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FINITE SPECTRUM OF STURM-LIOUVILLE
PROBLEMS WITH N TRANSMISSION

CONDITIONS AND SPECTRAL PARAMETERS
IN THE BOUNDARY CONDITIONS∗

Junwei Zhu1,†, Lina Gu1 and Shengbiao Li2

Abstract In this paper, we mainly study the finite spectrum of Sturm-
Liouville problems with n transmission conditions and spectral parameters
in the boundary conditions. For any positive integer n and a set of positive
integers mi, i = 0, 1, · · · , n, it has at most m0+m1+ · · ·+mn+2n+1 eigenval-
ues. And further we show that these m0 +m1 + · · ·+mn +2n+1 eigenvalues
can be distributed arbitrarily throughout the complex plane in the non-self-
adjoint case and anywhere along the real line in the self-adjoint case. The key
to this analysis is an iterative construction of the characteristic function, the
main tool used in this paper is Rouche’s theorem and iterative construction of
initial value.
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problems, characteristic function.
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1. Introduction

Sturm-Liouville problems (SLPs for short) [14,15,17] with transmission conditions
and spectral parameters in the boundary conditions have always been an important
research topic in mathematical physics. Such a problem connected with many
assortment of physics problems, such as heat conduction and the chord vibration
of the boundary on the slider.

As is well-known, the classic Sturm-Liouville theory [22] states that the spectrum
of a regular or singular, self-adjoint SLP is unbounded and therefore infinite. This
result is generally established under the assumption that the leading cofficient p and
the weight function w are both positive. Atkinson in his book [8] studied that if the
cofficients of Sturm-Liouville equation satisfy some conditions, it may have finite
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eigenvalues, but he did not elaborate with an example. In 2001, Kong et al. [14]
constructed a class of SLP with finite eigenvalues. In 2011, Ao et al. [6] obtained
that the following regular SLP with a transmission condition

− (py′)′ + qy = λwy, t ∈ J,

AY (a) +BY (b) = 0,

CY (c−) +DY (c+) = 0

has exactly n eigenvalues, where n is positive integer and n is connected with the
partition of the interval J = (a, c) ∪ (c, b), A,B,C and D are all matrices, and
the coefficients satisfy the minimal conditions r = 1

p , q, w ∈ L(J, C). Their
technique was a combination of the iterative construction of characteristic function
and the fundamental theorem of Algebra. In 2013, by applying the iteration of
the characteristic function and the fundamental theorem of Algebra, Ao et al. [7]
obtained that the following regular SLP with a transmission condition and spectral
parameters in the boundary conditions

− (py′)′ + qy = λwy, t ∈ J,

AλY (a) +BλY (b) = 0,

CY (c−) +DY (c+) = 0

has at most m + n + 4 eigenvalues, where m and n are positive integer, and m,n
are connected with the partition of the interval J = (a, c) ∪ (c, b). It is divided
into a = a0 < a1 < a2 < · · · < a2m < a2m+1 = c, c = b0 < b1 < b2 < · · · <
b2n < b2n+1 = b. Recently, Xu et al. [21] researched that the following SLP with n
transmission conditions 

− (py′)′ + qy = λwy, t ∈ J,

AY (a) +BY (b) = 0,

CiY (ci−) +DiY (ci+) = 0

has exactly
n+1∑
i=1

mi + n+ 1 eigenvalues for any positive integer n and a set of positive

integers mi, i = 1, 2, · · · , n+1, where mi and n are connected with the partition of
the interval J = (a, c1)∪ (c1, c2)∪ · · ·∪ (cn, b). They used similar tools to [7]. These
results indicate the existence of finite spectrum of SLP. It also should be pointed
out that although many excellent achievements have been made in researches on
the finite spectrum of SLP, such as literature [7,14,15,18–20,22] and its references,
but the conditions involved are relatively simple. It is worth mentioning that some
scholars have done outstanding work on boundary value problems of differential
equations with finite spectrum [1, 4, 5, 9–11, 13, 16, 22, 23]. In addition, for other
articles on whether boundary value problems of differential equations have finite
spectrum, please refer to Ao and Sun’s articles [2,3]. Motivated and inspired by the
above-mentioned works, in this paper, we consider the following SLP

− (py′)′ + qy = λwy, (1.1)

AλY (a) +BλY (b) = 0, (1.2)

CiY (ci−) +DiY (ci+) = 0, (1.3)
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where Y =

 y

py′

 , y = y(t), t ∈ J = (a, c1) ∪ (c1, c2) ∪ ... ∪ (cn, b), −∞ < a < b <

+∞, ci ∈ (a, b), Ci, Di ∈M2(R), det(Ci) = ρi > 0, det(Di) = θi > 0, i = 1, 2, · · · , n.

Aλ =

λα′
1 − α1 −λα′

2 + α2

0 0

 , Bλ =

 0 0

λβ′
1 + β1 −λβ′

2 − β2

 , αj , α
′
j , βj , β

′
j ∈

R, j = 1, 2, and satisfies det

α1 α2

α′
1 α

′
2

 ̸= 0, det

β1 β2

β′
1 β

′
2

 ̸= 0. λ is the spectral

parameter. The coefficients satisfy the minimal conditions

r =
1

p
, q, w ∈ L(J, C), (1.4)

where L(J, C) denotes the complex-valued functions which are Lebesgue integrable
on J . Condition (1.4) is minimal in the sense that it is necessary and sufficient for
all initial value problems of to have unique solutions on [a, b]; see [12]. In this paper,
we assume that condition (1.4) holds and we will prove that SLP (1.1)∼(1.3) still
has finite spectrum.

2. Notation and preliminaries

In this section, we let u = y, v = py′. Then (1.1) can be transferred into the
following first order system

u′ = rv, v′ = (q − λw)u. (2.1)

This can be written in the following matrix formu

v

′

=

 0 r

q − λw 0

u

v

 .

Definition 2.1. By a trivial solution of equation (1.1) on some interval we mean
a solution y which is identically zero and whose quasi-derivative v = py′ is also
identically zero on this interval.

