FINITE SPECTRUM OF STURM-LIOUVILLE PROBLEMS WITH N TRANSMISSION CONDITIONS AND SPECTRAL PARAMETERS IN THE BOUNDARY CONDITIONS*

Junwei Zhu^{1,†}, Lina Gu¹ and Shengbiao Li²

Abstract In this paper, we mainly study the finite spectrum of Sturm-Liouville problems with n transmission conditions and spectral parameters in the boundary conditions. For any positive integer n and a set of positive integers $m_i, i = 0, 1, \dots, n$, it has at most $m_0 + m_1 + \dots + m_n + 2n + 1$ eigenvalues. And further we show that these $m_0 + m_1 + \dots + m_n + 2n + 1$ eigenvalues can be distributed arbitrarily throughout the complex plane in the non-self-adjoint case and anywhere along the real line in the self-adjoint case. The key to this analysis is an iterative construction of the characteristic function, the main tool used in this paper is Rouche's theorem and iterative construction of initial value.

Keywords Transmission conditions, spectral parameters, Sturm-Liouville problems, characteristic function.

MSC(2010) 34B15.

1. Introduction

Sturm-Liouville problems (SLPs for short) [14, 15, 17] with transmission conditions and spectral parameters in the boundary conditions have always been an important research topic in mathematical physics. Such a problem connected with many assortment of physics problems, such as heat conduction and the chord vibration of the boundary on the slider.

As is well-known, the classic Sturm-Liouville theory [22] states that the spectrum of a regular or singular, self-adjoint SLP is unbounded and therefore infinite. This result is generally established under the assumption that the leading cofficient p and the weight function w are both positive. Atkinson in his book [8] studied that if the cofficients of Sturm-Liouville equation satisfy some conditions, it may have finite

[†]The corresponding author.

¹College of Arts and Sciences, YangLing Vocational & Technical College, 712100 Yangling, China

 $^{^2\}mathrm{College}$ of Education, Lanzhou University of Arts and Sciences, 730030 Lanzhou, China

^{*}The authors were supported by National Natural Science Foundation of China (41772147), Education Technology Innovation Project of Gansu Province (2022A-174) and Yangling Vocational & Technical College scientific research fund project (ZK24-65, ZK23-49).

Email: lutjwzhu@163.com(J. Zhu), 986273818@qq.com(L. Gu),

^{76260338@}qq.com(S. Li)

eigenvalues, but he did not elaborate with an example. In 2001, Kong et al. [14] constructed a class of SLP with finite eigenvalues. In 2011, Ao et al. [6] obtained that the following regular SLP with a transmission condition

$$\begin{cases}
- (py')' + qy = \lambda wy, & t \in J \\
AY(a) + BY(b) = 0, \\
CY(c-) + DY(c+) = 0
\end{cases}$$

has exactly *n* eigenvalues, where *n* is positive integer and *n* is connected with the partition of the interval $J = (a, c) \cup (c, b)$, A, B, C and D are all matrices, and the coefficients satisfy the minimal conditions $r = \frac{1}{p}$, q, $w \in L(J, \mathbb{C})$. Their technique was a combination of the iterative construction of characteristic function and the fundamental theorem of Algebra. In 2013, by applying the iteration of the characteristic function and the fundamental theorem of Algebra. Ao et al. [7] obtained that the following regular SLP with a transmission condition and spectral parameters in the boundary conditions

$$\begin{cases} -(py')' + qy = \lambda wy, \quad t \in J \\ A_{\lambda}Y(a) + B_{\lambda}Y(b) = 0, \\ CY(c-) + DY(c+) = 0 \end{cases}$$

has at most m + n + 4 eigenvalues, where m and n are positive integer, and m, nare connected with the partition of the interval $J = (a, c) \cup (c, b)$. It is divided into $a = a_0 < a_1 < a_2 < \cdots < a_{2m} < a_{2m+1} = c$, $c = b_0 < b_1 < b_2 < \cdots < b_{2n} < b_{2n+1} = b$. Recently, Xu et al. [21] researched that the following SLP with ntransmission conditions

