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SOLVABILITY OF HILFER FRACTIONAL
DIFFERENTIAL EQUATIONS WITH
INTEGRAL BOUNDARY CONDITIONS AT
RESONANCE IN RM
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Abstract In this paper, the solvability of a class of nonlinear Hilfer fractional
differential equations boundary value problems is considered at resonance in
R™ . The interesting point is that Hilfer is a more general differential operator
that contains both the Riemann-Liouville and the Caputo derivative, and the
dimension of the kernel of the fractional differential operator with Rimman-
stieltjes integral boundary condition can take any value in {1,2,--- ,m}. By
applying Mawhin’s coincidence degree theory, the existence result of solutions
is obtained.
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1. Introduction

In this paper, we consider the following Hilfer fractional differential equations
boundary value problems at resonance in R™:

DgPult) = f (t,u(t),pg;mu(t)), te 0,1, .
w(0) = DY 2u(0) = - = DY u(0) = 0, u(1) = A /0 w(t)dh(t), '

wheren—1<a<n,0< <1, y=a+nb—af, n>2 n¢eN,0is the zero vector

in R™, A is m-order nonzero square matrices, h(t) is a function of bounded variation,

1 (t) is bounded almost everywhere on [0, 1], Dg‘f is Hilfer fractional derivative of

order a and type 8, and f : [0,1] x R™ x R™ — R™ satisfies Carathéodory, that is,

(1) f(-,u,v) is measurable on [0,1] for all (u,v) € R™ x R™,

(#4) f(t,-,) is continuous on R™ x R™ for almost every ¢ € [0, 1],

(791) The function mg(t) = sup{|f(t,u,v)| : (u,v) € R} is Lebesgue integrable on

0 <t <1 for all compact set R C R™ x R™, where |f| = max{|fi|,i =1,2--- ,m}.
Fractional differential equations are increasingly used in various fields to solve

practical problems, such as physics, chemistry, engineering and so on [3,15,22-25].
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A large number of results are obtained on the existence of solutions to boundary
value problems of Hilfer fractional differential equations [1,4,10,13,14,16,17,21,27].
It is well known that the problem (1.1) is a generalization of elliptic differential
equations on smooth surfaces [2]. M. Benchohra et al. [7] considered the existence
and uniqueness of the solution to the problem (1.1) by using Banach contraction
principle and Krasnoselskii’s fixed point theorem. Furthermore, Z. Bouazza et al. [6]
also considered the problem (1.1) when 8 = 1 and established the existence result.
A. Hasanen et al. [11] considered the following three-dimensional system of multi-
point boundary value problem:

= 12(p), p(1) = m2p(&2),
=13(0), 0(1) = n30(&3),

where ¢,v,x € (1,2], z € [0,1], 11,7m2,73 € (0,1). Moreover, K. O. Ezekiel et al. [18]
established the following multipoint boundary value problem with two-dimensional
kernel at resonance:

Dgu(t) = f(t,u(t), Do u(t), Doy U( ), D Hu(t),

w(0) = D§73u(0) = 0, Dy 2u(0) ZMDO‘ 2u(g;
n

DS u(4o00) = / DS 2u(t)dh(t),
0

where ¢ € (0,400), h(t) is a continuous and bounded variation function on (0, 4+00).
In recent years, there has been some related research on resonance boundary
value problems of fractional differential equations in R™ [12,19,26]. P. D. Phung
et al. [20] studied the following second-order three-point boundary value problems
in R™:
u” = f(t,u(t),u'(t)), t € (0,1),
u’'(0) =6, u(l) = Au(n),

where 6 is an m-order zero vector, the matrix A satisfies one of the condition:
A% = Aor A2 =1.F.D Ge et al. [9] concerned the following fractional three-point
boundary value problems in R™ :

D, x(t) = f(t,z(t), D§; 'x(t)), 1 <a <2, te(0,1),
z(0) = 0, Dg7'x(1) = ADGY  a(€),

where 6 is an n-order zero vector, the matrix A satisfies one of the condition:
A? = A or A? = I. The author extends the order from integer order to fractional
order and obtains the existence result of the solution by using Mawhin’s coincidence
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degree theory. Feng et al. [8] used similar methods to study the following four-point
boundary value problems in R™ :

CD§ u(t) = f(t,u(t),” D5 u(t), t € (0,1),
u(0) = Bu(§), u(l) = Cu(n),

where 0 < 1,6 < 1,1 < a < 2, B,C are two n-order nonzero square matrices.
In [8,9,12,19,20, 26], the variable u is an n-dimensional vector function, and the
kernel dimension can take any value in {1,2,--- ,n}.

