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EXTINCTION AND PERSISTENCE IN A
LOGISTIC MODEL WITH BIRTH AND

HARVESTING IMPULSES∗

Ying Yuan1, Haiyan Xu2 and Zhigui Lin2,†

Abstract This paper deals with a diffusive logistic model with birth and
harvesting impulses, where birth pulses are for increase of population in short
time because of birth, and harvesting pulses are used to describe decrease
of population by regular harvesting or interventions. Firstly, the principal
eigenvalue depending the impulsive rates, which is regarded as a threshold
value, is introduced and characterized. Secondly, the asymptotic behavior of
population is fully investigated and the sufficient conditions for the solution
to be extinct or persist are given. Our results show that the increase brought
about by birth, the decrease caused by harvest, and the intervention timing
all have an impact on the persistence of species.
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1. Introduction

This paper characterizes the dynamics of the diffusive logistic model with impulses

ut = d∆u+ a(t, x)u− b(t, x)up, (t, x) ∈ Ωt,x,

u(t, x) = 0, t > 0, x ∈ ∂Ω,

u(0, x) = u0(x), x ∈ Ω,

u(n+, x) = (1 + α)u(n, x), x ∈ Ω,

u((n+ τ)+, x) = (1− β)u(n+ τ, x), x ∈ Ω, n = 0, 1, 2, · · · ,

(1.1)

where Ωt,x := {(t, x) : t ∈ (n+, (n + τ)]
⋃
((n + τ)+, (n + 1)], x ∈ Ω} and Ω is a

bounded and connected domain of RN (N ≥ 1) with smooth boundary ∂Ω. p, τ
are constants satisfying p > 1 and 0 < τ < 1. t ∈ (n+, (n + τ)] is expressed
that the equation holds for t ∈ (n, (n + τ)], and take its value u(n+, x) instead
of u(n, x) at the initial time of the time interval (n, (n + τ)] for n = 0, 1, 2, · · · ,
so is t ∈ ((n + τ)+, (n + 1)]. u(t, x) is the density of species at time t and in
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space x and the positive constant d is the diffusion rate. The function a(t, x)(∈
Cθ/2,θ([0, 1]× Ω) for some 0 < θ ≤ 1) is a periodic function of time with period 1,
and denotes intrinsic growth rate of population. It can be negative, which means
that the resources on position x at time t are not conducive to survival. The positive
function b(t, x)(∈ Cθ/2,θ([0, 1]×Ω)) is a periodic function of time with period 1, and
0 < bm ≤ b(t, x) ≤ bM in [0, 1] × Ω. Initial function u0(x) satisfies u0(x) ∈ C2(Ω),
u0(x) ≥, ̸≡ 0 for x ∈ Ω and u0(x) = 0 for x ∈ ∂Ω.

The function (1+α)u with α > 0 represents birth pulse, and an impulse occurs
at every time t = n (n = 0, 1, 2, · · · ), while (1 − β)u with 0 < β < 1 is the
impulsive function representing harvesting control, and the impulse occurs at every
time t = n+ τ (n = 0, 1, 2, · · · ). The species grow and diffuse within the successive
stages (n, (n+ τ)] and ((n+ τ), (n+ 1)].

Besides growth, death, disperse [17], we are more interested in the distribution
and dynamics of species influenced by impulsive perturbation [2,8–10,13,15,16,20].
Especially, problem (1.1) has been discussed in [10] numerically.

On condition that α = β = 0, which means there is no impulse, problem (1.1)
has attracted much attention, see [1, 3–5,14] and references therein.

This paper is organized as follows. Section 2 contains global existence and
uniqueness of the solution, and the principal eigenvalue for a periodic eigenvalue
problem with impulse is investigated in Sections 3. Section 4 is devoted to dynamics
of the solution to problem (1.1).

2. Existence, uniqueness and estimates

The global existence and uniqueness of solution to problem (1.1) with impulses can
be obtained by the bootstrap method.

For n = 0, birth pulse takes place at time t = 0. Then the solution u(t, x) satisfies
problem (1.1) with a new initial value u(0+, x) over time interval (0+, τ ]. Recalling
that u0(x) ∈ C2(Ω), we can deduce that the new initial value u(0+, x) = (1 +
α)u0(x) ∈ C2(Ω). Hence, it follows from the classical theory of partial differential
equation [12], we have the existence and uniqueness of solution u(t, x) to problem
(1.1) for t ∈ (0+, τ ], u(t, x) ∈ C1,2((0, τ ]× Ω) and

u(t, x) ≤ max{(1 + α)uM0 , (a
M/bm)1/(p−1)} ≤M1

with M1 := (1 + α)max{uM0 , (aM/bm)1/(p−1)} since that u(t, x) ≤ u(t) for (t, x) ∈
(0, τ ]× Ω and u(t) satisfies{

ut = aMu− bmup, t ∈ (0, τ ],

u(0) = (1 + α)uM0 ,

where for any continue function f(x) in Ω, we denote fm = minx∈Ω f and fM =
maxx∈Ω f.

