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1. Introduction

In recent years, there has been an increasing interest around the impulsive differ-
ential equations because of their numerous applications in various fields such as
medicine, physics, biology and control theory. From the perspective of the duration
of action, the impulses are divided into instantaneous and non-instantaneous im-
pulses, which were first proposed by Milman-Myshkis [24] and Hernández-O’Regan
[18], respectively. More details on these two types are available in [3]. To date, many
methods have been used to investigate the differential equations with impulses,
such as fixed point theory, theory of analytic semi-group, upper and lower solutions
method, topological degree theory, and variational approach [4, 9, 11,12,14–18,29].

Recently, the study of the fractional differential equations (FDEs for short)
with instantaneous and non-instantaneous impulses using variational methods and
critical point theory has attracted much attention. In [30], Zhang-Liu first consid-
ered a class of FDEs with instantaneous and non-instantaneous impulses and used
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variational approach to obtain at least one classical solution. Based on [30], Zhou-
Deng-Wang [34] considered a class of FDEs involving the p-Laplacian operator with
instantaneous and non-instantaneous impulses:
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where p ∈ [2,+∞), α ∈
(

1
p , 1
]
, 0 = s0 < t1 < s1 < t2 < s2 < ... < tm <

sm < tm+1 = T , C0 D
α
t and tD

α
T denote the left Caputo and the right Riemann-

Liouville fractional derivative of order α, respectively, fj : (sj , tj+1] × R → R are
continuous, Ij : R → R are continuous, there exists j ∈ {1, 2, ...,m} such that
Ij(y(tj)) ̸= 0, g ∈ L∞([0, T ]). Authors obtained the problem (1.1) admits at least
one classical solution via the critical point theory. Since then, there are many
works that study the FDEs with instantaneous and non-instantaneous impulses by
applying variational methods. We refer the readers to [22,25,31,32].

On the other hand, Kirchhoff-type equation is an extension of the classical
D’Alembert’s wave equation. It was first presented by Kirchhoff [21] in 1883. Vari-
ous problems of Kirchhoff-type are usually called non-local problems and have been
extensively investigated up to now. However, there are relatively few studies on
Kirchhoff-type impulsive differential equations in recent ten years. More precisely,
in [2, 8, 13], Heidarkhani-Afrouzi-Moradi, Caristi-Heidarkhani-Salari, and Afrouzi-
Heidarkhani-Moradi all considered second order Kirchhoff-type differential equa-
tions with instantaneous impulses on the half-line. Authors obtained at least one,
two, three and infinitely many weak solutions by the virtue of variational methods.
More recently, Wang-Tian [28] considered a class of Kirchhoff-type FDEs involving
the (p, q)-Laplacian with instantaneous impulses:
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424 W. Yao & H. Zhang

[0, T ] × R2 → R are C1 functions, Fs, Gs are the partial derivatives of F, G with
respect to s, Dj , Li : R → R are continuous, Mα, Mβ : R+

0 → R+ are continuous.
Authors proved that the problem (1.2) admits at least two non-trivial solutions and
infinitely many non-trivial solutions by mean of variational methods.

To our best knowledge, there are no published papers concerning the Kirchhoff-
type FDEs with p-Laplacian operator and instantaneous and non-instantaneous
impulses. To this end, our work aims to fill this gap. We shall apply variational
methods to study the multiplicity of solutions for the following Kirchhoff-type frac-
tional Dirichlet boundary value problem:
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The new contributions that we give are as follows. Firstly, a new class of
Kirchhoff-type FDEs is presented and some new results on the multiple solutions are
established depending on two real parameters µ and λ. Secondly, some results from
the existing literature are extended. In fact, if M = 1, the problem (1.3) becomes
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the usual FDEs of p-Laplacian with instantaneous and non-instantaneous impulses,
such as [22, 25, 34]. It is obvious that the problem (1.3) is much more complicated
than the problems studied in [22,25,34] because of the appearance of non-local term
M . Furthermore, ifM = 1, p = 2 and tj = sj , j = 1, 2, ...,m, the non-instantaneous
impulses become the instantaneous impulses, and the problem (1.3) becomes the
usual FDEs with instantaneous impulses, such as [1, 7, 10, 26, 33]. Based on the
above assumptions, if α = 1, the problem (1.3) will become the usual integer or-
der differential equations with impulses. In brief, our main results generalize and
supplement some previous results.

2. Preliminaries

In this part, we first recall some necessary definitions, lemmas and theorem which
will be used later.
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Definition 2.3 ( [19]). Let α ∈ (0, 1] and p ∈ (1,+∞). The fractional derivative
space Eα,p0 is defined by the closure of C∞

0 ([0, T ],RN ) with respect to the norm

∥y∥ =

(∫ T

0

|C0 Dα
t y(t)|pdt+
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.