$$\begin{cases} -(py')' + qy = \lambda wy, & t \in J \\ AY(a) + BY(b) = 0, \\ C_i Y(c_i) + D_i Y(c_i) = 0 \end{cases}$$

has exactly $\sum_{i=1}^{n+1} m_i + n + 1$ eigenvalues for any positive integer n and a set of positive integers m_i , $i = 1, 2, \dots, n+1$, where m_i and n are connected with the partition of the interval $J = (a, c_1) \cup (c_1, c_2) \cup \cdots \cup (c_n, b)$. They used similar tools to [7]. These results indicate the existence of finite spectrum of SLP. It also should be pointed out that although many excellent achievements have been made in researches on the finite spectrum of SLP, such as literature [7,14,15,18–20,22] and its references, but the conditions involved are relatively simple. It is worth mentioning that some scholars have done outstanding work on boundary value problems of differential equations with finite spectrum [1, 4, 5, 9–11, 13, 16, 22, 23]. In addition, for other articles on whether boundary value problems of differential equations have finite spectrum, please refer to Ao and Sun's articles [2,3]. Motivated and inspired by the above-mentioned works, in this paper, we consider the following SLP

$$-(py')' + qy = \lambda wy, \tag{1.1}$$

$$A_{\lambda}Y(a) + B_{\lambda}Y(b) = 0, \qquad (1.2)$$

$$C_i Y(c_i) + D_i Y(c_i) = 0, (1.3)$$

where
$$Y = \begin{pmatrix} y \\ py' \end{pmatrix}$$
, $y = y(t)$, $t \in J = (a, c_1) \cup (c_1, c_2) \cup ... \cup (c_n, b)$, $-\infty < a < b < +\infty$, $c_i \in (a, b)$, C_i , $D_i \in M_2(\mathbb{R})$, $det(C_i) = \rho_i > 0$, $det(D_i) = \theta_i > 0$, $i = 1, 2, \cdots, n$.
 $A_{\lambda} = \begin{pmatrix} \lambda \alpha'_1 - \alpha_1 - \lambda \alpha'_2 + \alpha_2 \\ 0 & 0 \end{pmatrix}$, $B_{\lambda} = \begin{pmatrix} 0 & 0 \\ \lambda \beta'_1 + \beta_1 - \lambda \beta'_2 - \beta_2 \end{pmatrix}$, $\alpha_j, \alpha'_j, \beta_j, \beta'_j \in (\alpha_1, \alpha_2)$

 $\mathbb{R}, j = 1, 2, \text{ and satisfies } det \begin{pmatrix} \alpha_1 & \alpha_2 \\ \alpha'_1 & \alpha'_2 \end{pmatrix} \neq 0, det \begin{pmatrix} \beta_1 & \beta_2 \\ \beta'_1 & \beta'_2 \end{pmatrix} \neq 0. \lambda \text{ is the spectral}$

parameter. The coefficients satisfy the minimal conditions

$$r = \frac{1}{p}, \ q, \ w \in L(J, \ \mathbb{C}),$$
 (1.4)

where $L(J, \mathbb{C})$ denotes the complex-valued functions which are Lebesgue integrable on J. Condition (1.4) is minimal in the sense that it is necessary and sufficient for all initial value problems of to have unique solutions on [a, b]; see [12]. In this paper, we assume that condition (1.4) holds and we will prove that SLP (1.1)~(1.3) still has finite spectrum.

2. Notation and preliminaries

In this section, we let u = y, v = py'. Then (1.1) can be transferred into the following first order system

$$u' = rv, v' = (q - \lambda w)u. \tag{2.1}$$

This can be written in the following matrix form

$$\begin{pmatrix} u \\ v \end{pmatrix}' = \begin{pmatrix} 0 & r \\ q - \lambda w & 0 \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix}.$$

Definition 2.1. By a trivial solution of equation (1.1) on some interval we mean a solution y which is identically zero and whose quasi-derivative v = py' is also identically zero on this interval.

In this part, we give some related concepts to introduce Lemma 2.1.