However, we found that there are still some unresolved issues in R™. Firstly, the
derivative operators in references [8,9,12,19,20,26] have not been unified. Therefore,
it is imperative to mention that the Hilfer fractional differential system considered
in the problem (1.1) is a more general form. For instance, the Hilfer fractional
differential system in (1.1) corresponds to (i) the Riemann-Liouville fractional dif-
ferential system for 8 = 0; (ii) the Caputo fractional differential system when g = 1.
Secondly, the order of the derivative operator is limited. Therefore, the order was
extended from 1 < a < 2ton—1 < a < n and an interesting new Rimman-stieltjes
boundary condition was used. In addition, the use of Moore-Penrose generalized
inverse matrix and their properties eliminates the restriction on matrix A.

2. Preliminaries

Definition 2.1. ( [16]) Let X and Y be real Banach spaces. Linear operator
L :domL C X — Y to be a Fredholm operator of index zero if

(A1) ImL is a closed subset of Y;

(Az) dim KerL = codim ImL < +oo.

If L satisfies (A1) and (As), there exist two continuous projectors P : X — X
and @ : Y — Y such that ImP = KerL, KerQQ = ImL, X = KerL & KerP,
Y = ImL®ImQ. Tt follows that L|gomrnkerp : domLNKerP — ImL is invertible.
We denote the inverse of L|gomrnierp by K : ImL — domL N KerP.

Definition 2.2. ( [16]) If €2 is an open bounded subset of X, and domL N Q # ¢,
the map N : X — Y will be called L-compact on € if QN(Q) is bounded and

K,(I —Q)N(R) is completely continuous.

Lemma 2.1. (Theorem 2.4, [16]) Let L : domL C X — 'Y be a Fredholm operator
of index zero and N : X —'Y be L—compact on Q. Suppose the following conditions
are satisfied:

(1) Lu # ANu for every (u,A) € [(domL\KerL) N oQ] x (0,1);

(2) Nu ¢ ImL for every u € KerL N OQ;

(3) deg(JQN |kerr, 2N KerL,0) # 0, where Q : Y — Y is a projection such that
ImL = KerQ, and J : ImQ — KerlL is an isomorphism.

Then the equation Lu = Nu has at least one solution in domL N Q.

Definition 2.3. ( [14]) The Riemann-Liouville fractional integral of order oo > 0
of a function y : (0,4+00) — R is given by

I3, y(t) = ﬁ / (t— )2 y(s)ds

(07
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provided the right side is pointwise on (0, 400).
Definition 2.4. ( [14]) The Riemann-Liouville fractional derivative of order a > 0

of a function y : (0, +00) — R is given by

@ 1 dn ¢ n—a—1
Dy, y(t) = m@/{) (t—s) y(s)ds,

where n = [a] + 1, [a] denotes the integer part of number «, and this derivative is
called the right side is pointwise defined on (0, 400).

Definition 2.5. ( [14]) The left-sided Hilfer fractional derivative of order o and
type B for a function y : (0, +00) — R is given by

n—ao dr —B)(n—a
Defy(t) = L 2o (1)), n—1<a<n, 0<p <.

Lemma 2.2. (Corollary 2.1, [14]) Let o > 0, if y € C(0,1)( L(0,1), then the
fractional differential equation

Dgyy(t) =0
has a unique solution
y(t) = crt® et 4 et
where c; ERi=1,2,--- ,n, n=[a] + 1.
Lemma 2.3. (Lemma 2.4, [14]) If f € L(0,1), « > 0, 8 > 0, then
Dg 15 y(t) = y().