Since h(t) ∈ L∞([0, T ]) with h0 = ess inft∈[0,T ] h(t) > 0 and a(t) ∈ C([0, T ])
with 0 < a0 ≤ a(t) ≤ a0, we can obtain that ∥y∥ is equivalent to the following
norm:
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Definition 2.4 ( [23, Palais-Smale condition]). Let X be a real reflexive Banach
space. For any sequence {yn} ⊂ X, if {Iλ(yn)} is bounded and I ′λ(yn) → 0 as
n→ ∞ possesses a convergent subsequence, then we say that Iλ satisfies the Palais-
Smale condition.

Lemma 2.1 ( [20]). If α ∈ (0, 1] and y ∈ AC([b, d],RN ) or y ∈ C1([b, d],RN ), then
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−α
d (Ct D

α
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Lemma 2.2 ( [19]). Let α ∈ (0, 1] and p ∈ (1,+∞). The fractional derivative space
Eα,p0 is a reflexive and separable Banach space.

Lemma 2.3 ( [19]). Let α ∈ (0, 1] and p ∈ (1,+∞). For all y ∈ Eα,p0 , if 1−α ≥ 1
p

or α > 1
p , we have ∥y∥Lp ≤ Tα
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α
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Lemma 2.4 ( [20]). Let α ∈ (0,+∞), p, q ∈ [1,+∞), 1
p + 1

q ≤ 1 + α or p ̸= 1,

q ̸= 1, 1
p +
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Lemma 2.5 ( [19]). Let α ∈ (0, 1] and p ∈ (1,+∞). Assume that α ∈
(

1
p ,+∞

)
and the sequence {yn} converges weakly to y in Eα,p0 , i.e., yn ⇀ y. Then yn → y
in C([0, T ],RN ), i.e., ∥yn − y∥∞ → 0 as n→ ∞.

Lemma 2.6 ( [6, Theorem 2.1]). Let X be a reflexive real Banach space, let
ϕ, ψ : X → R be two Gâteaux differentiable functionals such that ϕ is sequen-
tially weakly lower semi-continuous, strongly continuous and coercive, and ψ is
sequentially weakly upper semi-continuous. For every r > infX ϕ, let

φ(r) := inf
y∈ϕ−1(−∞,r)

(
sup

y∈ϕ−1(−∞,r)

ψ(y)

)
− ψ(y)

r − ϕ(y)
,

γ := lim inf
r→+∞

φ(r), and δ := lim inf
r→(infX ϕ)+

φ(r).

Then the following properties hold:
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(a) If γ < +∞, then for each λ ∈
(
0, 1γ

)
, the following alternative holds: either

(a1) Iλ := ϕ− λψ possesses a global minimum, or

(a2) there is a sequence {yn} of critical points (local minima) of Iλ such that

lim
n→+∞

ϕ(yn) = +∞.

(b) If δ < +∞, then for each λ ∈
(
0, 1δ

)
, the following alternative holds: either

(b1) there is a global minimum of ϕ which is a local minimum of Iλ, or

(b2) there is a sequence {yn} of pairwise distinct critical points (local minima)
of Iλ which weakly converges to a global minimum of ϕ, with lim

n→+∞
ϕ(yn)

= infX ϕ.

Theorem 2.1 ( [5, Theorem 3.2]). Let X be a real Banach space and let ϕ̃, ψ̃ :

X → R be two continuously Gâteaux differentiable functionals such that ϕ̃ is bounded
from below and ϕ̃(0) = ψ̃(0) = 0. Fix r > 0 such that supy∈ϕ̃−1(−∞,r) ψ̃(y) < +∞

and assume that, for each λ ∈
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Lemma 2.7. For y ∈ Eα,p0 , the norm ∥y∥α,p and the norm ∥y∥α are equivalent,
that is, there exist constants m3 > m2 > 0 such that

m2∥y∥α,p ≤ ∥y∥α ≤ m3∥y∥α,p.

Proof. It is clear that ∥y∥α ≤ m3∥y∥α,p for m3 = 1. On the other hand, by
Lemma 2.3 and (2.1), we can derive
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(
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Lemma 2.8. For y ∈ Eα,p0 , p ∈ (1,+∞), α ∈
(

1
p ,+∞

)
and 1

p +
1
q = 1, there exists

a constant K > 0 such that ∥y∥∞ ≤ K∥y∥α, where ∥y∥∞ = max
t∈[0,T ]

|y(t)|.
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Proof. For any y ∈ Eα,p0 , by Lemma 2.1 and the Hölder’s inequality, we have

|y(t)| =|0D−α
t (C0 D

α
t y(t))|

=
1

Γ(α)

∣∣∣∣∫ t

0
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0 D
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) 1
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α− 1
p h

− 1
p

0

Γ(α)((α−1)q+1)
1
q
such that ∥y∥∞ ≤ K∥y∥α.