In this part, we give some related concepts to introduce Lemma 2.1.
Let u1(t, λ), v1(t, λ) be two linearly independent solutions of equation (1.1) on

(a, c1) satisfying the following initial conditions

u1(a, λ) = 1, (pu′1)(a, λ) = 0, v1(a, λ) = 0, (pv′1)(a, λ) = 1.

Now we can define the solutions ui+1(t, λ), vi+1(t, λ)(i = 1, 2, ..., n) of equation (1.1)
on (ci, ci+1)(cn+1 = b) satisfying the following initial conditions

ui+1(ci+, λ) = gi,11ui(ci−, λ) + gi,12(pu
′
i)(ci−, λ),

(pu′i+1)(ci+, λ) = gi,21ui(ci−, λ) + gi,22(pu
′
i)(ci−, λ),

vi+1(ci+, λ) = gi,11vi(ci−, λ) + gi,12(pv
′
i)(ci−, λ),
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(pv′i+1)(ci+, λ) = gi,21vi(ci−, λ) + gi,22(pv
′
i)(ci−, λ).

For convenience, we let

ϕ11(t, λ) =

{
u1(t, λ), t ∈ (a, c1),

ui+1(t, λ), t ∈ (ci, ci+1)(i = 1, 2, ..., n, cn+1 = b),

ϕ12(t, λ) =

{
v1(t, λ), t ∈ (a, c1),

vi+1(t, λ), t ∈ (ci, ci+1)(i = 1, 2, ..., n, cn+1 = b),

ϕ21(t, λ) =

{
(pu′1)(t, λ), t ∈ (a, c1),

(pu′i+1)(t, λ), t ∈ (ci, ci+1)(i = 1, 2, ..., n, cn+1 = b),

ϕ22(t, λ) =

{
(pv′1)(t, λ), t ∈ (a, c1),

(pv′i+1)(t, λ), t ∈ (ci, ci+1)(i = 1, 2, ..., n, cn+1 = b).

Then

Φ(t, λ) =

ϕ11(t, λ) ϕ12(t, λ)

ϕ21(t, λ) ϕ22(t, λ)

 , t ∈ J.

So Φ(t, λ) = [ϕef (t, λ)](e, f = 1, 2, t ∈ J) denotes the fundamental matrix of the
system (2.1) determined by the initial condition Φ(a, λ) = I.

Lemma 2.1. The complex number λ is an eigenvalue of the SLP (1.1)∼(1.3) if and
only if

△(λ) = det[Aλ +BλΦ(b, λ)] = 0. (2.2)

Particularly, △(λ) can be written as

△(λ) = h11(λ)ϕ11(b, λ)+h12(λ)ϕ12(b, λ)+h21(λ)ϕ21(b, λ)+h22(λ)ϕ22(b, λ), (2.3)

where

H(λ) =

h11(λ) h12(λ)

h21(λ) h22(λ)


:=

 (λα′
2 − α2)(λβ

′
1 + β1) (λα′

1 − α1)(λβ
′
1 + β1)

−(λα′
2 − α2)(λβ

′
2 + β2) −(λα′

1 − α1)(λβ
′
2 + β2)

 .

Proof. If λ is an eigenvalue of the SLP (1.1)∼(1.3), then there exists a non-trivial
solution

y(t, λ) =


k1u1 + l1v1, t ∈ (a, c1),

k2u2 + l2v2, t ∈ (c1, c2),

...

kn+1un+1 + ln+1vn+1, t ∈ (cn, b)

(2.4)

of equation (1.1), where ki, li(i = 1, 2, ..., n+1) are not all zero. Since y(t, λ) satisfies
(1.2), we have

AλΦ(a, λ)

k1

l1

+BλΦ(b, λ)

kn+1

ln+1

 = 0. (2.5)
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From (1.3), we get
DiΦ(ci+, λ) = −CiΦ(ci−, λ). (2.6)

When i = 1, we can obtain

C1Φ(c1−, λ)

k1

l1

+D1Φ(c1+, λ)

k2

l2

 = 0,

so

C1Φ(c1−, λ)

k1 − k2

l1 − l2

 = 0.

It means that k1 = k2, l1 = l2. Using the same method we can get the following
results

k1 = k2 = ... = kn+1, l1 = l2 = ... = ln+1,

so we have

AλΦ(a, λ)

k1

l1

+BλΦ(b, λ)

k1

l1

 = 0. (2.7)

Since k1 and l1 are not all zero, then △(λ) = det[Aλ +BλΦ(b, λ)] = 0.
Let △(λ) = 0. Then (2.7) has non-trivial solution. Now we consider the next

initial value problem 
− (py′)′ + qy = λwy, t ∈ J,

y(a, λ) = λα′
2 − α2,

(py′)(a, λ) = λα′
1 − α1,

we have

y(t, λ) = (λα′
2 − α2)ϕ11(t, λ) + (λα′

1 − α1)ϕ12(t, λ), t ∈ J.

Substituting y(t, λ) into (1.2), we have

(λα′
1 − α1)y(a, λ) + (λα′

1 − α1)(py
′)(a, λ)

=(λα′
1 − α1)(λα

′
2 − α2)− (λα′

2 − α2)(λα
′
1 − α1)

=0.

Similarly, we can get

(λβ′
1 + β1)y(b, λ)− (λβ′

2 + β2)(py
′)(b, λ)

=(λβ′
1 + β1)(λβ

′
2 + β2)− (λβ′

2 + β2)(λβ
′
1 + β1)

=0.

So y(t, λ) satisfies (1.2). Recalling that the solution y(t, λ) satisfies (1.3), it’s means
that y(t, λ) is an eigenfunction of the SLP (1.1)∼(1.3) corresponding to eigenvalue
λ. And (2.3) comes from a straightforward computation.

Definition 2.2. The SLP (1.1)∼(1.3), or equivalently (2.1), (1.2), (1.3) is said to
be degenerate if in (2.2) either △(λ) ≡ 0 for all λ ∈ C or △(λ) ̸= 0 for any λ ∈ C.