Lemma 2.4. (Lemma 2.5, [14]) Let « > 0, n = [a] + 1, if y € L1(0,1) and
Iy "y € AC™[0,1], then the following holds

no([re (n—=j) ,
I8, D8 = y(t) ~ 3 0}(i(t) )j T 1)‘“%‘“]-

Jj=1

Lemma 2.5. ([5]) T be the Moore-Penreose pseudoinverse matriz of T, mean-
ing the matriz satisfying

(1) THTT+ =T+,

(jo) TT*T =T,

(j3) ImT+T = ImT,

(ja) Im(I = THT) = KerT.

Lemma 2.6. (Property 2.1, [14]) If « > 0, v > —1, then the following holds

I'(v+1) an
P(n+v—a+1)d”

D81+tu —_ ( n+u—a)

)

where n = [a] + 1.

In order to study the boundary value problem (1.1). We defined two spaces X =
{u’u,Dg‘Il’ﬁu e (o, 1],Rm)} with the norms [Ju| = max{||u||oo, ||Dg:1ﬁu|\oo},
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where || - oo = max max |u;(t) | and Y = L1<[O, 1],]Rm) with the norm [ly||; =
1<i<n t€[0,1]

1
max [ [yi(s)|ds.

In this paper, we will always suppose that the following conditions hold:
(Hy) det(I — A [,y '~ dh(t)) = 0,

(Ha) [} (17~ —t*)dh(t) # 0.
Define operators L : domL C X — Y and N : X — Y as follows

Lu = Dg‘fu(t), u € domL,
Nu=f (t,u(t),Dg“;lﬁu(t)) L ue X,
where

domL :{u|u € X, Dgfu €Y, u(0) = Dg_fu(O) =... = Dg_:"Hu(O) =0,
1
u(1) :A/ u(t)dh(t)}.
0

Then the problem(1.1) is equivalent to Lu = Nu, u € domL.

3. Main results

Lemma 3.1. Suppose (Hy) holds, then L : domL C X — Y is a Fredholm operator
of index zero.

Proof. It is easy to get that
KerL = {u € domL|u(t) = et e KerT}.

Now, we prove
ImL = {y € Y|¢y(t) € ImT},

where ¢y(t) : Y — R™ is a continuous linear operator defined by

1
b(y) = Ig,y(1) - A / 18 y(t)dh(t). (3.1)
0
Let |h/(t)] < M, a.e. t €[0,1]. For y1,y2 € Y, if ||y1 — y2|l1 < d, then

|P(y1) — d(y2)]

=\13+y1(1)—13+y2(1)—14/0 13+y1(t)dh(t)+z4/0 154 y2(t)dh(t)]

<ty (1) = 165 y2 (V)] + [[Alloo ’/0 15 [y2(t) —yl(t)]dh(t)‘

<mar | 0= ) s

)
[[Aloo
I(a)

+ 1l | 1 1 / (= 9" (nls) () )i
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1Al

7”3/1 Yalli + —=—~—lly1 — vall1,
['(a) ()

where ||Alle = max Z |a;;|. Therefore, the operator ¢ is continuous.

In fact, for any y € ImL, there exists a function v € domL such that Dg‘fu(t) =
y(t). By Definition 2.5 and Lemma 2.4, we obtain u(t) = I§ y(t)+c1t7 4 cot? 2+
-+ et Since u(0) = DY u(0) = - = Dg;"Hu(O) =0, we can get

u(t) = Ig y(t) + et 1.

And then from u(1) = Afol u(t)dh(t), we can get

1
IS y(t)]i=1 — A/ IS y(t)dh(t) = =Ty, 1 € R™,
0

which means that ¢y(t) € ImT. Consequently, ImL C {y € Y|¢y(t) € ImT}.

On the other hand, if y € Y satisfies ¢y(t) € ImT, there exist a constant &
such that ¢y(t) = —T¢. Let u(t) = I y(t) + &~ It is easy to prove that u
satisfies the boundary conditions of the problem (1.1), and we have Lu = y(t).
Then ImL 2 {y € Y|oy(t) € ImT}.

