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Abstract This paper is devoted to providing a new approach to solve time
fractional convection-diffusion equation (TFCDE) by utilizing Clique poly-
nomials of the Cocktail party graph and collocation points. The main ad-
vantage of this method is converting the TFCDE into a system of ordinary
fractional differential and algebraic equations. At this stage, Residual power
series method (RPSM) is used to determine the unknown functions of the ob-
tained system. Convergence analysis is given to substantiate the importance
of the suggested method. Two numerical examples are presented to illustrate
the implementation and effectiveness of the proposed method.
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1. Introduction

Last couple of decades, modelling scientific processes by fractional differential equa-
tions gains influential attention in various areas of science such as nonlinear waves,
nuclear physics, thermodynamics, image and signal processing, visco-elasticity,
acoustics, optics, aerodynamics, etc. [23]. As a result, fractional calculus becomes
an essential branch of mathematics, physics and engineering. The fractional calcu-
lus contains arbitrary non-integer order of differentiation and integration. It pro-
vides various numerous a substantial features to be used in the analysis of miscel-
lanous real-world phenomena. For instance, their non-local property plays a leading
role in the modelling of memory-dependent phenomena such as porous media and
anomalous diffusion [4, 13, 25, 26]. The mathematical models with fractional differ-
ential equations reflect the hereditary and memory of the phenomena [2, 18, 21, 28]
which makes them more valuable compare to ordinary differential equations. A
variety of fractional derivatives such as Grünwald-Letnikov, Riemann–Liouville,
Caputo, Caputo-Fabrizio, Atangana-Baleanu Caputo type, Atangana-Baleanu Rie-
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mann–Liouville type, etc. [7, 24] have been defined and used in the modelling of
scientific processes by fractional differential equations based on their properties.

In large number of areas in science and engineering such as transport of mass
and energy, weather prediction, dispersion of chemicals in reactors, the convection-
diffusion equations [6, 20, 29] is an important tool to model scientific processes.
Special polynomials such as Bernoulli polynomials, Legendre polynomials, Hermite
polynomials, Chebyshev polynomials etc. [1, 8, 17, 27] play a substantial role to
establish the solutions of fractional differential equations. They also form a basis
for a special function spaces in which the solutions of the differential equations
are constructed in series form. Therefore, utilizations of these polynomials arise in
numerous fields of science to develop new methods for solving any kind of fractional
differential equations. Some polynomials having orthogonality property attracts the
attention of many researchers since the computation is easier with them.

Graphs are crucial tools to model various processes in real-world. Even though
graphs provide single dimensional objects, it can be used in higher dimensional
spaces in diverse fields. Graph theory is a combination of diverse branches of math-
ematics such as numerical analysis, matrix theory, topology, group theory, set the-
ory, probability and combinatorics. In the development of numerical methods for
attaining the solution of fractional differential equations a good many graph polyno-
mials such as Clique polynomial, Characteristic polynomial, matching polynomials,
Tutte polynomials, etc. [19, 22] have been used.

In the present work, we use the clique polynomial of the cocktail party graph
instead of the clique polynomial of the complete graph to obtain the solution of
following TFCDE [10]:

Dα
t u(x, t) + b(x)ux(x, t) + c(x)uxx(x, t) =f(x, t), 0 ≤ x ≤ 1, 0 ≤ t ≤ T (1.1)

with the initial and the boundary conditions

u(x, 0) = ϕ(x), 0 ≤ x ≤ 1, (1.2)

u(0, t) = µ1(t), u(1, t) = µ2(t), 0 ≤ t ≤ T, (1.3)

where f(x, t) represents the source function and, Dα
t u(x, t) is Caputo’s derivative

of order m− 1 < α ≤ m,m ∈ N .

2. Preliminaries

In this section, fundamental definitions and notions are presented.

Definition 2.1. The Riemann-Liouville integral for α is [3, 9, 12,16]:

Jαf(x) =


1

Γ(α)

∫ x

0

(x− τ)α−1f(τ)dτ, α > 0,

f(x), α = 0.