Lemma 2.9. We say that y ∈ Eα,p0 is a weak solution of the problem (1.3), if the
following identity holds:

M(∥y∥pα)

∫ T

0

h(t)Φp(
C
0 D

α
t y(t))

C
0 D

α
t w(t)dt+
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−
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d
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C
0 D

α
t y(t))))w(t)dt
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+
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−
m∑
j=1

M(∥y∥pα)tDα−1
T (h(t)Φp(

C
0 D

α
t y(t)))w(t)

∣∣s−j
t+j

+

m∑
j=1

∫ sj

tj

M(∥y∥pα)tDα−1
T (h(t)Φp(

C
0 D

α
t y(t)))w

′(t)dt

=µ

m∑
j=1

Ij(y(tj))w(tj) +

m∑
j=0

M(∥y∥pα)
∫ tj+1

sj

h(t)Φp(
C
0 D

α
t y(t))0D

α−1
t w′(t)dt

+

m∑
j=1

M(∥y∥pα)
∫ sj

tj

h(t)Φp(
C
0 D

α
t y(t))0D

α−1
t w′(t)dt

=µ

m∑
j=1

Ij(y(tj))w(tj) +

m∑
j=0

M(∥y∥pα)
∫ tj+1

sj

h(t)Φp(
C
0 D

α
t y(t))

C
0 D

α
t w(t)dt

+

m∑
j=1

M(∥y∥pα)
∫ sj

tj

h(t)Φp(
C
0 D

α
t y(t))

C
0 D

α
t w(t)dt

=µ

m∑
j=1

Ij(y(tj))w(tj) +M(∥y∥pα)
∫ T

0

h(t)Φp(
C
0 D

α
t y(t))

C
0 D

α
t w(t)dt. (2.3)

On the other hand,∫ T

0

M(∥y∥pα)tDα
T (h(t)Φp(

C
0 D

α
t y(t)))w(t)dt

=

m∑
j=0

∫ tj+1

sj

M(∥y∥pα)tDα
T (h(t)Φp(

C
0 D

α
t y(t)))w(t)dt

−
m∑
j=1

∫ sj

tj

M(∥y∥pα)
d

dt
(tD

α−1
T (h(t)Φp(

C
0 D

α
t y(t))))w(t)dt

=−
m∑
j=0

∫ tj+1

sj

M(∥y∥pα)a(t)Φp(y(t))w(t)dt+ λ

m∑
j=0

∫ tj+1

sj

fj(t, y(t))w(t)dt. (2.4)

Thus, combining (2.3) and (2.4), we can obtain (2.2) holds.
Define the functional Iλ : Eα,p0 → R as follows:

Iλ(y) :=
1

p
M(∥y∥pα)− λ

m∑
j=0

∫ tj+1

sj

Fj(t, y(t))dt+ µ

m∑
j=1

Jj(y(tj)),

where M(y) =
∫ y
0
M(s)ds, Fj(t, y) =

∫ y
0
fj(t, s)ds and Jj(y) =

∫ y
0
Ij(s)ds. Due to

the continuity ofM , fj and Ij , we can easily obtain that Iλ is Gâteaux differentiable
at any point y ∈ Eα,p0 and

⟨I ′λ(y), w⟩ =M(∥y∥pα)

(∫ T

0

h(t)Φp(
C
0 D

α
t y(t))

C
0 D

α
t w(t)dt

+

m∑
j=0

∫ tj+1

sj

a(t)Φp(y(t))w(t)dt

− λ

m∑
j=0

∫ tj+1

sj

fj(t, y(t))w(t)dt (2.5)
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+ µ

m∑
j=1

Ij(y(tj))w(tj).

Obviously, the weak solutions of the problem (1.3) are the critical points of Iλ.

3. Main results

Our main results are obtained by using Lemma 2.6 and Theorem 2.1 in this section.
Put

ζ :=
∥h∥∞

pΓp(1− α)

(
t1−pα1 + t−pα1 (sm − t1)

(1− α)p

+
(T − sm)

(
max{t−α1 , (T − sm)−α − t−α1 }

)p
(1− α)p

)
+
a0

p

m∑
j=0

(tj+1 − sj),

A∞ :=
1

m0
lim inf
x→+∞

∑m
j=0

∫ tj+1

sj
max
|y|≤x

Fj(t, y)dt

xp
,

B∞ :=
1

m0
lim sup
x→+∞

∑m−1
j=1

∫ tj+1

sj
Fj(t, x)dt

xp
.

Theorem 3.1. Assume that

(H1) Fj(t, y) ≥ 0 for all (t, y) ∈ ([0, t1] ∪ [sm, T ])× R+;

(H2) A∞ < m0

pm1ζKpB
∞.

Then, for every λ ∈ Λ :=
(

m1ζ
m0B∞ ,

1
pKpA∞

)
and for each continuous function Ij,

j = 1, 2, ...,m such that

−Jj(y) = −
∫ y

0

Ij(s)ds ≥ 0, ∀y ≥ 0 (3.1)

and

J∞ :=
1

m0
lim sup
x→+∞

∑m
j=1 max

|y|≤x
(−Jj(y))

xp
< +∞, (3.2)

if we put

µJ,λ :=
1

pKpJ∞ (1− pKpλA∞),

where µJ,λ = +∞ when J∞ = 0, the problem (1.3) has an unbounded sequence of
weak solutions for each µ ∈ (0, µJ,λ) in E

α,p
0 .