In the derivation of our main results an important role is played by the “Conti-
nuity Principle” established in Kong et al. See [13].
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3. Statement of the problem

In this section, we assume that there exists a partition of the interval J

a = a0 < a1 < a2 < · · · < a2m0 < a2m0+1 = c1−,
c1+ = c1,0< c1,1< c1,2< · · · < c1,2m1 < c1,2m1+1 = c2−,
· · · ,
cn−1+ = cn−1,0< cn−1,1< cn−1,2< · · · < cn−1,2mn−1 < cn−1,2mn−1+1 = cn−,
cn+ = cn,0< cn,1< cn,2< · · · < cn,2mn < cn,2mn+1 = b,

(3.1)
for some positive integers m0,m1, · · · ,mn, when r(t) =

1
p(t) = 0, such that

∫ a2k+1

a2k

w(t)dt ̸= 0, k = 0, 1, · · · ,m0, t ∈ (a2k, a2k+1),∫ c1,2i+1

c1,2i

w(t)dt ̸= 0, i = 0, 1, · · · ,m1, t ∈ (c1,2i , c1,2i+1 ),

· · · ,∫ cn,2z+1

cn,2z

w(t)dt ̸= 0, z = 0, 1, · · · ,mn, t ∈ (cn,2z , cn,2z+1 ),

(3.2)

and when q(t) = w(t) = 0, we have

∫ a2k+2

a2k+1

r(t)dt ̸= 0, k = 0, 1, · · · ,m0 − 1, t ∈ (a2k+1, a2k+2),∫ c1,2i+2

c1,2i+1

r(t)dt ̸= 0, i = 0, 1, · · · ,m1 − 1, t ∈ (c1,2i+1 , c1,2i+2 ),

· · · ,∫ cn,2z+2

cn,2z+1

r(t)dt ̸= 0, z = 0, 1, · · · ,mn, t ∈ (cn,2z+1 , cn,2z+2 ).

(3.3)

Let 

qk =

∫ a2k+1

a2k

q(t)dt, k = 0, 1, · · · ,m0,

wk =

∫ a2k+1

a2k

w(t)dt, k = 0, 1, · · · ,m0,

rk =

∫ a2k+2

a2k+1

r(t)dt, k = 0, 1, · · · ,m0 − 1,

q1,i =

∫ c1,2i+1

c1,2i

q(t)dt, i = 0, 1, · · · ,m1,

w1,i =

∫ c1,2i+1

c1,2i

w(t)dt, i = 0, 1, · · · ,m1,

r1,i =

∫ c1,2i+2

c1,2i+1

r(t)dt, i = 0, 1, · · · ,m1 − 1,

· · · ,
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qn,z =

∫ cn,2z+1

cn,2z

q(t)dt, z = 0, 1, · · · ,mn,

wn,z =

∫ cn,2z+1

cn,2z

w(t)dt, z = 0, 1, · · · ,mn,

rn,z =

∫ cn,2z+2

cn,2z+1

r(t)dt, z = 0, 1, · · · ,mn − 1.

In the following Lemma and Theorem, we let (3.1)∼(3.3) always hold.

Lemma 3.1. For each λ ∈ C,
Φ(t, λ) = [ϕef (t, λ)](t ∈ (a, c1)) denotes the fundamental matrix of the system

(2.1) determined by Φ(a, λ) = I;
Ψi(t, λ) = [ψi,ef (t, λ)](t ∈ (ci, ci+1), cn+1 = b = cn,2mn+1 , i = 1, 2, ..., n) de-

notes the fundamental matrix of the system (2.1) determined by Ψi(ci+, λ) = I
(here Ψi(ci+, λ) = Ψi(ci,0, λ) = Φ(ci+, λ)).

So we have
(1)

Φ(a1, λ) =

 1 0

q0 − λw0 1

 , (3.4)

Φ(a3, λ) =

1 + (q0 − λw0)r0 r0

ϕ21(a3, λ) 1 + (q1 − λw1)r0

 , (3.5)

where

ϕ21(a3, λ) = (q0 − λw0) + (q1 − λw1) + (q0 − λw0)(q1 − λw1)r0.

In general, for 1 ≤ k ≤ m0,

Φ(a2k+1, λ) =

 1 rk−1

qk − λwk 1 + (qk − λwk)rk−1

Φ(a2k−1, λ). (3.6)

(2)

Ψi(ci,1 , λ) =

 1 0

qi,0 −λwi,0 1

 , (3.7)

Ψi(ci,3 , λ) =

 1 + (qi,0 −λwi,0 )ri,0 ri,0

ψi,21 (ci,3 , λ) 1 + (qi,1 −λwi,1 )ri,0

 , (3.8)

where

ψi,21 (ci,3 , λ) = (qi,0 −λwi,0 ) + (qi,1 −λwi,1 ) + (qi,0 −λwi,0 )(qi,1 −λwi,1 )ri,0 .

In general, for 1 ≤ κ ≤ mi(κ = i, j, ..., z),

Ψi(ci,2κ+1 , λ) =

 1 ri,κ−1

qi,κ −λwi,κ 1 + (qi,κ −λwi,κ )ri,κ−1

Ψi(ci,2κ−1 , λ). (3.9)
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Proof. We can see from the system (2.1) that u is constant on each subinterval
where r identically zero and v is constant on each subinterval where both q and w
are identically zero. The result follows from repeated applications of system (2.1).

Lemma 3.2. For each λ ∈ C,
Φ(t, λ) = [ϕef (t, λ)](t ∈ (a, c1)) denotes the fundamental matrix of the system

(2.1) determined by Φ(a, λ) = I;
Ψi(t, λ) = [ψi,ef (t, λ)](t ∈ (ci, ci+1), cn+1 = b, i = 1, 2, ..., n) denotes the funda-

mental matrix of the system (2.1) determined by Ψi(ci+, λ) = I.
So we have

Φ(b, λ) = Ψn(b, λ)GnΨn−1(cn−, λ)Gn−1Ψn−2(cn−1−, λ) · · ·G1Φ(c1−, λ),

where

Gi = [gi,ef ]2×2(i = 1, 2, ..., n; e, f = 1, 2).