In summary, we get
ImL = {y € Y|¢y(t) € ImT}.
Define the operator @ : Y — Y by
Qy=G(I -TT")¢(y) = C, (3.2)
D(a+1) [ 7 dh(t)

where G = Jr@ 1 —t)dn(t)
ForyeY,te[0,1]

Q% =G -TT")p(C)

1
= G(I - TT) [1“(104)/0 (1-s)>"1C ds

- A/O1 ﬁ /Ot(t _s)olo dsdh(t)}

1
= F(oil)(fTT*)(IA/O t*dh(t))C
- F(f+1)[<I_TT+)_W(I—TT+)/O t"‘dh(t)}(]
_ ¢ ot dn() - Jy tdh(e QJp—

P(a+1) fo t7-1dh(t)

= -TT")Qy
= Qy.

Actually, (I — TTT)A =

m (I -TT).
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Hence, @ is a linear projection operator. Obviously, ImL = Ker@. For y € Y,

we can set y = (y — Qy) + Qu. By (v — Qy) € Ker@Q = ImL, Qy € ImQ), we can
get Y = ImL + ImQ@. It follows from y € ImL N ImQ@ that y € ImL = Ker@ and

y = Qy, then y = 0. Hence Y = ImL @& Im@. It is obvious that codim ImL =
dim ImQ@Q = dim KerL. Thus, L is a Fredholm operator of index zero. O
Define the operator P : X — X by

Dy u(0)
L'(7)

It is easy to get P?u = Pu and ImP = KerL. Clearly X = KerL ® KerP. So
P: X — X is a projector.

Pu(t)= (I -T"T) L (3.3)

Lemma 3.2. Define a linear operator K, : ImL — domL N KerP,
Kpy(t) = I53y(t) — THoy(t) . (3.4)

Then Kp = (L|domLﬂKerP)_1-
Proof. For y € ImL, we have ¢(y) € ImT which means that ¢(y) = T¢, then

Kpy(0) = D *Kpy(0) = -+ = D" Kpy(0) = 0

and

1
Kpy(t)] i — A /0 Kpy(t)dh(t)

=I5 y(t)|e=1 — T o(y) — A/o [I&y(t) - T+¢(y)t'*_1}dh(t)

Iyl = A [ Iutan) = [1- 4 [ 07an] T o0

=o(y) — TT" ¢(y)
=(I —=TT")¢(y)
—(I - TTH)T¢
—9.

Thus, Kpy € domL. It follows from (3.2) and (3.4)

Dy Kpy(t)|i=o

PKpy=(I —-TT" 1
DI y(®)]li=o
(] —=TT™ 0+ 70+ = t'yfl
( ) L'(v)
=4.

Thus, Kpy € KerP. It is easy to prove K,y € domL () KerP and we have
LEyy(t) = Dy [15y(t) = T+ oy() ]
= Iy~ Dy Iy y(0) — I~ Dy Ty ()
= 1) Dy (1)
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= y(t).

On the other hand, for u € domL N KerP, we have

K, Lu(t)

1
:I&Dgfu(t)—t”_lT*[I&r ou(t)|i=1 — A /0 gmgfu(t)dh(t)}

1
=17, Dy, u(t) it [I3+Da’+u(t)|t:1 — A/o Ig+Dg+u(t)dh(t)}

)~ Do w0 oy Deul0) s LuO)
L'(y) I'(y-1) C(y—n+1)
_pgt |y - D@ D) (0
o) L'(v) P(y—1) L(y—n+1)
- 1u —M7*17M7*27...,M77n
A/o © I'(7) M -1 T —nt1) dh(t)}
=u(t) — M -1
=055 !
— 7t —Mf lu IMW*I
T (1) T0) A/O (t)dh(t) +A/O ) 7 dh(t)
=u _ M y—1 y—1p+ _ ! y—1 M
=u(t) = oy e K A/O 0] )
Dy u(0)
=u(t) — (I — T+T)OIth
=u(t).
That means K, = (L|domLﬂKerp)_1. O

Lemma 3.3. Assume Q C X is an open bounded subset and domL N Q # ¢, then
N is L—compact on S.