Let $u_1(t,\lambda), v_1(t,\lambda)$ be two linearly independent solutions of equation (1.1) on (a, c_1) satisfying the following initial conditions

$$u_1(a,\lambda) = 1, (pu'_1)(a,\lambda) = 0, v_1(a,\lambda) = 0, (pv'_1)(a,\lambda) = 1.$$

Now we can define the solutions $u_{i+1}(t,\lambda), v_{i+1}(t,\lambda) (i = 1, 2, ..., n)$ of equation (1.1) on $(c_i, c_{i+1})(c_{n+1} = b)$ satisfying the following initial conditions

$$\begin{aligned} u_{i+1}(c_i+,\lambda) &= g_{i,11}u_i(c_i-,\lambda) + g_{i,12}(pu'_i)(c_i-,\lambda), \\ (pu'_{i+1})(c_i+,\lambda) &= g_{i,21}u_i(c_i-,\lambda) + g_{i,22}(pu'_i)(c_i-,\lambda), \\ v_{i+1}(c_i+,\lambda) &= g_{i,11}v_i(c_i-,\lambda) + g_{i,12}(pv'_i)(c_i-,\lambda), \end{aligned}$$

$$(pv'_{i+1})(c_i+,\lambda) = g_{i,21}v_i(c_i-,\lambda) + g_{i,22}(pv'_i)(c_i-,\lambda).$$

For convenience, we let

$$\begin{split} \phi_{11}(t,\lambda) &= \begin{cases} u_1(t,\lambda), & t \in (a,c_1), \\ u_{i+1}(t,\lambda), & t \in (c_i,c_{i+1})(i=1,2,...,n,c_{n+1}=b), \end{cases} \\ \phi_{12}(t,\lambda) &= \begin{cases} v_1(t,\lambda), & t \in (a,c_1), \\ v_{i+1}(t,\lambda), & t \in (c_i,c_{i+1})(i=1,2,...,n,c_{n+1}=b), \end{cases} \\ \phi_{21}(t,\lambda) &= \begin{cases} (pu'_1)(t,\lambda), & t \in (a,c_1), \\ (pu'_{i+1})(t,\lambda), & t \in (c_i,c_{i+1})(i=1,2,...,n,c_{n+1}=b), \end{cases} \\ \phi_{22}(t,\lambda) &= \begin{cases} (pv'_1)(t,\lambda), & t \in (a,c_1), \\ (pv'_{i+1})(t,\lambda), & t \in (a,c_1), \\ (pv'_{i+1})(t,\lambda), & t \in (c_i,c_{i+1})(i=1,2,...,n,c_{n+1}=b). \end{cases} \end{split}$$

Then

$$\Phi(t,\lambda) = \begin{pmatrix} \phi_{11}(t,\lambda) \ \phi_{12}(t,\lambda) \\ \phi_{21}(t,\lambda) \ \phi_{22}(t,\lambda) \end{pmatrix}, \ t \in J.$$

So $\Phi(t,\lambda) = [\phi_{ef}(t,\lambda)](e, f = 1, 2, t \in J)$ denotes the fundamental matrix of the system (2.1) determined by the initial condition $\Phi(a,\lambda) = I$.

Lemma 2.1. The complex number λ is an eigenvalue of the SLP (1.1)~(1.3) if and only if

$$\Delta(\lambda) = det[A_{\lambda} + B_{\lambda}\Phi(b,\lambda)] = 0.$$
(2.2)

Particularly, $\triangle(\lambda)$ can be written as

$$\Delta(\lambda) = h_{11}(\lambda)\phi_{11}(b,\lambda) + h_{12}(\lambda)\phi_{12}(b,\lambda) + h_{21}(\lambda)\phi_{21}(b,\lambda) + h_{22}(\lambda)\phi_{22}(b,\lambda), \quad (2.3)$$

where

$$H(\lambda) = \begin{pmatrix} h_{11}(\lambda) & h_{12}(\lambda) \\ h_{21}(\lambda) & h_{22}(\lambda) \end{pmatrix}$$
$$:= \begin{pmatrix} (\lambda\alpha'_2 - \alpha_2)(\lambda\beta'_1 + \beta_1) & (\lambda\alpha'_1 - \alpha_1)(\lambda\beta'_1 + \beta_1) \\ -(\lambda\alpha'_2 - \alpha_2)(\lambda\beta'_2 + \beta_2) & -(\lambda\alpha'_1 - \alpha_1)(\lambda\beta'_2 + \beta_2) \end{pmatrix}.$$