(2.1)

Definition 2.2. The αth order fractional derivative in Caputo sense is given by
[3, 9, 12,16]

Dαf(x) =


1

Γ(m− α)

∫ x

0

(x− τ)m−α−1f (m)(τ)dτ, m− 1 < α < m, m ∈ N,

d(m)

dx(m)
f(x), α = m.

(2.2)
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Definition 2.3. A power series expansion of the form

∞∑
m=0

cm(t− t0)
mα = c0 + c1(t− t0)

α + c2(t− t0)
2α + ..., (2.3)

0 ≤ m− 1 < α ≤ m, t ≥ t0

is called fractional power series about t = t0 [12].

3. Clique polynomial of cocktail party graph
(CCPG)

In a complete subgraph, the number of cliques plays a vital role. The maximal
clique G is defined as the highest clique in a graph G. A clique of size m is defined
as the maximal set containing nodes at a distance not more than m. A maximal
clique have the greatest possible number of vertices. In other words a maximal
clique can not be extended to a larger clique by adding new vertex.

In a connected graph G, the clique polynomial is given in the following form:

C(G;x) =a0(x) +

ρ(G)∑
θ=1

aθx
θ (3.1)

where aθ represents total θ cliques in G, the constant a0(x) denotes the total zero
cliques in G. Moreover, ρ(G) denotes the maximal clique. The Clique polynomial
of the mth- order Cocktail party graph is obtained by substituting ρ(G) = m in
(3.1)

C(Km(2);x) =(1 + 2x)m (3.2)

whereKm(2) is the notation of complete cocktail party graph withm-partite. Notice
that placing the values of aθ in (3.1) leads to Eq. (3.2) [14]. A Cocktail graph
have paired nodes on two rows and unpaired nodes are connected with straight
lines. Therefore the distance among nodes are transitive and regular. Moreover
they have antipodal feature. They are regarded as dual graph of the hypercube or
complement of the ladder rung graph. Clique polynomials are not orthogonal but
the clique polynomials of the cocktail party graph are orthogonal and the solution
can be written in the series form in terms of clique polynomials of the cocktail party
graph [5, 11, 15]. In other words, the exact solution can be constructed in terms of
clique polynomials of the cocktail party graph unlike the clique polynomials.

4. Convergence analysis

Theorem 4.1. Let Rn be the polynomial space of degree n + 1 over the field R.
The solution F (x, t) : [a, b]× [0, T ] → Rn of TFCDE is given as follows:

F (x, t) =

∞∑
m=1

am(t)C(Km(2);x) (4.1)
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Proof. Let Rn is the polynomial space of degree n + 1 over the field R, and
F (x, t) : [a, b] → Rn is a solution of TFCDE of degree at most n. Then there
is a basis B = C(K1(2);x), C(K2(2);x), . . . , C(Kn(2);x), C(Kn+1(2);x), containing
orthogonal polynomials of clique cocktail party graph (CCPG) polynomials, where
C(K1(2);x), C(K2(2);x), . . . , C(Kn(2);x), C(Kn+1(2);x) are CCPG polynomials
of degree 0, 1, 2, . . . , n respectively. For fixed n,

F (x, t) =

n+1∑
m=1

am(t)C(Km(2);x) (4.2)

is a linear combination of elements of B. By equating the coefficients of the same
degree of x on both sides, we get the values of am(t). Hence F (x, t) is approximated
precisely as a linear combination of CCPG polynomials.

Theorem 4.2. Let F (x, t) be the solution of TFCDE, which is a smooth real-valued
bounded function on [a, b] × [0, T ]. L2[a, b] is the space generated by B, then the
orthogonal CCPG polynomials expansion of F (x, t) converges to it.