Similarly, u(τ+, x) = (1 − β)u(τ, x) becomes a new initial value for t ∈ (τ+, 1],
which also belongs to C2(Ω). Then, u(t, x) ∈ C1,2((τ, 1] × Ω) exists uniquely.
Moreover,

u(t, x) ≤M∗
1 := max{(1− β)M1, (a

M/bm)1/(p−1)} ≤M1, (t, x) ∈ (τ, 1]× Ω
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since that u(t, x) ≤ w(t) for (t, x) ∈ (τ, 1]× Ω and w(t) satisfies{
wt = aMw − bmwp, t ∈ (τ, 1],

w(0) = (1− β)M1.

Taking n = 1, 2, · · · and by the same procedures, we can find that, for any n,
problem (1.1) admits a unique solution u(t, x) for t ∈ [0, n], and

u(t, x) ≤Mn := (1 + α)n max{uM0 , (aM/bm)1/(p−1)}, (t, x) ∈ [0, n]× Ω.

Therefore, we conclude the following global existence and uniqueness of solution.

Theorem 2.1. Problem (1.1) admits a unique solution u(t, x) for all t > 0. More-
over,

u(t, x) ∈ PC1,2((0,+∞)×Ω) :=

∞⋂
n=0

[C1,2((n, n+ τ ]×Ω)
⋂
C1,2((n+ τ, n+1]×Ω)]

and u(t, x) ≤M[t]+1 for (t, x) ∈ [0,∞)× Ω.

3. The principal eigenvalue

As in [3,19], the long-time behavior of problem (1.1) is related to its corresponding
periodic problem

Ut = d∆U + a(t, x)U − b(t, x)Up, t ∈ (0+, τ ]
⋃

(τ+, 1], x ∈ Ω,

U(t, x) = 0, 0 < t ≤ 1, x ∈ ∂Ω,

U(0, x) = U(1, x), x ∈ Ω,

U(0+, x) = (1 + α)U(0, x), x ∈ Ω,

U(τ+, x) = (1− β)U(τ, x), x ∈ Ω,

(3.1)

and the existence of the positive solution to (3.1) depends on the principal eigenvalue
µ1(d, a(t, x), α, β) of the following periodic eigenvalue problem

ϕt − d∆ϕ− a(t, x)ϕ = µ1ϕ, t ∈ (0+, τ ]
⋃

(τ+, 1], x ∈ Ω,

ϕ(t, x) = 0, t ∈ [0, 1], x ∈ ∂Ω,

ϕ(0, x) = ϕ(1, x), x ∈ Ω,

ϕ(0+, x) = (1 + α)ϕ(0, x), x ∈ Ω,

ϕ(τ+, x) = (1− β)ϕ(τ, x), x ∈ Ω.

(3.2)

The existence of µ1 can be guaranteed by using Krein-Rutman theorem [5,7,11]
on a Banach space involving impulse [21]. We give a sketch here.

To overcome the difficulties induced by different impulses, we consider the fol-
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lowing equivalent eigenvalue problem

ξt − d∆ξ − a(t, x)ξ = µ1ξ, t ∈ (0, τ ], x ∈ Ω,

ηt − d∆η − a(t, x)ξ = µ1η, t ∈ (τ, 1], x ∈ Ω,

ξ(t, x) = 0, t ∈ [0, τ ], x ∈ ∂Ω,

η(t, x) = 0, t ∈ [τ, 1], x ∈ ∂Ω,

ξ(0, x) = (1 + α)η(1, x), ξ(t, x) = ξ(τ, x), t ∈ [τ, 1], x ∈ Ω,

η(τ, x) = (1− β)ξ(τ, x), η(t, x) = η(τ, x), t ∈ [0, τ ], x ∈ Ω.

(3.3)

In fact, we can take ϕ(t, x) = ξ(t, x) for t ∈ (0, τ ], ϕ(t, x) = η(t, x) for t ∈ (τ, 1],
and ϕ(0+, x) = ξ(0, x), ϕ(0, x) = η(1, x), ϕ(τ+, x) = η(τ, x) and ϕ(τ, x) = ξ(τ, x)
for x ∈ Ω.