Proof. If λ is an eigenvalue of the SLP (1.1)~(1.3), then there exists a non-trivial solution

$$y(t,\lambda) = \begin{cases} k_1 u_1 + l_1 v_1, & t \in (a,c_1), \\ k_2 u_2 + l_2 v_2, & t \in (c_1,c_2), \\ \dots \\ k_{n+1} u_{n+1} + l_{n+1} v_{n+1}, & t \in (c_n,b) \end{cases}$$
(2.4)

of equation (1.1), where $k_i, l_i (i = 1, 2, ..., n+1)$ are not all zero. Since $y(t, \lambda)$ satisfies (1.2), we have

$$A_{\lambda}\Phi(a,\lambda) \begin{pmatrix} k_1 \\ l_1 \end{pmatrix} + B_{\lambda}\Phi(b,\lambda) \begin{pmatrix} k_{n+1} \\ l_{n+1} \end{pmatrix} = 0.$$
(2.5)

From (1.3), we get

$$D_i \Phi(c_i +, \lambda) = -C_i \Phi(c_i -, \lambda).$$
(2.6)

When i = 1, we can obtain

$$C_1 \Phi(c_1 -, \lambda) \begin{pmatrix} k_1 \\ l_1 \end{pmatrix} + D_1 \Phi(c_1 +, \lambda) \begin{pmatrix} k_2 \\ l_2 \end{pmatrix} = 0,$$

 \mathbf{so}

$$C_1 \Phi(c_1 -, \lambda) \begin{pmatrix} k_1 - k_2 \\ l_1 - l_2 \end{pmatrix} = 0.$$

It means that $k_1 = k_2, l_1 = l_2$. Using the same method we can get the following results

$$k_1 = k_2 = \dots = k_{n+1}, l_1 = l_2 = \dots = l_{n+1},$$

so we have

$$A_{\lambda}\Phi(a,\lambda) \begin{pmatrix} k_1 \\ l_1 \end{pmatrix} + B_{\lambda}\Phi(b,\lambda) \begin{pmatrix} k_1 \\ l_1 \end{pmatrix} = 0.$$
(2.7)

Since k_1 and l_1 are not all zero, then $\triangle(\lambda) = det[A_{\lambda} + B_{\lambda}\Phi(b,\lambda)] = 0$.

Let $\triangle(\lambda) = 0$. Then (2.7) has non-trivial solution. Now we consider the next initial value problem

$$\begin{cases} -(py')' + qy = \lambda wy, & t \in J, \\ y(a,\lambda) = \lambda \alpha'_2 - \alpha_2, \\ (py')(a,\lambda) = \lambda \alpha'_1 - \alpha_1, \end{cases}$$

we have

$$y(t,\lambda) = (\lambda \alpha'_2 - \alpha_2)\phi_{11}(t,\lambda) + (\lambda \alpha'_1 - \alpha_1)\phi_{12}(t,\lambda), \quad t \in J.$$

Substituting $y(t, \lambda)$ into (1.2), we have

$$\begin{aligned} &(\lambda \alpha'_1 - \alpha_1) y(a, \lambda) + (\lambda \alpha'_1 - \alpha_1) (py')(a, \lambda) \\ &= &(\lambda \alpha'_1 - \alpha_1) (\lambda \alpha'_2 - \alpha_2) - (\lambda \alpha'_2 - \alpha_2) (\lambda \alpha'_1 - \alpha_1) \\ &= &0. \end{aligned}$$

Similarly, we can get

$$(\lambda\beta_1' + \beta_1)y(b,\lambda) - (\lambda\beta_2' + \beta_2)(py')(b,\lambda)$$

=($\lambda\beta_1' + \beta_1$)($\lambda\beta_2' + \beta_2$) - ($\lambda\beta_2' + \beta_2$)($\lambda\beta_1' + \beta_1$)
=0.