Proof. Define the functionals ϕ, ψ : Eα,p0 → R as follows:

ϕ(y) =
1

p
M(∥y∥pα), ψ(y) =

m∑
j=0

∫ tj+1

sj

Fj(t, y(t))dt−
µ

λ

m∑
j=1

Jj(y(tj)),

then Iλ(y) = ϕ(y)− λψ(y).
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In order to prove the theorem, we use Lemma 2.6(a). By standard arguments,
ϕ is sequentially weakly lower semi-continuous, strongly continuous and coercive.
Moreover, we can also get that ψ is sequentially weakly upper semi-continuous.

Pick λ ∈ Λ. Since λ < 1
pKpA∞

, we have

µJ,λ =
1

pKpJ∞ (1− pKpλA∞) > 0.

First, we prove that λ < 1
γ . Let {xn} be a real sequence such that lim

n→+∞
xn =

+∞ and

1

m0
lim

n→+∞

∑m
j=0

∫ tj+1

sj
max
|y|≤xn

Fj(t, y)dt

xpn
= A∞.

Put rn =
m0x

p
n

pKp for every n ∈ N. For any w ∈ Eα,p0 with ϕ(w) < rn, by Lemma

2.8, we have ϕ(w) ≥ m0

p ∥w∥pα ≥ m0

pKp ∥w∥p∞, so that

ϕ−1(−∞, rn) ={w ∈ Eα,p0 : ϕ(w) ≤ rn}

⊆
{
w ∈ Eα,p0 :

m0

pKp
∥w∥p∞ ≤ m0x

p
n

pKp

}
= {w ∈ Eα,p0 : ∥w∥∞ ≤ xn} .

Since 0 ∈ ϕ−1(−∞, rn) and ϕ(0) = ψ(0) = 0, we get

φ(rn) = inf
y∈ϕ−1(−∞,rn)

(
sup

w∈ϕ−1(−∞,rn)

ψ(w)

)
− ψ(y)

rn − ϕ(y)

≤
sup

w∈ϕ−1(−∞,rn)

ψ(w)

rn

≤ pKp


∑m
j=0

∫ tj+1

sj
max
|y|≤xn

Fj(t, y)dt

m0x
p
n

+
µ

λ

∑m
j=1 max

|y|≤xn

(−Jj(y))

m0x
p
n

 .

Therefore, from (H2) and (3.2), one has

γ ≤ lim inf
n→+∞

φ(rn) ≤ pKp(A∞ +
µ

λ
J∞) < +∞. (3.3)

Taking into account µ ∈ (0, µJ,λ), we have

γ ≤ pKp(A∞ +
µ

λ
J∞) < pKpA∞ +

1− pKpλA∞

λ
.

Hence,

λ =
1

pKpA∞ + 1−pKpλA∞
λ

<
1

γ
. (3.4)

According to (H2), (3.3) and (3.4), we can obtain

Λ ⊆
(
0,

1

γ

)
.
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Next, we verify that Iλ is unbounded from below for λ ∈ Λ. Since 1
λ <

m0B
∞

m1ζ
,

there exist a real sequence {ηn} and τ > 0 such that lim
n→+∞

ηn = +∞ and

1

λ
< τ <

m0

m1ζ

1

m0

∑m−1
j=1

∫ tj+1

sj
Fj(t, ηn)dt

ηpn
=

1

m1ζη
p
n

m−1∑
j=1

∫ tj+1

sj

Fj(t, ηn)dt (3.5)

for each n ∈ N large enough. Let {ςn} : [0, T ] → R be a sequence in Eα,p0 given by

ςn(t) :=


ηn
t1
t, t ∈ [0, t1],

ηn, t ∈ [t1, sm],
ηn

T − sm
(T − t), t ∈ [sm, T ].

(3.6)

Clearly, one has

ς ′n(t) :=


ηn
t1
, t ∈ (0, t1),

0, t ∈ (t1, sm),

− ηn
T − sm

, t ∈ (sm, T ),

and

C
0 D

α
t ςn(t) =

1

Γ(1− α)

(∫ t

0

(t− s)−ας ′n(s)ds

)

=
1

Γ(1− α)



ηn
(1− α)t1

t1−α, t ∈ [0, t1],

ηn
1− α

t−α1 , t ∈ [t1, sm],

ηn
1− α

(
t−α1 − (t− sm)1−α

T − sm

)
, t ∈ [sm, T ],

so that

ϕ(ςn)

≤m1

p
∥ςn∥pα

=
m1

p

∫ T

0

h(t)|C0 Dα
t ςn(t)|pdt+

m∑
j=0

∫ tj+1

sj

a(t)|ςn(t)|pdt


≤m1∥h∥∞ηpn
pΓp(1− α)

(
t1−pα1 + t−pα1 (sm − t1)

(1− α)p

+
(T − sm)

(
max{t−α1 , (T − sm)−α − t−α1 }

)p
(1− α)p

)
+
m1a

0

p

m∑
j=0

(tj+1 − sj)η
p
n

=m1ζη
p
n. (3.7)

On the other hand, by (H1) and (3.1), we deduced that

ψ(ςn) =

m∑
j=0

∫ tj+1

sj

Fj(t, ςn(t))dt+
µ

λ

m∑
j=1

(−Jj(ςn(tj))) ≥
m−1∑
j=1

∫ tj+1

sj

Fj(t, ηn)dt.