Now let W be a Banach space,

W = D0,1
0 ([0, 1]× Ω)

:= {(ξ, η) ∈ [C0,1([0, 1]× Ω)]2 : ξ = η = 0 ∀(t, x) ∈ [0, 1]× ∂Ω,

ξ(t, x) = ξ(τ, x), t ∈ [τ, 1], η(t, x) = η(τ, x), t ∈ [0, τ ], x ∈ Ω,

ξ(0, x) = (1 + α)η(1, x), η(τ, x) = (1− β)ξ(τ, x) ∀x ∈ Ω}

with the positive cone

W+ := closure{(ξ, η) ∈W : ξ(t, x), η(t, x) ≫ 0 ∀(t, x) ∈ [0, 1]× ∂Ω},

and its interior

Int(W+) = {(ξ, η) ∈W : ξ(t, x), η(t, x) ≫ 0 ∀(t, x) ∈ [0, 1]× ∂Ω}

being nonempty, where ν is outward unit normal vector of ∂Ω and ξ ≫ 0 means
that ξ(t, x) > 0 for all (t, x) ∈ [0, 1]× Ω and ∂ξ

∂ν (t, x) < 0 for all (t, x) ∈ [0, 1]× ∂Ω,
we normally call it strongly positive function.

Let M∗ = 1+max[0,τ ]×Ω |a(t, x)|+ ln(1/(1− β)). For any given (ξ, η) ∈W , the
linear problem

wt − d∆w +M∗w − a(t, x)w = ξ, t ∈ (0, τ ], x ∈ Ω,

zt − d∆z +M∗z − a(t, x)z = η, t ∈ (τ, 1], x ∈ Ω,

w(t, x) = 0, t ∈ [0, τ ], x ∈ ∂Ω,

z(t, x) = 0, t ∈ [τ, 1], x ∈ ∂Ω,

w(0, x) = (1 + α)z(1, x), w(t, x) = w(τ, x), t ∈ [τ, 1], x ∈ Ω,

z(τ, x) = (1− β)w(τ, x), z(t, x) = z(τ, x), t ∈ [0, τ ], x ∈ Ω

(3.4)

admits a unique solution (w, z) satisfying w, z ∈ C(1+α)/2,1+α([0, 1]× Ω)
⋂
W with

any 0 < α < 1 by the classical theory of partial differential equation [12].
Now, we firstly define a operator A(ξ, η) = (w, z). Since that the imbedding

C(1+α)/2,1+α ↪→ C0,1 is compact, A is a linear compact operator. Moreover,
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A is strongly positive with respect to W by the strong maximum principle and
Hopf’s boundary lemma. Therefore, it follows from Krein-Rutman theorem that
there exist a unique σ1 := r(A) > 0 and a function (w, z) ∈ Int(W+) such that
A(w, z) = σ1(w, z), then µ1 := 1/σ1 −M∗ is the principal eigenvalue of (3.3) and
the corresponding eigenfunctions ξ(t, x) and η(t, x) are strongly positive, that is,
ξ(t, x), η(t, x) > 0 in [0, 1]× Ω and ∂ξ

∂ν (t, x),
∂η
∂ν (t, x) < 0 for (t, x) ∈ [0, 1]× ∂Ω.

Coming back to problem (3.2) with impulse, we have the existence of the prin-
cipal eigenvalue by equivalence.

Theorem 3.1. Assume that a(x, t) := a(t). Then the principal eigenvalue of prob-
lem (1.1) can be precisely expressed as

µ1 = − ln[(1 + α)(1− β)] + dλ1 −
∫ 1

0

a(t)dt, (3.5)

where λ1(> 0) is the principal eigenvalue of −∆ in Ω with homogeneous Dirichlet
boundary condition.

Proof. Let

ϕ(t, x) = f(t)ψ(x),

where ψ(x) is the corresponding eigenfunction of λ1, which satisfies the eigenvalue
problem {

−∆ψ = λ1ψ, x ∈ Ω,

ψ(x) = 0, x ∈ ∂Ω.
(3.6)

Substituting ϕ(t, x) = f(t)ψ(y) into the reaction diffusion equation in (3.2) yields

f ′(t)

f(t)
+ dλ1 = a(t) + µ1,

then integrating both sides from t ∈ (0+, τ ]
⋃
(τ+, 1], yield∫ τ

0+

f ′(t)

f(t)
dt+

∫ 1

τ+

f ′(t)

f(t)
dt+ dλ1 =

∫ 1

0

a(t)dt+ µ1.

Recalling that 
f(0) = f(1),

f(0+) = (1 + α)f(0),

f(τ+) = (1− β)f(τ),

we obtain µ1 = − ln[(1 + α)(1− β)] + dλ1 −
∫ 1

0
a(t)dt.

