(∥ς∥∞)

]
Γ(α2 + 1)φq(Γ(α1 + 1))

[
φq(Γ(α1 + 1))−max{1, 2q−2}φq(∥ψ∥∞)

] .
Substituting this inequality into (3.15) to get

|u(t)| ≤|Iα2
0+φq(λI

α1
0+Nu(t))|+ |ξtγ2−1|

≤
max{2, 2q−1}φq(Γ(α1 + 1))

[
φq(∥a∥∞)∥u∥∞ + φq(∥ς∥∞)

]
Γ(α2 + 1)φq(Γ(α1 + 1))

[
φq(Γ(α1 + 1))−max{1, 2q−2}φq(∥ψ∥∞)

] +M.

Then,

∥u∥∞ ≤
C1φq(∥ς∥∞) +MΓ(α2 + 1)

[
φq(Γ(α1 + 1))− C2φq(∥ψ∥∞)

]
Γ(α2 + 1)

[
φq(Γ(α1 + 1))− C2φq(∥ψ∥∞)

]
− C1φq(∥a∥∞)

, (3.17)
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where C1 = max{2, 2q−1}, C2 = max{1, 2q−2}. Hence, together with (3.16) and
(3.17), it can be deduced that Ω1 is bounded in X.

Lemma 3.6. Assume that (H1) holds, then Ω2 = {u|u ∈ KerL,QNu = θ} is
bounded in X.

Proof. Let u ∈ Ω2, we have QNu(t) = θ and u(t) = ctγ2−1, c ∈ Rn. According to
(H1), there exists t0 ∈ [0, 1] such that

∣∣t1−γ2

0 u(t0)
∣∣ ≤M . Thus, we get that |c| ≤M ,

then Ω2 is bounded in X.

The following is the proof of Theorem 3.1.

Proof. Let Ω ⊃
(
Ω1∪Ω2∪{x|x ∈ X, ∥x∥ ≤M}

)
be a bounded open subset of X.

Lemma 3.5 implies that Lu ̸= Nλu, u ∈ domL ∩ ∂Ω, while Lemma 3.6 leads to the
conclusion that QNu ̸= θ, u ∈ KerL∩∂Ω. Let H(u, ζ) = ρζu+(1−ζ)JQNu, where
u ∈ KerL∩Ω, ζ ∈ [0, 1], J : ImQ→ KerL is a homeomorphism with Jη = ηtγ2−1,
and

ρ =

 1, if (H1) (1) holds,

−1, if (H1) (2) holds.

Given any u ∈ KerL∩∂Ω, there are u(t) = η0t
γ2−1 and H(u, ζ) = ρζη0t

γ2−1+(1−
ζ)(Qf)tγ2−1.
If ζ = 1, then H(u, 1) = ρη0t

γ2−1 ̸= θ.
If ζ = 0, then H(u, 0) = (Qf)tγ2−1 ̸= θ.
If 0 < ζ < 1, suppose H(u, ζ) = θ, then ρζη0t

γ2−1 = −(1 − ζ)(Qf)tγ2−1. So there

is η0 = − (1−ζ)(Qf)
ζρ . It follows from (H1) and |η0| = |t1−γ2u(t)| > M that

⟨η0, η0⟩ = −1− ζ

ζ

⟨η0, Qf⟩
ρ

< 0.

This is a contradiction. Hence, H(u, ζ) ̸= θ for all u ∈ KerL ∩ ∂Ω, ζ ∈ [0, 1]. The
homotopy property of degree yields the result that

deg(JQN |KerL,Ω ∩KerL, θ) = deg(H(·, 0),Ω ∩KerL, θ)
= deg(H(·, 1),Ω ∩KerL, θ)
= deg(ρI,Ω ∩KerL, θ) ̸= 0.

Combining Lemmas 3.1-3.4 and applying Lemma 2.1, we conclude that the problem
(1.1) has at least one solution in X. The proof is completed.