Proof. From (1.3), we know that

CiΦ(ci−, λ) +DiΦ(ci+, λ) = 0,

so

Φ(ci+, λ) = −D−1
i CiΦ(ci−, λ) = GiΦ(ci−, λ),

where

Gi = [gi,ef ]2×2(i = 1, 2, ..., n; e, f = 1, 2).

When i = 1, Ψ1(c1+, λ) = I, combining Lemma 3.1

Ψ1(t, λ) = Φ(t, λ)[G1Φ(c1−, λ)]−1, c1+ ≤ t ≤ c2−,

let t = c2−, then

Ψ1(c2−, λ) = Φ(c2−, λ)[G1Φ(c1−, λ)]−1,

Φ(c2−, λ) = Ψ1(c2−, λ)G1Φ(c1−, λ).

When i = 2, Ψ2(c2+, λ) = I, we find that condition Φ(ci+, λ) = −D−1
i CiΦ(ci−, λ)

= GiΦ(ci−, λ) always holds, so

Ψ2(t, λ) = Φ(t, λ)[G2Φ(c2−, λ)]−1, c2+ ≤ t ≤ c3−,

let t = c3−, then

Ψ2(c3−, λ) = Φ(c3−, λ)[G2Φ(c2−, λ)]−1,

Φ(c3−, λ) = Ψ2(c3−, λ)G2Φ(c2−, λ),
· · · .

By repeated application of the above process, we have

Φ(b, λ) = Ψn(b, λ)GnΨn−1(cn−, λ)Gn−1Ψn−2(cn−1−, λ) · · ·G1Φ(c1−, λ).
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Lemma 3.3. For each λ ∈ C,
Φ(t, λ) = [ϕef (t, λ)](t ∈ (a, c1)) denotes the fundamental matrix of the system

(2.1) determined by Φ(a, λ) = I;
Ψi(t, λ) = [ψi,ef (t, λ)](t ∈ (ci, ci+1), cn+1 = b, i = 1, 2, ..., n) denotes the funda-

mental matrix of the system (2.1) determined by Ψi(ci+, λ) = I.
For Φ(b, λ), we have the following result

ϕ11(b, λ)

=R

n∏
i=1

RiG
∗G∗∗

m0−1∏
k=0

(qk − λwk)

m1−1∏
i=1

(q1,i −λw1,i )

n∏
i=2

[

mi−1∏
j=1

(qi,j −λwi,j )]

+ ϕ′11(b, λ),

ϕ12(b, λ)

=R

n∏
i=1

RiG
∗G∗∗

m0−1∏
k=1

(qk − λwk)

m1−1∏
i=1

(q1,i −λw1,i )

n∏
i=2

[

mi−1∏
j=1

(qi,j −λwi,j )]

+ ϕ′12(b, λ),

ϕ21(b, λ)

=R

n∏
i=1

RiG
∗G∗∗

m0−1∏
k=0

(qk − λwk)

m1−1∏
i=1

(q1,i −λw1,i )

n∏
i=2

[

mi∏
j=1

(qi,j −λwi,j )]

+ ϕ′21(b, λ),

ϕ22(b, λ)

=R

n∏
i=1

RiG
∗G∗∗

m0−1∏
k=1

(qk − λwk)

m1−1∏
i=1

(q1,i −λw1,i )

n∏
i=2

[

mi∏
j=1

(qi,j −λwi,j )]

+ ϕ′22(b, λ),

where

G∗ = g1,12 (qm0
− λwm0

)(q1,0 −λw1,0 ) + g1,11 (q1,0 −λw1,0 )

+ g1,22 (qm0
− λwm0

) + g1,21 ,

G∗∗ =

n∏
i=2

{[gi,11 +gi,12 (qi−1,mi−1
−λwi−1,mi−1

)](qi,0 −λwi,0 )

+ [gi,21 +gi,22 (qi−1,mi−1
−λwi−1,mi−1

)]},

R =

m0−1∏
k=0

rk, Ri =

mi−1∏
j=0

ri,j , ϕ
′
ef (b, λ) = o(R

n∏
i=1

Ri).

Proof. From Lemma 3.1 we know that

Φ(c1−, λ) =Φ(a2m0+1, λ)

=

 1 rm0−1

qm0
− λwm0

1 + (qm0
− λwm0

)rm0−1

Φ(a2m0−1, λ)
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=

 1 rm0−1

qm0 − λwm0 1 + (qm0 − λwm0)rm0−1

 · Φ(a2m0−3, λ)

×

 1 rm0−2

qm0−1 − λwm0−1 1 + (qm0−1 − λwm0−1)rm0−2


=

 θ11 θ12

θ21 θ22

Φ(a2m0−3, λ),

where

θ11 =1 + rm0−1(qm0−1 − λwm0−1)

=rm0−1(qm0−1 − λwm0−1) + o(rm0−1(qm0−1 − λwm0−1)),

θ12 =rm0−2 + rm0−1 + rm0−2rm0−1(qm0−1 − λwm0−1)

=rm0−2rm0−1(qm0−1 − λwm0−1) + o(rm0−2rm0−1(qm0−1 − λwm0−1)),

θ21 =(qm0−1 − λwm0−1) + (qm0 − λwm0) + rm0−1(qm0−1 − λwm0−1)(qm0 − λwm0)

=rm0−1(qm0−1 − λwm0−1)(qm0 − λwm0)

+ o(rm0−1(qm0−1 − λwm0−1)(qm0 − λwm0)),

θ22 =rm0−2(qm0 − λwm0) + 1 + rm0−2(qm0−1 − λwm0−1) + rm0−1(qm0 − λwm0)

+ rm0−2rm0−1(qm0−1 − λwm0−1)(qm0 − λwm0)

=rm0−2rm0−1(qm0−1 − λwm0−1)