Theorem 3.2. Assume that a(x, t) := a(t). If period 1 is replaced by T , that is,
ϕ(0, x) = ϕ(T, x) hold for x ∈ Ω in Theorem 3.1, then

µ1 =
− ln[(1 + α)(1− β)]

T
+ dλ1 −

∫ T

0
a(t)dt

T
.
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Proof. If period 1 is replaced by T , then the corresponding periodic problem (3.2)
is written as

ϕt − d∆ϕ− a(t)ϕ = µ1ϕ, t ∈ (0+, τ ]
⋃

(τ+, T ], x ∈ Ω,

ϕ(t, x) = 0, t ∈ [0, T ], x ∈ ∂Ω,

ϕ(0, x) = ϕ(T, x), x ∈ Ω,

ϕ(0+, x) = (1 + α)ϕ(0, x), x ∈ Ω,

ϕ(τ+, x) = (1− β)ϕ(τ, x), x ∈ Ω.

By the same method in Theorem 2.1, we obtain∫ τ

0+

f ′(t)

f(t)
dt+

∫ T

τ+

f ′(t)

f(t)
dt+ dλ1T =

∫ T

0

a(t)dt+ µ1T,

so µ1 = − ln[(1+α)(1−β)]
T + dλ1 −

∫ T
0

a(t)dt

T .

Before considering the properties of the principal eigenvalue µ1(d, a(t, x), α, β)
in the problem (3.2), we first introduce the auxiliary problem

− ϕ∗t − d∆ϕ∗ − a(t, x)ϕ∗ = λ1ϕ
∗, t ∈ (0+, τ ]

⋃
(τ+, 1], x ∈ Ω,

ϕ∗(t, x) = 0, t ∈ [0, 1], x ∈ ∂Ω,

ϕ∗(0+, x) =
1

1 + α
ϕ∗(0, x), x ∈ Ω,

ϕ∗(τ+, x) =
1

1− β
ϕ∗(τ, x), x ∈ Ω,

ϕ∗(0, x) = ϕ∗(1, x), x ∈ Ω.

(3.7)

Lemma 3.1. The principal eigenvalues λ1 in (3.7) and µ1 in (3.2) are the same,
that is, λ1 = µ1.

Proof. Multiplying the first equation in (3.7) by ϕ and the first equation in (3.2)
by ϕ∗, respectively, we obtain{

ϕtϕ
∗ − d∆ϕϕ∗ = a(t, x)ϕϕ∗ + µ1ϕϕ

∗,

− ϕ∗tϕ− d∆ϕ∗ϕ = a(t, x)ϕϕ∗ + λ1ϕϕ
∗,

then abstracting these two equations gives

ϕtϕ
∗ + ϕ∗tϕ− d(∆ϕϕ∗ −∆ϕ∗ϕ) = (µ1 − λ1)ϕϕ

∗. (3.8)

Since ∫
Ω

(∆ϕϕ∗ −∆ϕ∗ϕ)dx = 0

and

(

∫ τ

0+
+

∫ 1

τ+

)(ϕtϕ
∗ + ϕ∗tϕ)dt

=ϕ(τ, x)ϕ∗(τ, x)− ϕ(0+, x)ϕ∗(0+, x) + ϕ(1, x)ϕ∗(1, x)− ϕ(τ+, x)ϕ∗(τ+, x)
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=ϕ(τ, x)ϕ∗(τ, x)− (1 + α)
1

1 + α
ϕ(0, x)ϕ∗(0, x) + ϕ(0, x)ϕ∗(0, x)

− (1− β)
1

1− β
ϕ(τ, x)ϕ∗(τ, x)

=0,

so integrating both sides of the equations in (3.8) over (t, x) ∈ ((0+, τ ]
⋃
(τ+, 1])×Ω,

yields

(µ1 − λ1)(

∫ τ

0+
+

∫ 1

τ+

)

∫
Ω

ϕϕ∗dxdt = 0,

which ends the proof since (
∫ τ

0+
+
∫ 1

τ+)
∫
Ω
ϕϕ∗dxdt > 0.

Theorem 3.3. The following statements hold:

(i) µ1(d, a(t, x), α, β) is nonincreasing with respect to a(t, x) for any given d, α
and β;

(ii) µ1(d, a(t, x), α, β) is strictly monotonic decreasing with respect to α for any
given d, a(t, x) and β;

(iii) µ1(d, a(t, x), α, β) is strictly monotonic increasing with respect to β for any
given d, a(t, x) and α;

(iv) µ1(d, a(t, x), α, β) is nondecreasing with respect to d for any given a(t, x), α
and β.

Proof. (i) It can be observed from the first equation in (3.2) that µ1(a(t, x), α, β, d)
is nonincreasing with respect to a(t, x).