Proof. Let 2 C X is an open bounded subset. By the hypothesis (iii) on the
function f, there exists a function mg(t) € L0, 1] such that for all u € €,

INu(t)] = £t u(t), D57 " u(t))] < ma(t),t € [0,1].

And then we shall prove that K,(I — Q)Nu is completely continuous. It follows
from (3.1) definition of ¢ that

[¢(Nu)| =

-4 RNu(ndn)| < F(L)(H Il | [ 1dh<t>]> I mr

Combing with (3.3), one has

T(a+1) [, 7~ dh(t)
Jo (=1 —12)dh(t)

@Nu(t)| = (I — TTT)$(Nu)
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D(a+1) [ 7~ dh(t)
Jo @1 = t2)dh(t)
a [} dh(t)

T @1 = te)dh(t) [T e <‘ /o (- S)a_lN“(S)ds‘

‘AAA )* ! Nu(s dsdh()D

ozfo tY~1dh(t)
Ty (= te)dh(t)

1 11
X </0 |Nu(s)|ds—|—||A||oo/0 /0 |Nu(s)|dsdh(t)>

a [ tLdh(t) - 1 N
< T T ||oo<1+ I 40 | [ dh(t)Dll lls.

(1 TT%) 1§, Nu(1) ~ A4 / I, Nu(t)dn(1)|

I =TT ||

Thus, QN () is bounded.
For u € Q,

H(QNu) — 6(Nu)
15, QNu(t)imy — A / I3, QNu(t)dh(t) — 6(N)

—5)7 1 u(s)ds — — )7 u(s)ds U
( )/ (1 QNu(s)d A/ / o) QNu(s)dsdh(t) — ¢(Nu)
G —TT")¢(Nu) _ gye-lgg
= [y

_AG(I = TT)p(Nu)

T'(a) /O /0 (t —5)* " dsdh(t) — ¢(Nu)
_GU-TT") AG(I — TT) L
~Tazn ‘Ww- qu(Nu)/0 t*dh(t) — ¢(Nu)
_ fol tﬁy_ldh(t) _ ' ey _ + u) — u
BT (I A/O t dh(t))(] TTH)$(Nu) — ¢(Nu)
=D¢(Nu),

_ JatMdR(t) 1

For every u € ), we have

K,(I — Q)Nu(t) =I§, Nu(t) — " 'TT¢Nu(t) — I, QNu(t) + " 'TTp(QNu(t))
=I¢, Nu(t) — I, QNu(t) + "' Tt Dp(Nu) (3.5)

and

DS K (I — Q)Nu(t) = I, Nu(t) — It QNu(t) + I(?i”“)r(y)WDqs(Nu)(. |
3.6
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Combining (3.4) and (3.5) we have
[,(1 = Q)N

_L t —8)* I Nu(s _M @ ~—1
- F(a)/(t )* T Nu(s)ds — =y (Vw4 T+ Dé(Nu)

/|Nu |ds+‘ (I( TT)+)¢( u)‘+|T+D¢(Nu)|

—HmRHl Jo £~ dh(t) _ et + 1

" T(a) <f01(t“ta)dh(t) [ =TT oo + IT" Do (1+||A||Oo’/0 dh(t)D
+ ||;n(1;|)|1

and

DG K (I — Q)N u(t)|
=|I}, Nu(t) — It QNu(t) + I)\" T (7)T* Dg(Nu)|

/ |Nu(s |ds+/ QNu(s)|ds + |12~ T(7)T* Dé(Nw)|
<malh + 16U — TN + =1+ ls(Nu)|

I'(B(n—a)+1)
_ <|af; PRI =TT s T()IT*Dll )

| o (@t — t)dh(t)| L(e)T(B(n —a) +1)
< (1 1Al [ ab@]) Il + ol

That is, K,(I — Q)N(Q) is uniformly bounded in X.
For 0 <t; <ty <1,u € €, we have

|Ko(I = QNultz) — Kyp(I — Q)Nu(ty)
1

G(I — TT)p(Nu)

t§ 4+ 177 'TH Dp(Nu)