× (qm0 − λwm0) + o(rm0−2rm0−1(qm0−1 − λwm0−1)(qm0 − λwm0)),

and

Φ(a2m0−3, λ) =

 1 rm0−3

qm0−2 − λwm0−2 1 + (qm0−2 − λwm0−2)rm0−3

Φ(a2m0−5, λ),

so we have

Φ(c1−, λ) =

 θ11 θ12

θ21 θ22

Φ(a2m0−3, λ)

=

 θ11 θ12

θ21 θ22

 1 rm0−3

qm0−2 − λwm0−2 1 + (qm0−2 − λwm0−2)rm0−3


× Φ(a2m0−5, λ)

=

 η11 η12

η21 η22

Φ(a2m0−5, λ),

where

η11 =θ11 + (qm0−2 − λwm0−2)θ12
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=rm0−2rm0−1(qm0−2 − λwm0−2)(qm0−1 − λwm0−1)

+ o(rm0−2rm0−1(qm0−2 − λwm0−2)(qm0−1 − λwm0−1)),

η12 =rm0−3θ11 + (1 + (qm0−2 − λwm0−2)rm0−3)θ12

=rm0−3rm0−2rm0−1(qm0−2 − λwm0−2)(qm0−1 − λwm0−1)

+ o(rm0−3rm0−2rm0−1(qm0−2 − λwm0−2)(qm0−1 − λwm0−1)),

η21 =θ21 + (qm0−2 − λwm0−2)θ22

=rm0−2rm0−1(qm0−2 − λwm0−2)(qm0−1 − λwm0−1)(qm0
− λwm0

)

+ o(rm0−2rm0−1(qm0−2 − λwm0−2)(qm0−1 − λwm0−1)(qm0
− λwm0

)),

η22 =rm0−3θ21 + (1 + (qm0−2 − λwm0−2)rm0−3)θ22

=rm0−3rm0−2rm0−1(qm0−2 − λwm0−2)(qm0−1 − λwm0−1)(qm0
− λwm0

)

+ o(rm0−3rm0−2rm0−1(qm0−2 − λwm0−2)(qm0−1 − λwm0−1)(qm0
− λwm0

)),

· · · .

By repeated application of the above method, finally we can get

Φ(c1−, λ) =

 ξ11 ξ12

ξ21 ξ22

Φ(a1, λ),

where

ξ11 =

m0−1∏
k=1

rk

m0−1∏
k=1

(qk − λwk) + o(

m0−1∏
k=1

rk

m0−1∏
k=1

(qk − λwk)),

ξ12 =

m0−1∏
k=0

rk

m0−1∏
k=1

(qk − λwk) + o(

m0−1∏
k=0

rk

m0−1∏
k=1

(qk − λwk)),

ξ21 =

m0−1∏
k=1

rk

m0∏
k=1

(qk − λwk) + o(

m0−1∏
k=1

rk

m0∏
k=1

(qk − λwk)),

ξ22 =

m0−1∏
k=0

rk

m0∏
k=1

(qk − λwk) + o(

m0−1∏
k=0

rk

m0∏
k=1

(qk − λwk)).

And

Φ(a1, λ) =

 1 0

q0 − λw0 1

 ,

so

Φ(c1−, λ) =

 ξ11 ξ12

ξ21 ξ22

Φ(a1, λ)

=

 ξ11 ξ12

ξ21 ξ22

 1 0

q0 − λw0 1


=

 ξ11 + ξ12(q0 − λw0) ξ12

ξ21 + ξ22(q0 − λw0) ξ22
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=

ϕ11(c1−, λ) ϕ12(c1−, λ)

ϕ21(c1−, λ) ϕ22(c1−, λ)

 .

It means that

ϕ11(c1−, λ) =
m0−1∏
k=0

rk

m0−1∏
k=0

(qk − λwk) + o(

m0−1∏
k=0

rk

m0−1∏
k=0

(qk − λwk)),

ϕ12(c1−, λ) =
m0−1∏
k=0

rk

m0−1∏
k=1

(qk − λwk) + o(

m0−1∏
k=0

rk

m0−1∏
k=1

(qk − λwk)),

ϕ21(c1−, λ) =
m0−1∏
k=0

rk

m0∏
k=0

(qk − λwk) + o(

m0−1∏
k=0

rk

m0∏
k=0

(qk − λwk)),

ϕ22(c1−, λ) =
m0−1∏
k=0

rk

m0∏
k=1

(qk − λwk) + o(

m0−1∏
k=0

rk

m0∏
k=1

(qk − λwk)),

(3.10)

and

ψ1,11 (c2−, λ) =
m1−1∏
i=0

r1,i

m1−1∏
i=0

(q1,i −λw1,i ) + o(

m1−1∏
i=0

r1,i

m1−1∏
i=0

(q1,i −λw1,i )),

ψ1,12 (c2−, λ) =
m1−1∏
i=0

r1,i

m1−1∏
i=1

(q1,i −λw1,i ) + o(

m1−1∏
i=0

r1,i

m1−1∏
i=1

(q1,i −λw1,i )),

ψ1,21 (c2−, λ) =
m1−1∏
i=0

r1,i

m1∏
i=0

(q1,i −λw1,i ) + o(

m1−1∏
i=0

r1,i

m1∏
i=0

(q1,i −λw1,i )),

ψ1,22 (c2−, λ) =
m1−1∏
i=0

r1,i

m1∏
i=1

(q1,i −λw1,i ) + o(

m1−1∏
i=0

r1,i

m1∏
i=1

(q1,i −λw1,i )).