So $y(t, \lambda)$ satisfies (1.2). Recalling that the solution $y(t, \lambda)$ satisfies (1.3), it's means that $y(t, \lambda)$ is an eigenfunction of the SLP (1.1)~(1.3) corresponding to eigenvalue λ . And (2.3) comes from a straightforward computation.

Definition 2.2. The SLP (1.1)~(1.3), or equivalently (2.1), (1.2), (1.3) is said to be degenerate if in (2.2) either $\Delta(\lambda) \equiv 0$ for all $\lambda \in \mathbb{C}$ or $\Delta(\lambda) \neq 0$ for any $\lambda \in \mathbb{C}$.

In the derivation of our main results an important role is played by the "Continuity Principle" established in Kong et al. See [13].

3. Statement of the problem

In this section, we assume that there exists a partition of the interval J

$$\begin{cases} a = a_0 < a_1 < a_2 < \dots < a_{2m_0} < a_{2m_0+1} = c_1 -, \\ c_1 + = c_{1,0} < c_{1,1} < c_{1,2} < \dots < c_{1,2m_1} < c_{1,2m_1+1} = c_2 -, \\ \dots, \\ c_{n-1} + = c_{n-1,0} < c_{n-1,1} < c_{n-1,2} < \dots < c_{n-1,2m_{n-1}} < c_{n-1,2m_{n-1}+1} = c_n -, \\ c_n + = c_{n,0} < c_{n,1} < c_{n,2} < \dots < c_{n,2m_n} < c_{n,2m_n+1} = b, \end{cases}$$

$$(3.1)$$

for some positive integers m_0, m_1, \cdots, m_n , when $r(t) = \frac{1}{p(t)} = 0$, such that

$$\int_{a_{2k}}^{a_{2k+1}} w(t)dt \neq 0, k = 0, 1, \cdots, m_0, t \in (a_{2k}, a_{2k+1}),$$

$$\int_{c_{1,2i}}^{c_{1,2i+1}} w(t)dt \neq 0, i = 0, 1, \cdots, m_1, t \in (c_{1,2i}, c_{1,2i+1}),$$

$$\cdots,$$

$$\int_{c_{n,2z}}^{c_{n,2z+1}} w(t)dt \neq 0, z = 0, 1, \cdots, m_n, t \in (c_{n,2z}, c_{n,2z+1}),$$
(3.2)

and when q(t) = w(t) = 0, we have

$$\begin{cases} \int_{a_{2k+1}}^{a_{2k+2}} r(t)dt \neq 0, k = 0, 1, \cdots, m_0 - 1, t \in (a_{2k+1}, a_{2k+2}), \\ \int_{c_{1,2i+1}}^{c_{1,2i+2}} r(t)dt \neq 0, i = 0, 1, \cdots, m_1 - 1, t \in (c_{1,2i+1}, c_{1,2i+2}), \\ \dots, \\ \int_{c_{n,2z+1}}^{c_{n,2z+2}} r(t)dt \neq 0, z = 0, 1, \cdots, m_n, t \in (c_{n,2z+1}, c_{n,2z+2}). \end{cases}$$
(3.3)

Let

$$\begin{cases} q_k = \int_{a_{2k}}^{a_{2k+1}} q(t)dt, k = 0, 1, \cdots, m_0, \\ w_k = \int_{a_{2k}}^{a_{2k+1}} w(t)dt, k = 0, 1, \cdots, m_0, \\ r_k = \int_{a_{2k+1}}^{a_{2k+2}} r(t)dt, k = 0, 1, \cdots, m_0 - 1, \end{cases}$$

$$\begin{cases} q_{1,i} = \int_{c_{1,2i}}^{c_{1,2i+1}} q(t)dt, i = 0, 1, \cdots, m_1, \\ w_{1,i} = \int_{c_{1,2i}}^{c_{1,2i+1}} w(t)dt, i = 0, 1, \cdots, m_1, \\ r_{1,i} = \int_{c_{1,2i+1}}^{c_{1,2i+2}} r(t)dt, i = 0, 1, \cdots, m_1 - 1, \end{cases}$$