/O * (s — 5)* Nu(s)ds —

T(a) I'(a+1)
Lot GUI-TTHe(N),
(a)/o (t — )" Nu(s)ds fagy Gt T+ Dé(Nu)

L " a-1 1 & a—1
= W/0 (t2 — )" "Nu(s)ds + () /t1 (ta — 8)*""Nu(s)ds

1 " a—1
@A (t1 —s)* " Nu(s)ds
G —TTH)¢$(Nu)

INa+1)

(68 —13) + (37 =] HT* Dp(Nuw)
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1 t1 o1 ot 1 to
S@/O [(tz —5) —(t1—s) ]mR(S)dS + m /t1 mpg(s)ds

G(I —-TT+ Nu _ _
( SO o o 11370 — YT Dol $(N ).

Ia+1)

According to the uniform continuity of binary functions, for any ¢ > 0, there is
always a positive integer ¢ that only depends on ¢, so that for all points (¢1,t2) €
[0,1] x [0,1], as long as |t; — ta| < §, there is |(ta — s)*™F — (t; — )| < e.

‘Dg;l’ﬁKp(I — Q)Nultz) — DSy P K,(I — Q)Nufty)

-/ : Nu(s)ds — G(I — TTT)¢(Nu)ty + WT+D¢(Nu)
— " u(s)ds — + u — % + u
/0 Nu(s)ds +G(I — TTH)¢(Nu)ty F(B(n—a)+1)T D¢(Nu)

/ * Nu(s)ds + G — TT)o(Nu)(tr — t2)

o o 7 dh(t)
Jo (te=t —t>)dh(t)

+ mp(s)ds.
t1

1
7 =TT oo (14 14l [ ano)]) s = el

Thus, K,(I — Q)N(f) is equicontinuous. By the Ascoli-Arzela theorem, we can
conclude that the operator N is L-compact in (2. O

Theorem 3.1. Suppose (Hi),(Hz) and the following conditions hold:
(H3) There exists a constant §; > 0 such that for u € domL, if [t'~Vu(t)| > &1 for
all t € 10,1], then

of (t,u(t), Dy u(t)) ¢ ImT.
(Hy) There exist three nonnegative functions a,b,c € C1[0,1] such that

[f(t,u,0)] < a(®)]u] +b(t)]v] + c(t), for allt €0, 1], u,v € R™,

where BT (a+1) > 2([|a]| B+b]| D), B = (a+1)I'(B(n—a)+1)(1—[|b]]) — [[bIT(+)
and D = [[(a+ 1)T(B(n — a) + 1) + T'(v)].

(Hs) There exists a constant do > 0 such that for any 8 € R™, satisfying B =
fol t"Ydh(t)AB and |B| > b2, either

(B,QNB) =0 or (B,QNS) <0,

where (-,-) is the scalar product in R™.
Then the problem (1.1) has at least one solution in X.

Before we prove theorem 3.1, we show three Lemmas.

Lemma 3.4. Let ; = {u|u € domIL\KerL,Lu = ANu,\ € (0,1)}. Assume
(Hy) — (Hy) hold. Then § is bounded in X .
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Proof. Let u € 4, we have Lu = ANu, Nu € ImL, we get ¢(Nu) € ImT. It
follows from (Hs) that there exists a constant ¢ € [0,1] such that |t5 "u(te)| < d;.
By Lu = ANu(t) and boundary condition, we have

u(t) = Mg, Nu(t) + &0 (3.7)
Taking ¢ = to into equation (3.6), we have u(to) = M, Nu(to) + &t~ ' That means
€1 < Tty "ulto)] + Aty "I Nulto)]

I
<O +ty T [ (to—8)* " Nu(s)|d
g [ o= 9 Vulas

1—-v,a
S0t LT

a—1,
(lalllelloo + IBIIDEE ulloo + lle]).