4. Example

Example 4.1. We consider the following boundary value problem at resonance in
R2:

D
1
2 ,

1
2

0+ φ 5
2
(D

5
2 ,

1
2

0+ u1(t)) = f1(t, u1(t), u2(t), D
5
2 ,

1
2

0+ u1(t), D
5
2 ,

1
2

0+ u2(t)), 0 ≤ t ≤ 1,

D
1
2 ,

1
2

0+ φ 5
2
(D

5
2 ,

1
2

0+ u2(t)) = f2(t, u1(t), u2(t), D
5
2 ,

1
2

0+ u1(t), D
5
2 ,

1
2

0+ u2(t)), 0 ≤ t ≤ 1,

D
5
2 ,

1
2

0+ u1(0) = D
5
2 ,

1
2

0+ u2(0) = 0, D
3
4
0+u1(0) = D

3
4
0+u2(0) = 0,

u1(1) = −2

∫ 1

0

t−
3
4u1(t)dt, u2(1) = −3

∫ 1

0

t−
3
4u2(t)dt,

(4.1)
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where α1 = 1
2 , β1 = 1

2 , α2 = 5
2 , β2 = 1

2 , γ2 = 11
4 , p = 5

2 , h(t) = t−
3
4 , f : [0, 1]×R4 →

R2 are defined as

f(t, u, z) =
(
f1(t, u1, u2, z1, z2), f2(t, u1, u2, z1, z2)

)⊤
=
(
− u1 + z1 − e5

20
,
|u2|+ |z2|+ e3

40

)⊤
for any t ∈ [0, 1] and u = (u1, u2)

⊤, z = (z1, z2)
⊤ ∈ R2.

Clearly, A =

−2 0

0 −3

, T =
∫ 1

0
h(t)tγ2−1dt =

2 0

0 5
2

. Let ξ =

1

2

, then

Tξ =

2

5

.

Now we prove that the conditions of Theorem 3.1 hold. Choose nonnegative

integrable functions a = ψ = 1
20 and ς = e5

20 , then there is∣∣f(t, u, z)∣∣ ≤ a(t)φp(|u|) + ψ(t)φp(|z|) + ς(t).

After some simple calculations,

φq(Γ(α1 + 1))−max{1, 2q−2}
[
φq(∥ψ∥∞) +

2

Γ(α2 + 1)
φq(∥a∥∞)

]
≈ 0.6505 > 0

can be obtaind. Therefore, (H2) is satisfied.
In order to check (H1), let M = 3, c = (∥f1∥∞ + 5.8997, ∥f2∥∞ + 12.6422)⊤,

then c satisfies (3.10). If
∣∣t1−γ2

0 u(t0)
∣∣ > M = 3 hold for any t ∈ [0, 1], then

⟨t1−γ2u,Qf⟩ = ⟨t1−γ2u, c⟩ > 0. Hence, the condition (H1) holds. From Theorem
3.1, it can be obtained that the problem (4.1) has at least one solution.

To intuitively illustrate the existence of solutions for the problem (4.1), we con-
ducted numerical simulations using MATLAB. Figures 1 and 2 depict the cases for
p = 2.5 and p = 1.5, respectively.

Figure 1. State u(t) of the system (4.1) when
p = 2.5.

Figure 2. State u(t) of the system (4.1) when
p = 1.5.

5. Conclusion

In this paper, we investigated the nonlinear Hilfer fractional boundary value prob-
lem at resonance in Rn. By using the extension for the continuous theorem, the
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conclusion that the problem (1.1) has at least one solution in X was obtained. To
achieve our main results, we defined two Banach spaces with specified norms and
construct the appropriate operators P , Q and R within these Banach spaces. Sub-
sequently, we proved the necessary requirements before applying Lemma 2.1. It
is worth noting that the variables in the n-dimensional Euclidean space are repre-
sented as vectors or matrices, and we cannot assume a direct size relationship. The
cone in (3.13) is skillfully defined, effectively resolving existing issues. Finally, we
provided an example to verify the validity of our conclusion.
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