We next prove (ii). Note that ϕ and µ1 are smooth functions of α ∈ (0,+∞), β ∈
(0, 1) and d ∈ (0,+∞) by standard result about perturbation [6]. So differentiating
both sides of equations in problem (3.2) with respect to α yields

ϕ′t − d∆ϕ′ − a(t, x)ϕ′ = µ′
1ϕ+ µ1ϕ

′, t ∈ (0+, τ ]
⋃

(τ+, 1], x ∈ Ω,

ϕ′(t, x) = 0, t ∈ [0, 1], x ∈ ∂Ω,

ϕ′(0+, x) = ϕ(0, x) + (1 + α)ϕ′(0, x), x ∈ Ω,

ϕ′(τ+, x) = (1− β)ϕ′(τ, x), x ∈ Ω,

ϕ′(0, x) = ϕ′(1, x), x ∈ Ω.

(3.9)

Multiplying the first equation in (3.9) by ϕ∗ asserts

ϕ′tϕ
∗ − d∆ϕ′ϕ∗ − a(t, x)ϕ′ϕ∗ = µ′

1ϕϕ
∗ + µ1ϕ

′ϕ∗. (3.10)

Recalling the periodicity and impulsive conditions of ϕ(t, x), ϕ∗(t, x) and ϕ′(t, x),
one easily checks that

(

∫ τ

0+
+

∫ 1

τ+

)ϕ′tϕ
∗dt

=ϕ′(τ, x)ϕ∗(τ, x)− ϕ′(0+, x)ϕ∗(0+, x) + ϕ′(1, x)ϕ∗(1, x)− ϕ′(τ+, x)ϕ∗(τ+, x)

− (

∫ τ

0+
+

∫ 1

τ+

)ϕ′ϕ∗t dt
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=ϕ′(τ, x)ϕ∗(τ, x)− [ϕ(0, x) + (1 + α)ϕ′(0, x)]
1

1 + α
ϕ∗(0, x) + ϕ′(0, x)ϕ∗(0, x)

− (1− β)
1

1− β
ϕ′(τ, x)ϕ∗(τ, x)− (

∫ τ

0+
+

∫ 1

τ+

)ϕ′ϕ∗t dt

=
−1

1 + α
ϕ(0, x)ϕ∗(0, x)− (

∫ τ

0+
+

∫ 1

τ+

)ϕ′ϕ∗t dt.

So integrating both sides of equations in (3.10) over t ∈ (0+, τ ]
⋃
(τ+, 1] and x ∈ Ω,

we get

−1

1 + α

∫
Ω

ϕ(0, x)ϕ∗(0, x)dx− (

∫ τ

0+
+

∫ 1

τ+

)

∫
Ω

(ϕ′ϕ∗t − dϕ′∆ϕ∗)dxdt

=(

∫ τ

0+
+

∫ 1

τ+

)

∫
Ω

(a(t, x)ϕ′ϕ∗ + µ′
1ϕϕ

∗ + µ1ϕ
′ϕ∗)dxdt,

which, together with −ϕ∗t − d∆ϕ∗ − a(t, x)ϕ∗ = µ1ϕ
∗ in (3.7), yields

−1

1 + α

∫
Ω

ϕ(0, x)ϕ∗(0, x)dx = µ′
1(

∫ τ

0+
+

∫ 1

τ+

)

∫
Ω

ϕϕ∗dxdt,

thus

µ′
1 =

−1
1+α

∫
Ω
ϕ(0, x)ϕ∗(0, x)dx

(
∫ τ

0+
+
∫ 1

τ+)
∫
Ω
ϕϕ∗dxdt

< 0.

(iii) can be derived by the same procedure in (ii) and we give the sketches here.
Differentiating both sides of equations in problem (3.2) with respect to β yields

ϕ̇t − d∆ϕ̇− a(t, x)ϕ̇ = µ̇1ϕ+ µ1ϕ̇, t ∈ (0+, τ ]
⋃

(τ+, 1], x ∈ Ω,

ϕ̇(t, x) = 0, t ∈ [0, 1], x ∈ ∂Ω,

ϕ̇(0+, x) = (1 + α)ϕ̇(0, x), x ∈ Ω,

ϕ̇(τ+, x) = −ϕ(τ, x) + (1− β)ϕ̇(τ, x), x ∈ Ω,

ϕ̇(0, x) = ϕ̇(1, x), x ∈ Ω.

(3.11)

By careful calculations similarly as in (ii), we finally obtain

µ̇1 =

1
1−β

∫
Ω
ϕ(0, x)ϕ∗(0, x)dx

(
∫ τ

0+
+
∫ 1

τ+)
∫
Ω
ϕϕ∗dxdt

> 0

since 0 < β < 1.
We finally prove (iv). Differentiating both sides of equations in problem (3.2)

with respect to d yields

ϕ′t − d∆ϕ′ −∆ϕ− a(t, x)ϕ′ = µ′
1ϕ+ µ1ϕ

′, t ∈ (0+, τ ]
⋃

(τ+, 1], x ∈ Ω,

ϕ′(t, x) = 0, t ∈ [0, 1], x ∈ ∂Ω,

ϕ′(0+, x) = (1 + α)ϕ′(0, x), x ∈ Ω,

ϕ′(τ+, x) = (1− β)ϕ′(τ, x), x ∈ Ω,

ϕ′(0, x) = ϕ′(1, x), x ∈ Ω.