(3.11)

By repeated application of the above method, then

ψi,11 (ci+1−, λ) =
mi−1∏
j=0

ri,j

mi−1∏
j=0

(qi,j −λwi,j ) + o(

mi−1∏
j=0

ri,j

mi−1∏
j=0

(qi,j −λwi,j )),

ψi,12 (ci+1−, λ) =
mi−1∏
j=0

ri,j

mi−1∏
j=1

(qi,j −λwi,j ) + o(

mi−1∏
j=0

ri,j

mi−1∏
j=1

(qi,j −λwi,j )),

ψi,21 (ci+1−, λ) =
mi−1∏
j=0

ri,j

mi∏
j=0

(qi,j −λwi,j ) + o(

mi−1∏
j=0

ri,j

mi∏
j=0

(qi,j −λwi,j )),

ψi,22 (ci+1−, λ) =
mi−1∏
j=0

ri,j

mi∏
j=1

(qi,j −λwi,j ) + o(

mi−1∏
j=0

ri,j

mi∏
j=1

(qi,j −λwi,j )),

i = 2, 3, · · · , n.
(3.12)

From Lemma 3.2, we have

Φ(cn−, λ) = Ψn−1(cn−, λ)Gn−1Ψn−2(cn−1−, λ) · · ·G1Φ(c1−, λ).
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In combination with (3.10)∼(3.12), and

Φ(c2−, λ) = Ψ1(c2−, λ)G1Φ(c1−, λ),

we can obtain

ϕ11(c2−, λ) = RR1G
∗
m0−1∏
k=0

(qk − λwk)

m1−1∏
i=1

(q1,i −λw1,i ) + ϕ′11(c2−, λ),

ϕ12(c2−, λ) = RR1G
∗
m0−1∏
k=1

(qk − λwk)

m1−1∏
i=1

(q1,i −λw1,i ) + ϕ′12(c2−, λ),

ϕ21(c2−, λ) = RR1G
∗
m0−1∏
k=0

(qk − λwk)

m1∏
i=1

(q1,i −λw1,i ) + ϕ′21(c2−, λ),

ϕ22(c2−, λ) = RR1G
∗
m0−1∏
k=1

(qk − λwk)

m1∏
i=1

(q1,i −λw1,i ) + ϕ′22(c2−, λ),

where

G∗ = g1,12 (qm0
− λwm0

)(q1,0 −λw1,0 ) + g1,11 (q1,0 −λw1,0 )

+ g1,22 (qm0
− λwm0

) + g1,21 ,

R =

m0−1∏
k=0

rk, R1 =

m1−1∏
i=0

r1,i , ϕ
′
ef (c2−, λ) = o(RR1).

Similarly, we know that

Φ(c3−, λ) = Ψ2(c3−, λ)G2Φ(c2−, λ),

so

ϕ11(c3−, λ)

=RR1R2G
∗G2∗

m0−1∏
k=0

(qk − λwk)

m1−1∏
i=1

(q1,i −λw1,i )

m2−1∏
j=1

(q2,j −λw2,j )

+ ϕ′11(c3−, λ),

ϕ12(c3−, λ)

=RR1R2G
∗G2∗

m0−1∏
k=1

(qk − λwk)

m1−1∏
i=1

(q1,i −λw1,i )

m2−1∏
j=1

(q2,j −λw2,j )

+ ϕ′12(c3−, λ),

ϕ21(c3−, λ)

=RR1R2G
∗G2∗

m0−1∏
k=0

(qk − λwk)

m1−1∏
i=1

(q1,i −λw1,i )

m2∏
j=1

(q2,j −λw2,j )

+ ϕ′21(c3−, λ),

ϕ22(c3−, λ)
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=RR1R2G
∗G2∗

m0−1∏
k=1

(qk − λwk)

m1−1∏
i=1

(q1,i −λw1,i )

m2∏
j=1

(q2,j −λw2,j )

+ ϕ′22(c3−, λ),

where

G∗ = g1,12 (qm0
− λwm0

)(q1,0 −λw1,0 ) + g1,11 (q1,0 −λw1,0 )

+ g1,22 (qm0
− λwm0

) + g1,21 ,

G2∗ = [g2,11 +g2,12 (q1,m1
−λw1,m1

)](q2,0 −λw2,0 )

+ [g2,21 +g2,22 (q1,m1
−λw1,m1

)],

R =

m0−1∏
k=0

rk, R1 =

m1−1∏
i=0

r1,i , R2 =

m2−1∏
j=0

r2,j , ϕ
′
ef (c3−, λ) = o(RR1R2),

· · · .

Similarly, because

Φ(b, λ) = Ψn(b, λ)GnΨn−1(cn−, λ)Gn−1Ψn−2(cn−1−, λ) · · ·G1Φ(c1−, λ),

we have

ϕ11(b, λ) =R

n∏
i=1

RiG
∗G∗∗

m0−1∏
k=0

(qk − λwk)

m1−i∏
i=1

(q1,i −λw1,i )

n∏
i=2

[

mi−1∏
j=1

(qi,j −λwi,j )]

+ ϕ′11(b, λ),

ϕ12(b, λ) =R

n∏
i=1

RiG
∗G∗∗

m0−1∏
k=1

(qk − λwk)

m1−i∏
i=1

(q1,i −λw1,i )

n∏
i=2

[

mi−1∏
j=1

(qi,j −λwi,j )]

+ ϕ′12(b, λ),

ϕ21(b, λ) =R

n∏
i=1

RiG
∗G∗∗

m0−1∏
k=0

(qk − λwk)

m1−i∏
i=1

(q1,i −λw1,i )

n∏
i=2

[

mi∏
j=1

(qi,j −λwi,j )]

+ ϕ′21(b, λ),

ϕ22(b, λ) =R

n∏
i=1

RiG
∗G∗∗

m0−1∏
k=1

(qk − λwk)

m1−1∏
i=1

(q1,i −λw1,i )

n∏
i=2

[

mi∏
j=1

(qi,j −λwi,j )]

+ ϕ′22(b, λ),

where

G∗ = g1,12 (qm0
− λwm0

)(q1,0 −λw1,0 ) + g1,11 (q1,0 −λw1,0 )

+ g1,22 (qm0
− λwm0

) + g1,21 ,

G∗∗ =

n∏
i=2

{[gi,11 +gi,12 (qi−1,mi−1
−λwi−1,mi−1

)](qi,0 −λwi,0 )

+ [gi,21 +gi,22 (qi−1,mi−1
−λwi−1,mi−1

)]},



SLP with n transmission conditions and spectral parameters in the BC 619

R =

m0−1∏
k=0

rk, Ri =

mi−1∏
j=0

ri,j , ϕ
′
ef (b, λ) = o(R

n∏
i=1

Ri).