(3.8)
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It follows from (3.5), (3.7) and (3.8) that

Iλ(ςn) ≤ m1ζη
p
n − λ

m−1∑
j=1

∫ tj+1

sj

Fj(t, ηn)dt < m1ζη
p
n(1− λτ)

for each n ∈ N large enough. In view of λτ > 1, we have

lim
n→+∞

Iλ(ςn) = −∞,

which implies that Iλ does not possess a global minimum. Hence, applying Lemma
2.6(a), Iλ admits a sequence {yn} of critical points such that lim

n→+∞
∥yn∥α = +∞.

Remark 3.1. Assume that A∞ = 0 and B∞ = +∞. According to Theorem 3.1,
the problem (1.3) has an unbounded sequence of weak solutions in Eα,p0 for every

λ > 0 and µ ∈
(
0, 1

pKpJ∞

)
. Furthermore, if J∞ = 0, the conclusion is still valid for

every λ > 0 and µ > 0.

Remark 3.2. Assume that fj , j = 0, 1, ...,m are non-negative continuous func-
tions. Then, condition (H1) holds, and (H2) becomes

(H2)′ A′
∞ :=

1

m0
lim inf
x→+∞

∑m
j=0

∫ tj+1

sj
Fj(t, x)dt

xp
<

m0

pm1ζKp
B∞.

In this case, the condition (H2)′ ensures that the problem (1.3) possesses a sequence

of weak solutions which is unbounded for every λ ∈
(

m1ζ
m0B∞ ,

1
pKpA′

∞

)
and µ ∈(

0, 1
pKpJ∞ (1− pKpλA′

∞)
)
in Eα,p0 .

Corollary 3.1. Suppose that fj, j = 0, 1, ...,m are non-negative continuous func-
tions such that

lim inf
x→+∞

Fj(x)

xp
= 0 and 0 < B̂∞ := lim sup

x→+∞

Fj(x)

xp
≤ +∞,

where Fj(x) =
∫ x
0
fj(s)ds for x ∈ R.

Then, for every λ > m1ζ∑m−1
j=1 (tj+1−sj)B̂∞ , for every non-positive continuous func-

tion Ij, j = 1, 2, ...,m such that

Ĵ∞ :=
1

m0
lim sup
x→+∞

−
∑m
j=1 Jj(x)

xp
< +∞,

and for each µ ∈
(
0, 1

pKpĴ∞

)
, the problem (1.3) possesses an unbounded sequence

of weak solutions in Eα,p0 .

Next, we present a special case of Theorem 3.1 with λ = 1.

Corollary 3.2. Assume that (H1) is fulfilled and

A∞ <
1

pKp
and B∞ >

m1ζ

m0
.
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Then, for each continuous function Ij, j = 1, 2, ...,m such that (3.1) and (3.2) hold,
and for each µ ∈ (0, µJ) where

µJ :=
1

pKpJ∞ (1− pKpA∞),

the problem (1.3) possesses an unbounded sequence of weak solutions in Eα,p0 .

Furthermore, by utilizing Lemma 2.6(b) and arguing as in the proof of Theorem
3.1, put

A0 :=
1

m0
lim inf
x→0+

∑m
j=0

∫ tj+1

sj
max
|y|≤x

Fj(t, y)dt

xp
,

B0 :=
1

m0
lim sup
x→0+

∑m−1
j=1

∫ tj+1

sj
Fj(t, x)dt

xp
,

the following result will be obtained.

Theorem 3.2. Suppose that (H1) holds and

(H3) A0 <
m0

pm1ζKpB
0.

Then, for every λ ∈ Λ̃ :=
(
m1ζ
m0B0 ,

1
pKpA0

)
, and for each continuous function Ij,

j = 1, 2, ...,m such that (3.1) holds and

J0 :=
1

m0
lim sup
x→0+

∑m
j=1 max

|y|≤x
(−Jj(y))

xp
< +∞,

if we put

µ̃J,λ :=
1

pKpJ0
(1− pKpλA0),

where µ̃J,λ = +∞ when J0 = 0, for each µ ∈ (0, µ̃J,λ), the problem (1.3) possesses a
sequence of pairwise distinct weak solutions, which strongly converges to 0 in Eα,p0 .