(3.12)
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Since

(

∫ τ

0+
+

∫ 1

τ+

)ϕ′tϕ
∗dt = −(

∫ τ

0+
+

∫ 1

τ+

)ϕ′ϕ∗t dt

and ∫
Ω

∆ϕϕ∗dx =

∫
Ω

∆ϕ∗ϕdx,

so multiplying the first equation in (3.12) by ϕ∗ and then integrating both sides of
this equation over (t, x) ∈ ((0+, τ ]

⋃
(τ+, 1])× Ω to conclude

(

∫ τ

0+
+

∫ 1

τ+

)

∫
Ω

(−ϕ′ϕ∗t − ϕ∆ϕ∗ − dϕ′∆ϕ∗ − a(t, x)ϕ′ϕ∗)dxdt

=(

∫ τ

0+
+

∫ 1

τ+

)

∫
Ω

(µ′
1ϕϕ

∗ + µ1ϕ
′ϕ∗)dxdt.

Recalling (3.7), one easily checks

µ′
1 =

−(
∫ τ

0+
+
∫ 1

τ+)
∫
Ω
ϕ∆ϕ∗dtdx

(
∫ τ

0+
+
∫ 1

τ+)
∫
Ω
ϕϕ∗dxdt

=
(
∫ τ

0+
+
∫ 1

τ+)
∫
Ω

∂ϕ∗

∂η
∂ϕ
∂η dxdt

(
∫ τ

0+
+
∫ 1

τ+)
∫
Ω
ϕϕ∗dxdt

> 0,

where η is the outward unit vector of ∂Ω. Therefore, µ1(d, a(t, x), α, β) is nonde-
creasing with respect to d for any given a(t, x), α and β.

4. The dynamical behavior of the solution

Theorem 4.1. If µ1(d, a(t, x), α, β) > 0, then the solution u(t, x) to problem (1.1)
satisfies lim

t→∞
u(t, x) = 0 uniformly for x ∈ Ω.

Proof. Constructing
ũ(t, x) =Me−µ1tϕ(t, x),

where ϕ(t, x) (≤ 1) is a positive eigenfunction of problem (3.2) corresponding to µ1,
and M to be chosen later.

For t ∈ (n+, (n+ τ)]
⋃
((n+ τ)+, (n+ 1)] and x ∈ Ω, careful calculations yield

ũt − d△ũ− a(t, x)ũ+ b(t, x)ũp

=Me−µ1t[−µ1ϕ+ ϕt − d△ϕ− a(t, x)ϕ+ b(t, x)(Me−µ1t)(p−1)ϕp]

=Mpb(t, x)(e−µ1t)pϕp

>0.

Impulsive conditions hold, that is, for x ∈ Ω,

ũ(n+, x) = (1 + α)ũ(n, x)

and
ũ((n+ τ)+, x) = (1− β)ũ(n+ τ, x).

Also, a big enough M can be chosen such that ũ(0, x) = Mϕ(0, x) ≥ u0(x) in
x ∈ Ω. It follows from the comparison principle ( [18] and [16, Lemma 3.1]) that

u(t, x) ≤ ũ(t, x), x ∈ Ω, t > 0.

Since lim
t→∞

ũ(t, x) = 0 by µ1 > 0, it is clear that lim
t→∞

u(t, x) = 0 uniformly for x ∈ Ω.
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Theorem 4.2. Assume that µ1(d, a(t, x), α, β) < 0, for each u0 ∈ C2(Ω) such that
u0(x) ≥, ̸≡ 0 for x ∈ Ω and u0(x) = 0 for x ∈ ∂Ω, the following assertions hold:

(i) periodic problem (3.1) admits a unique solution U(t, x);

(ii) the solution u(t, x) to (1.1) satisfies limm→∞ u(t + m,x) = U(t, x) for any
t ≥ 0 and uniformly for x ∈ Ω, where U(t, x) is the unique solution defined in
(i).

Proof. (i) The main method is to find an upper and lower solution Ũ and Û to
periodic problem (3.1), respectively.

By Theorem 3.1, there exists a positive constant K := | ln(1+α)(1−β)|+dλ1+
aM such that

ϕt − d∆ϕ = aMϕ−Kϕ+ µ△
1 ϕ

with µ△
1 := µ△

1 (d, aM −K,α, β) > 0. Next, define

Ωε :={x ∈ Ω : dist (x, ∂Ω) > ε}, χΩε
(x)=1 forx ∈ Ωε andχΩε

(x)=0 forx ∈ Ω/Ωε},

and (φ, µ△
1,ε) be the eigenfunction pair with max(t,x)∈[0,1]×Ω φ(t, x) = 1, satisfying

φt − d∆φ = (aM −KχΩε
)φ+ µ△

1,εφ.