Therefore, the conclusion is proved.

Theorem 3.1. Let mi ∈ N(i = 0, 1, · · · , n), g1,12 gi,12 ̸= 0, i = 2, 3, · · · , n, and
H(λ) = (hij(λ))2×2 be defined as in Lemma 2.1. Then

(1) If h21(λ) ̸= 0, then the SLP (1.1)∼(1.3) has exactly (m0 +m1 +m2 + · · ·+
mn + 2n+ 1) eigenvalues.

(2) If h21(λ) = 0, h11(λ)w0 +
∏n

i=2 h22(λ)wi,mi
̸= 0, then the SLP (1.1)∼(1.3)

has exactly (m0 +m1 +m2 + · · ·+mn + 2n) eigenvalues.
(3) If h21(λ) = h11(λ) = h22(λ) = 0, h12(λ) ̸= 0, then the SLP (1.1)∼(1.3) has

exactly (m0 +m1 +m2 + · · ·+mn + n+ 1) eigenvalues.
(4) If none of the above conditions holds, then the SLP (1.1)∼(1.3) either has k

eigenvalues, k ∈ {1, 2, · · · ,m0 +m1 + · · ·+mn + n} or is degenerate.

Proof. From Lemma 2.1 we know

△(λ) = h11(λ)ϕ11(b, λ) + h12(λ)ϕ12(b, λ) + h21(λ)ϕ21(b, λ) + h22(λ)ϕ22(b, λ),

and observe that from the Lemma 3.3 the degree of λ of ϕ11(b, λ), ϕ12(b, λ), ϕ21(b, λ),
ϕ22(b, λ) in△(λ) arem0+m1+· · ·+mn+n,m0+m1+· · ·+mn+n−1,m0+m1+· · ·+
mn+2n−1,m0+m1+· · ·+mn+2n−2, respectively. Thus when h21(λ) ̸= 0, we can
deduce from (2.2) that the characteristic function△(λ) is also a polynomial function
of λ and with the degree is m0 +m1 + · · ·+mn +2n+1. Hence from Fundamental
Theorem of Algebra, we know that △(λ) has exactly m0 +m1 + · · ·+mn + 2n+ 1
roots, i.e. SLP (1.1)∼(1.3) has exactly m0 +m1 + · · · +mn + 2n + 1 eigenvalues.
Then we complete the proof of case (1), and the other cases can be proved in the
same way.

Theorem 3.2. Let mi ∈ N(i = 0, 1, · · · , n), g1,12 gi,12 = 0, i = 2, 3, · · · , n, but
g1,12

∏n
i=2(gi,11 wi,0 +gi,22 wi−1,mi−1

) ̸= 0. Then
(1) If h21(λ) ̸= 0, then the SLP (1.1)∼(1.3) has exactly (m0+m1+· · ·+mn+n+2)

eigenvalues.
(2) If h21(λ) = 0, h11(λ)w0 +

∏n
i=2 h22(λ)wi,mi ̸= 0, then the SLP (1.1)∼(1.3)

has exactly (m0 +m1 +m2 + · · ·+mn + 1) eigenvalues.
(3) If h21(λ) = h11(λ) = h22(λ) = 0, h12(λ) ̸= 0, then the SLP (1.1)∼(1.3) has

exactly (m0 +m1 +m2 + · · ·+mn + 2) eigenvalues.
(4) If none of the above conditions holds, then the SLP (1.1)∼(1.3) either has k

eigenvalues, k ∈ {1, 2, · · · ,m0 +m1 + · · ·+mn + 1} or is degenerate.

Proof. The proof is similar to Theorem 3.1.

Theorem 3.3. Let mi ∈ N(i = 0, 1, · · · , n), g1,12 = 0, but (g1,11 w1,0 +g1,22 wm0
)×

gi,12 ̸= 0, i = 2, 3, · · · , n. Then
(1) If h21(λ) ̸= 0, then the SLP (1.1)∼(1.3) has exactly (m0+m1+· · ·+mn+2n)

eigenvalues.
(2) If h21(λ) = 0, h11(λ)w0 +

∏n
i=2 h22(λ)wi,mi ̸= 0, then the SLP (1.1)∼(1.3)

has exactly (m0 +m1 +m2 + · · ·+mn + 2n− 1) eigenvalues.
(3) If h21(λ) = h11(λ) = h22(λ) = 0, h12(λ) ̸= 0, then the SLP (1.1)∼(1.3) has

exactly (m0 +m1 +m2 + · · ·+mn + n) eigenvalues.
(4) If none of the above conditions holds, then the SLP (1.1)∼(1.3) either has k

eigenvalues, k ∈ {1, 2, · · · ,m0 +m1 + · · ·+mn + n− 1} or is degenerate.
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Proof. The proof is similar to Theorem 3.1.

Theorem 3.4. Letmi ∈ N(i = 0, 1, 2, · · · , n), g1,12 = (g1,11 w1,0 +g1,22 wm0
)gi,12 =

0, but (g1,11 w1,0 +g1,22 wm0
)(gi,11 wi,0 +gi,22 wi−1,mi−1

) ̸= 0, i = 2, 3, · · · , n. Then
(1) If h21(λ) ̸= 0, then the SLP (1.1)∼(1.3) has exactly (m0+m1+· · ·+mn+n+1)

eigenvalues.

(2) If h21(λ) = 0, h11w0 +
∏n

i=2 h22(λ)wi,mi ̸= 0, then the SLP (1.1)∼(1.3) has
exactly (m0 +m1 +m2 + · · ·+mn + n) eigenvalues.

(3) If h21(λ) = h11(λ) = h22(λ) = 0, h12(λ) ̸= 0, then the SLP (1.1)∼(1.3) has
exactly (m0 +m1 +m2 + · · ·+mn + 1) eigenvalues.