Proof. Let us assume

F (x, t) =

∞∑
m=1

am(t)C(Km(2);x) (4.3)

truncation of it leads to the following equation, we get,

F (x, t) =

n+1∑
m=1

am(t)C(Km(2);x) (4.4)

where, am(t) =< F (x, t), C(Km(2);x) >, here < . > denote inner product operator.
Then

am(t) =

∫ b

a

F (x, t)C(Km(2);x)dx. (4.5)

Then,∫ b

a

inf
t
F (x, t)C(Km(2);x)dx ⩽ am(t) ⩽

∫ b

a

sup
t
F (x, t)C(Km(2);x)dx. (4.6)

By generalized mean value theorem, the following inequalities are obtained

inf
t
F (x0, t)

∫ b

a

C(Km(2);x)dx ⩽ am(t) ⩽ sup
t
F (x1, t)

∫ b

a

C(Km(2);x)dx, (4.7)

for some x0, x1. Choose,
∫ b

a
C(Km(2);x)dx = µ and F is bounded by some real

constant K, then we get, |am(t)| ⩽ |µK|. Therefore
∑
ai(t) converges absolutely.

Hence a linear combination of F (x, t), through the basis element of B, converges to
it.
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5. Implementation of the presented method

In order to construct the approximate solution u(x, t) for the problem (1.1)-(1.3)
by the sets of special polynomials as

∞∑
i=0

ai(t)C(Ki(2);x) (5.1)

we follow the steps below:

Step 1. Plugging the mth degree approximation of Eq.(5.1) into the Eq.(1.1) leads
to the following equation:

m∑
i=0

Dα
t ai(t)C(Ki(2);x) + b(x)

m∑
i=0

ai(t)C
′(Ki(2);x) + c(x)L

m∑
i=0

ai(t)C
′′(Ki(2);x)

=f(x, t), n− 1 < α ⩽ n. (5.2)

Step 2. Collocating Eq.(5.2) at the nodes xk = 1
2 +

1
2cos(

kπ
m ), k = 0, 1, ...m− 1, we

have a system of fractional ordinary differential equations:

m∑
i=0

Dα
t ai(t)C(Ki(2);xk) + b(xk)

m∑
i=0

ai(t)C
′(Ki(2);xk)

+ c(xk)L

m∑
i=0

ai(t)C
′′(Ki(2);xk)

=f(xk, t), n− 1 < α ⩽ n. (5.3)

Step 3. Plugging the mth degree approximation of Eq.(5.1) into in the initial
and boundary conditions Eq.(1.2)-(1.3) leads to the following a system of algebraic
equations, we can obtain ([α] + 1) equations as follows:

m∑
i=0

ai(0)C(Ki(2);x) = ϕ(xk),

m∑
i=0

ai(t)C(Ki(2); 0) = µ1(t), (5.4)

m∑
i=0

ai(t)C(Ki(2); 1) = µ2(t).

Step 4. As a result, we have a system including fractional ordinary differential
and algebraic equations. Solving this system by RPSM yields unknown functions
ai(t), i = 0, 1, 2...m which are taken into account to form the approximate solution
um(x, t).

6. Special elucidative examples

The primary aim of this section is to illustrate the implementation of the method
by presented examples and check their accuracy.
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Table 1. The absolute error at T = 0.1 and α = 0.7, 0.9, 0.95, respectively for Example 6.1.