Since µ△
1 > 0, we can choose ε sufficiently small such that µ△

1,ε := µ△
1,ε(d, a

M −
KχΩε

, α, β) > 0.
Now, we define

Ũ =Mφ,

where M is sufficiently big and chosen to be later. We otain

Ũt − d∆Ũ − a(t, x)Ũ + b(t, x)Ũp

=Mφt − dM∆φ−Ma(t, x)φ+ b(t, x)(Mφ)p

>Ũ [µ△
1,ε −KχΩε

+ bm(Mφ)(p−1)]

>Ũ [−KχΩε + bm(Mφ)(p−1)]

≥0

provided that M ≥ K/(bm min[0,1]×Ωε
[φ(p−1)(t, x)])1−p.

Moreover, we have

Ũ(0+, x)− (1 + α)Ũ(0, x) = 0, Ũ(τ+, x)− (1− β)Ũ(τ, x) = 0,

so Ũ is the upper solution, which satisfies

Ũt ≥ d∆Ũ + a(t, x)Ũ − b(t, x)Ũp, t ∈ (0+, τ ]
⋃

(τ+, 1], x ∈ Ω,

Ũ(t, x) = 0, t > 0, x ∈ ∂Ω,

Ũ(0, x) = Ũ(1, x), x ∈ Ω,

Ũ(0+, x)− (1 + α)Ũ(0, x) = 0, x ∈ Ω,

Ũ(τ+, x)− (1− β)Ũ(τ, x) = 0, x ∈ Ω.
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In what follows, let us consider a lower solution. Define

Û(t, x) =



εϕ(0, x), t = 0, x ∈ Ω,

ε
ρ1

1− β
ϕ(0+, x), t = 0+, x ∈ Ω,

ε
ρ1

1 + α
ϕ(τ+, x), t = τ+, x ∈ Ω,

ε
ρ1

1− β
e

−µ1
2 tϕ(t, x), t ∈ (0+, τ ]

⋃
(τ+, 1], x ∈ Ω,

where ϕ is positive eigenfunction related to the principal eigenvalue µ1 of problem
(3.2) with max(t,x)∈[0,1]×Ω ϕ(t, x) = 1, where ε is sufficiently small positive constant.

To make sure that Û(0, x) = Û(1, x), we have ρ1 = (1− β)e
µ1
2 , and 0 < ρ1 < 1− β.

It can be derived that

Ût − d∆Û − a(t, x)Û + b(t, x)Ûp

≤Û [
µ1

2
+ bM (ε

ρ1
1− β

e
−µ1

2 tϕ)(p−1)]

≤0.

Moreover, impulsive conditions satisfy

Û(0+, x)− (1 + α)Û(0, x)

=ε
ρ1

1− β
ϕ(0+, x)− (1 + α)εϕ(0, x)

=ε
ρ1

1− β
(1 + α)ϕ(0, x)− (1 + α)εϕ(0, x)

<ε(1 + α)ϕ(0, x)− (1 + α)εϕ(0, x)

=0

and

Û(τ+, x)− (1− β)Û(τ, x)

=ε
ρ1

1 + α
ϕ(τ+, x)− (1− β)ε

ρ1
1− β

e
−µ1

2 τϕ(τ, x)

=ερ1(1− β)ϕ(τ, x)[
1

1 + α
− 1

1− β
e

−µ1
2 τ ]

≤0

since 1
1−β e

−µ1
2 τ > 1

1−β > 1
1+α . Therefore, Û(t, x) is a lower solution to periodic

problem (3.1).

By defining Ū (0) = Ũ and U (0) := Û , we have

U (0)(t, x) ≤ U(t, x) ≤ Ū (0)(t, x), t ≥ 0, x ∈ Ω.