Proof. Analogous to the proof of Theorem 3.1, we can obtain λ < 1
δ and Λ̃ ⊆(

0, 1δ
)
. In view of 1

λ < m0B
0

m1ζ
, there exist a real sequence {ςn} with ηn defined in

(3.6), and τ̂ > 0 such that lim
n→+∞

ηn = 0+ and

1

λ
< τ̂ <

1

m1ζη
p
n

m−1∑
j=1

∫ tj+1

sj

Fj(t, ηn)dt

for each n ∈ N large enough. Obviously, the sequence {ςn} strongly converges to 0
in Eα,p0 . Similarly to Theorem 3.1, we also can obtain Iλ(ςn) < 0 for each n large
enough. Taking Iλ(0) = 0 into account, we get that Iλ does not possess a local
minimum at 0. Therefore, by Lemma 2.6(b), there is a sequence {yn} in Eα,p0 of
critical points of Iλ such that lim

n→+∞
∥yn∥α = 0.

Remark 3.3. Using Theorem 3.2, we also can obtain analogous results to Corol-
laries 3.1 and 3.2. The discussions are omitted here.
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Theorem 3.3. Assume that

(H4) There exist constants C1 ≥ 0, ℓj > p and p < ιj < ℓ, such that

0 < ℓjFj(t, y) ≤ yfj(t, y), for t ∈ (sj , tj+1], |y| ≥ C1, j = 0, 1, ...,m,

and
0 < yIj(y) ≤ ιjJj(y), for y ∈ R\{0}, j = 1, 2, ...,m,

where ℓ = min
0≤j≤m

{ℓj} satisfies ℓm0 − pm1 > 0.

Then, for λ ∈
(
0, m0ϱ

p

pKp
∑m

j=0

∫ tj+1
sj

max|y|≤ϱ Fj(t,y)dt

)
, the problem (1.3) with µ = 1

has at least two distinct weak solutions.

Proof. Define the functionals ϕ̃, ψ̃ : Eα,p0 → R as follows:

ϕ̃(y) =
1

p
M(∥y∥pα) +

m∑
j=1

Jj(y(tj)), ψ̃(y) =

m∑
j=0

∫ tj+1

sj

Fj(t, y(t))dt.

Clearly Iλ(y) = ϕ̃(y)− λψ̃(y).
Because 0 < Jj(y), y ∈ R\{0}, one has

ϕ̃(y) =
1

p
M(∥y∥pα) +

m∑
j=1

Jj(y(tj)) ≥
1

p
M(∥y∥pα) ≥

m0

p
∥y∥pα, (3.9)

which implies that ϕ̃ is bounded from below.
Now, we show that Iλ satisfies the Palais-Smale condition. Let {yn} ⊂ Eα,p0

such that {Iλ(yn)} is a bounded sequence and I ′λ(yn) → 0. Taking into account
(H4), one has

ℓIλ(yn)− ⟨I ′λ(yn), yn⟩

=
ℓ

p
M(∥yn∥pα)− ℓλ

m∑
j=0

∫ tj+1

sj

Fj(t, yn(t))dt+ ℓ

m∑
j=1

Jj(yn(tj))

−M(∥yn∥pα)∥yn∥pα + λ

m∑
j=0

∫ tj+1

sj

fj(t, yn(t))yn(t)dt−
m∑
j=1

Ij(yn(tj))yn(tj)

≥(
ℓm0

p
−m1)∥yn∥pα − λ

m∑
j=0

∫ tj+1

sj

max
yn∈[−C1,C1]

|ℓFj(t, yn(t))− fj(t, yn(t))yn(t)| dt,

which implies that {yn} is bounded in Eα,p0 . By (2.5), we have

⟨I ′λ(yn)− I ′λ(y), yn − y⟩

=M(∥yn∥pα)
∫ T

0

h(t)(Φp(
C
0 D

α
t yn(t))− Φp(

C
0 D

α
t y(t)))

C
0 D

α
t (yn(t)− y(t))dt

+ (M(∥yn∥pα)−M(∥y∥pα))
∫ T

0

h(t)Φp(
C
0 D

α
t y(t))

C
0 D

α
t (yn(t)− y(t))dt

+M(∥yn∥pα)
m∑
j=0

∫ tj+1

sj

a(t)(Φp(yn(t))− Φp(y(t)))(yn(t)− y(t))dt
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+ (M(∥yn∥pα)−M(∥y∥pα))
m∑
j=0

∫ tj+1

sj

a(t)Φp(y(t))(yn(t)− y(t))dt

− λ

m∑
j=0

∫ tj+1

sj

(fj(t, yn(t))− fj(t, y(t)))(yn(t)− y(t))dt

+

m∑
j=1

(Ij(yn(tj))− Ij(y(tj)))(yn(tj)− y(tj)). (3.10)

According to Lemma 2.5 and the boundedness ofM(∥yn∥pα)−M(∥y∥pα), we have

(M(∥yn∥pα)−M(∥y∥pα))
∫ T

0

h(t)Φp(
C
0 D

α
t y(t))

C
0 D

α
t (yn(t)− y(t))dt→ 0, (3.11)

(M(∥yn∥pα)−M(∥y∥pα))
m∑
j=0

∫ tj+1

sj

a(t)Φp(y(t))(yn(t)− y(t))dt→ 0, (3.12)

m∑
j=0

∫ tj+1

sj

(fj(t, yn(t))− fj(t, y(t)))(yn(t)− y(t))dt→ 0, (3.13)

m∑
j=1

(Ij(yn(tj))− Ij(y(tj)))(yn(tj)− y(tj)) → 0. (3.14)