(lallllwllos + N0IIDET P ulloe + llcll)
1
< -
<o+ a1 1)
Based on
D5 P u(t)] = ML Nu(t) + I~ er(y)]
<llallllullos + IBIIIDET "  ulloe + [lc]
N (5 N lallllullso + IBIHIDGT P ull00 + ||c|> L'(v)
! L(a+ 1) L(B(n—a)+1)
[[6]IT () o1,
D§; o
T(a+ DI(B(n —a) + )” ul

el ) I'(v)
Fla+1)'T(Bn—a)+1)’

lallT(7)
“T(a+1)I(B(n—a)+1)

[ufloo +

a—1,
+ llalll[ulloo + 11 D55 ulloo + llell + (51 +

we obtain
(e +HI(Bn—a) +1) + T(y)]lla] lul
(a+DL(B(n —a) +1)(1 = [1b]]) = [T () "
L+ DB —a) +1) + T(y)]llef + T (a + 1)I'(y)
Lla+1)E(B(n —a) + 1)(1 = [|b]l) — [[b[IT(y)

1D57 P uloe <

Therefor, we get

nw I(a+ DO(8(n — a) + 1) + ()]
S <ot 5 { T+ DT — o) - 1 — o)) — Jo)rey) e
[( (B(n— o) + ) <>]¢+m<a+nmw}+ el
<a+nm<n—aw4x1—mm BITe) Mot D)
lal
m”’“”m
lall(B + [51D) IBIE + e B
St g ne et TarnE

where E = [I'(a + 1)I'(B(n — a) + 1) + T()]|lc|| + 610 (a + 1)I ().
By simple calculation, we can get

1 ‘ a—1
|wsﬂ54u—@ INu(s)|ds + |¢]
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1 a—1,8 llall(B + [|b]|D)
S<o—— 00 b|||D oo 0 =y N=— 0o
<y ellloe + IBIDG e + el + 83+ FLE 2
6] E + |||l B
IN(a+1)B
llal|(B + [|b] D) [b][E + ||| B
<6 +2———ullo F 22— ——.
St 2 et 2R TE
Therefore,
T 01 BT (a+ 1) + 2(||b||E + ||c||B)
7 Br(a+1)—2([alB+[b]|D) -
We can conclude that €27 is bounded in X. O

Lemma 3.5. Let Qy = {u|u € KerL,Nu € ImL}, Suppose (Hy) — (Hs) hold.
Then Qq is bounded in X.

Proof. Let u € Q, for any t € [0,1], we have u(t) = &7~1, ¢ € KerT. Since
Nu € ImL, then ¢(Nu) € ImT. According to (Hj), there exists ¢y € [0,1] such
that |t5 "u(to)| < 61. Thus, we get that |¢| = [tg Tu(to)| < d;. Therefore, Qs is
bounded in X. O

Lemma 3.6. Let (23 = {u € KerLip u+ (1 = AN)QNu =6, € [0, 1]} and

{ 1, if (3,QNp) > 0 holds,
p:
=1, if (8,QNpS) <0 holds.

Then Q3 is bounded in X.

Proof. Let u € Q3, we know that u(t) = ft7~! with § € KerT and (1—-\)QNu =
—pAu.

If A =0, then QNu =60, Nu € KerL = ImL. Thus, we have u € Qy, so |lu]| < d;.
If A € (0,1] and p = 1, suppose || > 2. Then, from (Hs), we get a contradiction

0> —=A|B]* = =A(B,8) = (1 = N)(B,QNB) > 0.
Thus, we have |u| < ds.
If A € (0,1] and p = —1, suppose |3| > d2. Similarly,
0.< XBI* = A(B,8) = (1 - \)(3,QNB) < 0.
Thus, ||u]| < 2. In conclusion, Q3 is bounded in X. O
The following is the proof of Theorem 3.4.

Proof. Let D Q; UQy U Q3 U {0} be a bounded open subset of X. It follows
from Lemma 3.3 that N is L-compact on . By Lemmas 3.4 and 3.5, we have

(1) Lu # ANu, for every (u,A) € [(domI\KerL)NoQ] x (0,1);

(2) Nu ¢ ImL for every u € KerL N oSQ.