α = 0.7 α = 0.9 α = 0.95

x m = 6 [10] Present method m = 6 [10] Present method m = 6 [10] Present method

0.1 3.0250e-03 6.9389e-17 2.4473e-03 2.7756e-17 2.3521e-03 4.1633e-17

0.2 5.8222e-03 2.7756e-17 4.7146e-03 2.7756e-17 4.5138e-03 5.5511e-17

0.3 8.1614e-03 2.7756e-16 6.6114e-03 2.2204e-16 6.3227e-03 1.6653e-16

0.4 9.8394e-03 0 7.9728e-03 5.5511e-17 7.6213e-03 1.1102e-16

0.5 1.0675e-02 1.1102e-16 8.6566e-03 2.2204e-16 8.2740e-03 0

0.6 1.0492e-02 1.6653e-16 8.5537e-03 5.5511e-17 8.1765e-03 1.1102e-16

0.7 9.3727e-03 2.7756e-16 7.5997e-03 3.8858e-16 7.2674e-03 1.1102e-16

0.8 7.1396e-03 0 5.7900e-03 1.1102e-16 5.5422e-03 3.8858e-16

0.9 3.9436e-03 1.1102e-16 3.1971e-03 1.6653e-16 3.0699e-03 4.1633e-16

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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Figure 1. The graph of exact and numerical solution for various α values, (m = 3 and T = 0.1) for
Example 6.1.

Example 6.1. Consider the following time fractional convection-diffusion equation:

Dα
t u(x, t) + xux − uxx(x, t) = f(x, t), 0 < α ⩽ 1, x ∈ (0, 1)× (0, 1] (6.1)

with initial and boundary conditions

u(x, 0) = x− x3, (6.2)

u(0, t) = u(1, t) = 0, (6.3)

where f(x, t) = Γ(1+2α)
Γ(1+α tα(x− x3) + (1 + tα)(7x− 3x3).

The exact solution of Example 6.1 is u(x, t) = (1 + t2α)(x − x3). The absolute
errors at T = 0.1 obtained by proposed method are given in Table 1 for α =
0.7, 0.9, 0.95, respectively. In Figure 1, the graphs of exact and numerical solutions
are presented for various values of α at T = 0.1 with m = 3. It is clear from Figure
1 that numerical results are in good agreement with exact solution.

Example 6.2. Consider the following time fractional convection-diffusion equation
in the following form:

Dα
t u(x, t) + xux(x, t) + uxx(x, t) = f(x, t), 0 < α ≤ 1, x ∈ (0, 1)× (0, 1] (6.4)
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Table 2. The absolute error at T = 0.5 and α = 0.5 for Example 6.2.

α = 0.5

x m = 5 [10] Present method

0.1 7.964e-06 0

0.2 3.912e-06 0

0.3 6.162e-06 0

0.4 5.953e-06 0

0.5 2.103e-06 0

0.6 7.639e-06 0

0.7 1.967e-06 0

0.8 8.103e-06 0

0.9 6.019e-06 0

with initial and boundary conditions

u(x, 0) = x2, (6.5)

u(0, t) = 2
Γ(1 + α)

Γ(1 + 2α
t2α, (6.6)

u(1, t) = 1 + 2
Γ(1 + α)

Γ(1 + 2α
t2α, (6.7)

where f(x, t) = 2tα + 2x2 + 2.

The exact solution of Example 6.2 is u(x, t) = x2 + 2 Γ(1+α)
Γ(1+2α t

2α. The absolute

errors at T = 0.5 obtained by proposed method are given in Table 1 for α = 0.5,
respectively. In Figure 2, the graphs of exact and numerical solutions are presented
for various values of α at T = 0.5 with m = 2. It is clear from Figure 2 that
numerical results are in great agreement with exact solution.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.5

1

1.5

2

Figure 2. The graph of numerical and exact solution for α = 0.5 at T = 0.5 for Example 6.2.
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7. Conclusions

In this research, a new approach is developed by means of Clique polynomials and
collocation points to establish the solution of TFCDE. First, TFCDE is reduced into
a system of ordinary fractional differential and algebraic equations which allows us
to acquire the solution without any difficulty. Later, utilization of RPSM let us to
obtain the solution of the system. Convergence analysis is also presented to demon-
strate significance of the proposed approach. Implementation of this approach is
demonstrated by presenting two numerical examples which shows the effectiveness
and accuracy of the suggested method.

In the future work, cocktail party graph with various polynomials will be used
together to solve diverse nonlinear fractional problems. Moreover, RPSM will be
changed by another numerical or approximate method to construct the solution of
the problem.
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