Since yn ⇀ y and I ′λ(yn) → 0, one has

⟨I ′λ(yn)− I ′λ(y), yn − y⟩ → 0. (3.15)

By [27, Eq (2.2)], there exist constants cp, dp > 0, such that

M(∥yn∥pα)
∫ T

0

h(t)(Φp(
C
0 D

α
t yn(t))− Φp(

C
0 D

α
t y(t)))

C
0 D

α
t (yn(t)− y(t))dt

+M(∥yn∥pα)
m∑
j=0

∫ tj+1

sj

a(t)(Φp(yn(t))− Φp(y(t)))(yn(t)− y(t))dt

≥



cpM(∥yn∥pα)
( ∫ T

0

h(t)|C0 Dα
t yn(t)− C

0 D
α
t y(t)|pdt

+

m∑
j=0

∫ tj+1

sj

a(t)|yn(t)− y(t)|pdt
)
, p ≥ 2,

dpM(∥yn∥pα)
( ∫ T

0

h(t)|C0 Dα
t yn(t)−C0 Dα

t y(t)|2

(|C0 Dα
t yn(t)|+ |C0 Dα

t y(t)|)2−p
dt

+

m∑
j=0

∫ tj+1

sj

a(t)|yn(t)− y(t)|2

(|yn(t)|+ |y(t)|)2−p
dt
)
, 1 < p < 2.

(3.16)

If p ≥ 2, it follows from (3.10)-(3.16) that ∥yn − y∥α → 0 in Eα,p0 .
If 1 < p < 2, based on the proof of [31, Lemma 3.4], we can obtain that∫ T

0

h(t)|C0 Dα
t yn(t)− C

0 D
α
t y(t)|pdt

≤2
(p−1)(2−p)

2

(∫ T

0

h(t)|C0 Dα
t yn(t)− C

0 D
α
t y(t)|2

(|C0 Dα
t yn(t)|+ |C0 Dα

t y(t)|)2−p
dt

) p
2

(∥yn∥α + ∥y∥α)
(2−p)p

2 ,

(3.17)
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and
m∑
j=0

∫ tj+1

sj

a(t)|yn(t)− y(t)|pdt

≤2
(p−1)(2−p)

2

 m∑
j=0

∫ tj+1

sj

a(t)|yn(t)− y(t)|2

(|yn(t)|+ |y(t)|)2−p
dt


p
2

(∥yn∥α + ∥y∥α)
(2−p)p

2 .

(3.18)

It follows from (3.16), (3.17) and (3.18) that

M(∥yn∥pα)

(∫ T

0

h(t)(Φp(
C
0 D

α
t yn(t))− Φp(

C
0 D

α
t y(t)))

C
0 D

α
t (yn(t)− y(t))dt

+

m∑
j=0

∫ tj+1

sj

a(t)(Φp(yn(t))− Φp(y(t)))(yn(t)− y(t))dt


≥ dpM(∥yn∥pα)

2
(p−1)(2−p)

p (∥yn∥α + ∥y∥α)2−p

(∫ T

0

h(t)|C0 Dα
t yn(t)−C0 Dα

t y(t)|pdt

) 2
p

+

 m∑
j=0

∫ tj+1

sj

a(t)|yn(t)− y(t)|pdt

 2
p


≥ dpM(∥yn∥pα)

2
(p−1)(2−p)

p max{2
2
p−1, 1}

∥yn − y∥2α
(∥yn∥α + ∥y∥α)2−p

. (3.19)

In view of (3.10)-(3.15) and (3.19), we obtain that ∥yn − y∥α → 0 in Eα,p0 , i.e.,
{yn} strongly converges to y in Eα,p0 .

On the other hand, from (H4), there exist νj , Aj , χj , Bj > 0, such that

Fj(t, y(t)) ≥ νj |y|ℓj −Aj and Jj(y) ≤ χj |y|ιj +Bj .

Let ∥y∥α = 1, it follows that

Iλ(κy) ≤
1

p
M(∥κy∥pα)− λ

m∑
j=0

∫ tj+1

sj

(νj |κy|ℓj −Aj)dt+

m∑
j=1

(χj |κy|ιj +Bj)

≤m1

p
∥κy∥pα − λ

m∑
j=0

∫ tj+1

sj

νj |κy|ℓjdt+
m∑
j=1

χj |κy|ιj

+ λ

m∑
j=0

Aj(tj+1 − sj) +

m∑
j=1

Bj

≤m1

p
∥κy∥pα − λ

m∑
j=0

∫ tj+1

sj

νj |κy|ℓjdt+
m∑
j=1

χjK
ιj∥κy∥ιjα

+ λ

m∑
j=0

Aj(tj+1 − sj) +

m∑
j=1

Bj

≤m1

p
κp − λ

m∑
j=0

κℓ
∫ tj+1

sj

νj |y|ℓjdt+
m∑
j=1

χj(Kκ)ιj
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+ λ

m∑
j=0

Aj(tj+1 − sj) +

m∑
j=1

Bj .