We need only to prove deg(JQN|kerr, 2 N KerL,0) # 0. Take H(u,\) =
AJu + p(1 — N)QNu. According to Lemma 3.6, we know that H(u,\) # 6 for
u € 00N KerL. Therefore, via the homotopy property of degree, we obtain

deg(JQN |kerr, 2N KerL,0) = deg(pH(-,0),Q N KerL,0)
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=deg(pH(-,1),Q2N KerL,0)
=deg(£pl, 2N KerL,0)
=41

# 0.

Applying Lemma 2.1, we conclude that the problem (1.1) has at least one solution
in X. The proof is completed. O

4. Conclusions

This paper mainly studied a class of Hilfer fractional differential boundary value
problem systems at resonance that state variable u € R™ and gave a new theorem on
the existence of solutions in kernel spaces by using the Mawhin coincidence degree
theorem. We provided an example to illustrate the obtained results. Our results
also provide some methods for ¢-Hilfer and Hadamard fractional differential. These
contributions will advance research in other fields.

5. Example

In this section, we present an example to verify our main results. Let’s consider the
following boundary value problem at resonance:

N|=

DEZa(t) = filt,x(t),y(t), DE2a(t), DE2y(t), telo,1],

DgFy(t) = folt, x(t). u(t), D a(t), DgiPy(1),  te 0,1],

z(0) = y(0) =0,

Dgyx(0) = D§+y(0) =0, (5.1)
(1) = % /01 y(t)d(t* —t),

y(1) = ??;/Oly(t)d(tQ — 1)

The problem (5.1) has a solution if and only if the problem (1.1) has a solution,
0 285

, h(t) = t> —t and A = 4| Define the function
0 28
44

N

7
where a = 3, B =
fi:[0,1] xR* - R2, i=1,2 by

f(t’u7 U) = (fl(ta$17y17$2ay2)7f2(t7$1a91,3?27y2))T
t? t t2 t, . o o
= (= (21 +y1)+g(lxz\+|y2|),ﬁ(x1+y1)+§(sm Ty +sin” yo))

16
(5.2)

T
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1 -1
for all t € [0,1] and u = (21,91), v = (z2,y2) € R%. Let T = , TH =
0 0
1
5 0 00
2 ,wecan get I — TTT = .
-3 0 01

2

Then the problem (5.1) has one solution if and only if the problem (1.1) with A
and f defined as above has one solution. So we only need prove that the conditions
of Theorem 3.1 are satisfied.

First of all, we prove the first condition of theorem 3.1. Let a(t) = %, b(t) = 2t,
c(t) = 1. Tt follows from (5.2) that | f(¢, u, v)| < a(t)|u|+b(t)|v|+c(t) for all t € [0,1]
and u,v € R?. By simple calculation we have B = I'(a + 1)['(3(n — a) + 1)(1 —
16]]) — |6lIT'(y) = 5.5533, D = (o + DI'(B(n — a) + 1) + T'(y)] = 14.9644 and
BT'(a+ 1) — 2(||a|| B + ||b]| D) ~ 58.9026 > 0. Hence, (H3) is satisfied.

Next, let’s check (Hy), we note that

|f2(t7$1a91>$2792)| >0

for all u = (z1,91), v = (72,72) € R% We calculated that

ol =gy [ 0= peas = 57 [ [ popasaee o 20

Therefore,

of (t,x1,y1, T2, y2) = (Af1(t, 21, Y1, T2, y2), 0.f2(t, 1, y1, T2, y2)) & ImT

due to ImT = {(n,0)";n € R}. Hence, (H,) is satisfied.
Finally, let’s prove the condition (Hj). For any 8 € R2, satisfying § = 24845 ApB
and |B| > 0. 8 can be written as 3 = (8o, Bp) " for By € R. By (3.1) and (4.2) we

have

2 2
NG = (1(,8,0), 12(,8,0) T = (50 5 o)

.
and we get G = 138.4249, ¢(NJ) = (0.0376B0,O.0376B0) . Tt follows from (3.3)
that

Q(NB) = 138.4249(0,0.03765%) "

and
(B,Q(NB)) = 0.195753 > 0.

Then, the condition (Hs) holds. Therefore, by an application of Theorem 3.1, we
obtain that the problem (4.1) has at least one solution.
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