(4) If none of the above conditions holds, then the SLP (1.1)∼(1.3) either has k
eigenvalues, for k ∈ {1, 2, · · · ,m0 +m1 + · · ·+mn} or is degenerate.

Proof. The proof is similar to Theorem 3.1.

4. Main result

Theorem 4.1. Given any γ disjoint open sets Nl, Nl ∈ C and any γ integers
nl(l = 1, 2, . . . , γ), there exists an SLP (1.1)∼(1.3) with exactly nl + 2 eigenvalues
in Nl.

Proof. By constructing the SLP (1.1)∼(1.3), we assume that (1.4) and (3.1)∼(3.3)
hold, g1,12 gi,12 ̸= 0, a21 = a22 = b11 = b12 = 0, and a11 = λα′

1 − α1, a12 =
−λα′

2 + α2, b21 = λβ′
1 + β1, b22 = −λβ′

2 − β2. Let m0 + m1 + · · · + mn + n =∑γ
l=0 nl. Then by Lemma 3.3 the characteristic function defined by equation (2.3),

△(λ) = h11(λ)ϕ11(b, λ)+h12(λ)ϕ12(b, λ)+h21(λ)ϕ21(b, λ)+h22(λ)ϕ22(b, λ). Because
the calculation of △(λ) is rather tedious, it is omitted here. Then it follows from
Rouche’s theorem that the △(λ) has exactly nl + 2 roots in Nl.

5. A case study

In order to demonstrate the analysis results we have obtained, we consider the
following SLP with three transmission conditions and spectral parameters in the
boundary conditions:

− (py′)′ + qy = λwy, t ∈ J = (−6,−3) ∪ (−3, 0) ∪ (0, 3) ∪ (3, 9),

λy(−6) + (py′)(−6) = 0,

3y(9) + (λ− 1)(py′)(9) = 0,

− 2(py′)(−3−) + y(−3+) = 0,

y(−3−) + (py′)(−3+) = 0,

− (py′)(0−) + y(0+) = 0,

2y(0−) + (py′)(0+) = 0,

2(py′)(3−) + y(3+) = 0,

− y(3−) + (py′)(3+) = 0.

(5.1)

Let n = 2, we choose m0 = 1,m1 = 1,m2 = 2,m3 = 2 and suppose p, q, w are
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piecewise polynomial functions defined as follows:

p(t) =



∞, t ∈ (−6,−5),

1, t ∈ (−5,−4),

∞, t ∈ (−4,−3),

∞, t ∈ (−3,−2),

1

2
, t ∈ (−2,−1),

∞, t ∈ (−1, 0),

∞, t ∈ (0, 1),

1, t ∈ (1, 2),

∞, t ∈ (2, 3),

1, t ∈ (3, 4),

∞, t ∈ (4, 5),

∞, t ∈ (5, 6),

1

2
, t ∈ (6, 7),

∞, t ∈ (7, 8),

1, t ∈ (8, 9);

q(t) =



1, t ∈ (−6,−5),

0, t ∈ (−5,−4),

1, t ∈ (−4,−3),

1, t ∈ (−3,−2),

2, t ∈ (−2,−1),

3, t ∈ (−1, 0),

1, t ∈ (0, 1),

1, t ∈ (1, 2),

1, t ∈ (2, 3),

0, t ∈ (3, 4),

1, t ∈ (4, 5),

2, t ∈ (5, 6),

0, t ∈ (6, 7),

1, t ∈ (7, 8),

0, t ∈ (8, 9);

w(t) =



0, t ∈ (−6,−5),

0, t ∈ (−5,−4),

1, t ∈ (−4,−3),

3, t ∈ (−3,−2),

0, t ∈ (−2,−1),

1, t ∈ (−1, 0),

1, t ∈ (0, 1),

1

2
, t ∈ (1, 2),

1, t ∈ (2, 3),

0, t ∈ (3, 4),

1, t ∈ (4, 5),

1, t ∈ (5, 6),

0, t ∈ (6, 7),

2, t ∈ (7, 8),

0, t ∈ (8, 9).

(5.2)
From the SLP (5.1), we have

Aλ =

 1 −λ

0 0

 , Bλ =

 0 0

3 λ− 1

 ,

C1 =

0 −2

1 0

 , D1 =

 1 0

0 1

 , C2 =

0 −1

2 0

 ,

D2 =

 1 0

0 1

 , C3 =

 0 2

−1 0

 , D3 =

 1 0

0 1

 ,

and

det(C1) = det(C2) = det(C3) = 2 > 0, det(D1) = det(D2) = det(D3) = 1 > 0,

G1=−D−1
1 C1=

 0 2

−1 0

 , G2=−D−1
2 C2=

 0 1

−2 0

 , G3=−D−1
3 C3=

0 −2

1 0

 ,

g1,12 = 2 ̸= 0, g2,12 = 1 ̸= 0.

We can deduce that the the characteristic function

△(λ) =− 3λ8 − 22λ7 + 43λ6 − 15λ5 − 126λ4 + 138λ3 − 63λ2 + 13λ− 1,

so the SLP (5.1) has exactly m0 +m1 +m2 +m3 + n = 8 eigenvalues

λ1 = −8.9338, λ2 = −1.6971, λ3 = 0.2107− 0.0438i,
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λ4 = 0.2107 + 0.0438i, λ5 = 0.3401− 0.2543i, λ6 = 0.3401 + 0.2543i,

λ7 = 1.0979− 1.1932i, λ8 = 1.0979 + 1.1932i.

6. Conclusion

By using the construction method of discontinuous function solution, it is concluded
that the the finite spectrum of SLP with n transmission conditions and spectral
parameters in the boundary conditions has at most m0 +m1 + · · · +mn + 2n + 1
eigenvalues. In addition, we show that these m0+m1+ · · ·+mn+2n+1 eigenvalues
can be distributed arbitrarily throughout the complex plane in the non-self-adjoint
case and anywhere along the real line in the self-adjoint case. Finally, we give a
specific example to verify the accuracy of this conclusion.
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