Since ℓj > p, p < ιj < ℓ and
∫ tj+1

sj
νj |y|ℓjdt > 0, we get Iλ(κy) → −∞ as

κ → +∞. Thus, Iλ is unbounded from below.
Put r = m0ϱ

p

pKp . By Lemma 2.8 and (3.9), we have ∥y∥∞ ≤ ϱ. So

sup
y∈ϕ̃−1(−∞,r)

ψ̃(y) ≤
m∑
j=0

∫ tj+1

sj

max
|y|≤ϱ

Fj(t, y)dt < +∞.

Therefore, by Theorem 2.1, for every λ ∈
(
0, m0ϱ

p

pKp
∑m

j=0

∫ tj+1
sj

max|y|≤ϱ Fj(t,y)dt

)
,

Iλ admits two distinct critical points, that is, the problem (1.3) with µ = 1 possesses
at least two distinct weak solutions.

4. Examples

Example 4.1. Let α = 1
2 , h(t) = a(t) = T = 1, m = 2, 0 = s0 < t1 = 1

3 < s1 =
1
2 < t2 = 7

12 < s2 = 2
3 < t3 = 1, p = 3, M(y) = 3

2 + sin y
2 , I1(y) = − 1

5y
2 and

I2(y) = −e−y. Then m0 = 1, m1 = 2 and

Ĵ∞ = lim sup
x→+∞

−J1(x)− J2(x)

x3
= lim
x→+∞

1
15x

3 + 1− e−x

x3
=

1

15
.

Put

ân :=
2n!(n+ 2)!− 1

4(n+ 1)!
, b̂n :=

2n!(n+ 2)! + 1

4(n+ 1)!
, ∀n ∈ N,

and consider the non-negative continuous functions fj : R → R, j = 1, 2,

fj(y) =


32(n+ 1)!2

(
(n+ 1)!3 − n!3

)
π

√
1

16(n+ 1)!2
−
(
y − n!(n+ 2)

2

)2

,

y ∈ [ân, b̂n],

0, y ̸= ∪n∈N[ân, b̂n].

One has ∫ b̂n

ân

fj(y)dy = (n+ 1)!3 − n!3, ∀n ∈ N.

Then

lim
n→+∞

Fj(ân)

â3n
= 0, lim

n→+∞

Fj(b̂n)

b̂3n
= 8.

So

lim inf
x→+∞

Fj(x)

x3
= 0, B̂∞ = lim sup

x→+∞

Fj(x)

x3
= 8.

Through direct calculation, we obtain that ζ ≈ 2.7384, K ≈ 1.4217. Hence,
from Corollary 3.1, for every λ > 8.2153 and µ ∈ (0, 1.7401), the problem (1.3)
possesses an unbounded sequence of weak solutions in Eα,p0 .
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Example 4.2. Let α = 0.6, h(t) = a(t) = T = m = 1, p = 3. Consider the
following problem:

M(∥y∥30.6)(tD0.6
1

(
Φ3(

C
0 D

0.6
t y(t))

)
+Φ3(y(t)))

= λfj(t, y(t)), t ∈ (sj , tj+1], j = 0, 1,

∆
(
M(∥y(t1)∥30.6)tD−0.4

1

(
Φ3(

C
0 D

0.6
t y(t1))

))
= I1(y(t1)),

M(∥y∥30.6)tD−0.4
1

(
Φ3(

C
0 D

0.6
t y(t))

)
=M(∥y(t+1 )∥30.6)tD

−0.4
1

(
Φ3(

C
0 D

0.6
t y(t+1 ))

)
, t ∈ (t1, s1],

M(∥y(s+1 )∥30.6)tD
−0.4
1

(
Φ3(

C
0 D

0.6
t y(s+1 ))

)
=M(∥y(s−1 )∥30.6)tD

−0.4
1

(
Φ3(

C
0 D

0.6
t y(s−1 ))

)
,

y(0) = y(1) = 0,

(4.1)

where 0 = s0 < t1 = 1
3 < s1 = 2

3 < t2 = 1, M(y) = 5 + y
1+y for all y ∈ R+,

fj(t, y) = y5, I1(y) = y3. Obviously, m0 = 5. If ℓj = 5 and ι1 = 9
2 , we can obtain

0 <
5

6
y6 = ℓjFj(t, y) ≤ yfj(t, y) = y6, j = 0, 1,

0 < y4 = yI1(y) ≤ ι1J1(y) =
9

8
y4.

Thus, (H4) holds. Let ϱ=1. By direct calculation, m0ϱ
p

pKp
∑m

j=0

∫ tj+1
sj

max|y|≤ϱ Fj(t,y)dt

≈ 7.9261. Applying Theorem 3.3, for each λ ∈ (0, 7.9261), the problem (4.1) pos-
sesses at least two distinct weak solutions.
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