We now construct two iteration sequences for {Ū (n)} and {U (n)} satisfying

Ū
(n)
t − d∆Ū (n) +KŪ (n)

=KŪ (n−1) + a(t, x)Ū (n−1) − b(t, x)(Ū (n−1))p, t ∈ (0+, τ ]
⋃

(τ+, 1], x ∈ Ω,

U
(n)
t − d∆U (n) +KU (n)

=KU (n−1) + a(t, x)U (n−1) − b(t, x)(U (n−1))p, t ∈ (0+, τ ]
⋃

(τ+, 1], x ∈ Ω,

Ū (n)(t, x) = U (n)(t, x) = 0, t ∈ [0, 1], x ∈ ∂Ω
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with periodic conditions

Ū (n)(0, x) = Ū (n−1)(1, x), U (n)(0, x) = U (n−1)(1, x), x ∈ Ω, (4.1)

and impulsive conditions

Ū (n)(0+, x) = (1 + α)Ū (n−1)(1, x), U (n)(0+, x) = (1 + α)U (n−1)(1, x) (4.2)

and

Ū (n)(τ+, x) = (1− β)Ū (n−1)(τ + 1, x), U (n)(τ+, x) = (1− β)U (n−1)(τ + 1, x)

for x ∈ Ω, where K = max[0,1]×Ω[−a(t, x)+pb(t, x)Ũp−1] ensuring the monotonicity

of the function Kz + a(t, x)z − b(t, x)zp with z.
Since

Û ≤ U (k) ≤ U (k+1) ≤ Ū (k+1) ≤ Ū (k) ≤ Ũ ,

we obtain
lim
k→∞

Ū (k) = Ū∗ and lim
k→∞

U (k) = U∗,

by limiting in (4.1), we can see that Ū∗ and U∗ are two periodic solutions to periodic
problem (3.1), satisfying

Û ≤ U (k) ≤ U (k+1) ≤ U∗ ≤ Ū∗ ≤ Ū (k+1) ≤ Ū (k) ≤ Ũ .

For the uniqueness of the periodic solution, suppose that U1 and U2 are two
solutions of problem (3.1) and define

S = {s ∈ [0, 1], sU1 ≤ U2, t ∈ [0, 1], x ∈ Ω}.

By using the fact that f(u)/u is strictly decreasing with respect to v in [0, max
[0,1]×Ω

U2],

where f(v) = a(t, x)u−b(t, x)up, we can prove that 1 ∈ S by contradiction similarly
as in [16, Theorem 3.4], therefore U1 ≤ U2. On the hand, we have U2 ≤ U1 and we
arrive the uniqueness.

(ii) Without loss of generality, we assume that u(0, x) > 0 in Ω, otherwise, we
use t = 1 as the initial time. It follows from the initial iteration in (i) that

U (0)(t, x) ≤ u(t, x) ≤ Ū (0)(t, x), t ≥ 0, x ∈ Ω.

Also,
U (1)(0, x) = U (0)(1, x) ≤ u(1, x) ≤ Ū (0)(1, x) = Ū (1)(0, x)

for x ∈ Ω.
It is clear by the iteration process that

U (1)(0+, x) = (1 + α)U (0)(1, x)

≤ (1 + α)u(1, x)

= u(1+, x)

≤ (1 + α)Ū (0)(1, x)

= Ū (1)(0+, x),
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and

U (1)(τ+, x) =(1− β)U (0)(τ + 1, x)

≤(1− β)u(τ + 1, x)

=u(τ+ + 1, x)

≤(1− β)Ū (0)(τ + 1, x)

=Ū (1)(τ+, x)

for x ∈ Ω. Thus, U (1)(t, x) ≤ u(t+ 1, x) ≤ Ū (1)(t, x) holds for t ∈ (0+, τ ]
⋃
(τ+, 1]

and x ∈ Ω by comparison argument, and induction asserts that

U (1)(t, x) ≤ u(t+ 1, x) ≤ Ū (1)(t, x)

for t ≥ 0 and x ∈ Ω. Similarly, we can conclude that for any m,

U (m)(t, x) ≤ u(t+m,x) ≤ Ū (m)(t, x), t ≥ 0, x ∈ Ω

by iteration. Therefore, lim
m→∞

U (m) and lim
m→∞

Ū (m) exist. Also, lim
m→∞

U (m)(t, x) =

lim
m→∞

Ū (m)(t, x) = U(t, x) by the uniqueness of the solution to problem (3.1), which

ends the proof.
Combining Theorems 3.2, 4.1 and 4.2 gives the following corollary.

Corollary 4.3. Assume that a(x, t) := a(t) and the period 1 is replaced by T . Let
u(t, x) be the solution to problem (1.1).

(i) If dλ1T > ln[(1 + α)(1 − β)] +
∫ T

0
a(t)dt, then lim

t→∞
u(t, x) = 0 uniformly for

x ∈ Ω̄;

(ii) if dλ1T < ln[(1+α)(1− β)] +
∫ T

0
a(t)dt, then limm→∞ u(t+mT, x) = U(t, x)

for any t ≥ 0 and uniformly for x ∈ Ω, where U(t, x) is the unique solution
of the periodic problem (3.1).

Our result shows that large diffusion rate (d), impulsive timing (T ) and harvest-
ing rate (β) all are unfavorable to the survival of species, while large birth rate (α)
and habitat (which means that λ1 is small) are beneficial for the survival of species.
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