610

$$\begin{cases} q_{n,z} = \int_{c_{n,2z+1}}^{c_{n,2z+1}} q(t)dt, z = 0, 1, \cdots, m_n, \\ w_{n,z} = \int_{c_{n,2z+1}}^{c_{n,2z+1}} w(t)dt, z = 0, 1, \cdots, m_n, \\ r_{n,z} = \int_{c_{n,2z+1}}^{c_{n,2z+2}} r(t)dt, z = 0, 1, \cdots, m_n - 1. \end{cases}$$

In the following Lemma and Theorem, we let $(3.1)\sim(3.3)$ always hold.

Lemma 3.1. For each $\lambda \in \mathbb{C}$,

 $\Phi(t,\lambda) = [\phi_{ef}(t,\lambda)](t \in (a,c_1))$ denotes the fundamental matrix of the system (2.1) determined by $\Phi(a,\lambda) = I$;

$$\begin{split} \Psi_i(t,\lambda) &= [\psi_{i,e_f}(t,\lambda)](t \in (c_i,c_{i+1}), c_{n+1} = b = c_{n,2m_n+1}, i = 1,2,...,n) \ denotes the fundamental matrix of the system (2.1) determined by <math display="block">\Psi_i(c_i+,\lambda) = I \ (here \ \Psi_i(c_i+,\lambda) = \Psi_i(c_{i,0},\lambda) = \Phi(c_i+,\lambda)). \end{split}$$

So we have $\$

(1)

$$\Phi(a_1,\lambda) = \begin{pmatrix} 1 & 0\\ q_0 - \lambda w_0 & 1 \end{pmatrix}, \qquad (3.4)$$

$$\Phi(a_3,\lambda) = \begin{pmatrix} 1 + (q_0 - \lambda w_0)r_0 & r_0 \\ \phi_{21}(a_3,\lambda) & 1 + (q_1 - \lambda w_1)r_0 \end{pmatrix},$$
(3.5)

where

$$\phi_{21}(a_3,\lambda) = (q_0 - \lambda w_0) + (q_1 - \lambda w_1) + (q_0 - \lambda w_0)(q_1 - \lambda w_1)r_0$$

In general, for $1 \leq k \leq m_0$,

$$\Phi(a_{2k+1},\lambda) = \begin{pmatrix} 1 & r_{k-1} \\ q_k - \lambda w_k & 1 + (q_k - \lambda w_k)r_{k-1} \end{pmatrix} \Phi(a_{2k-1},\lambda).$$
(3.6)

(2)

$$\Psi_i(c_{i,1}, \lambda) = \begin{pmatrix} 1 & 0 \\ q_{i,0} - \lambda w_{i,0} & 1 \end{pmatrix},$$
(3.7)

$$\Psi_{i}(c_{i,3},\lambda) = \begin{pmatrix} 1 + (q_{i,0} - \lambda w_{i,0})r_{i,0} & r_{i,0} \\ \psi_{i,21}(c_{i,3},\lambda) & 1 + (q_{i,1} - \lambda w_{i,1})r_{i,0} \end{pmatrix}, \quad (3.8)$$

where

$$\begin{split} \psi_{i,21}\left(c_{i,3}\,,\lambda\right) &= (q_{i,0} - \lambda w_{i,0}\,) + (q_{i,1} - \lambda w_{i,1}\,) + (q_{i,0} - \lambda w_{i,0}\,)(q_{i,1} - \lambda w_{i,1}\,)r_{i,0}\,.\\ \text{In general, for } 1 &\leq \kappa \leq m_i(\kappa = i, j, ..., z), \end{split}$$

$$\Psi_i(c_{i,2\kappa+1},\lambda) = \begin{pmatrix} 1 & r_{i,\kappa-1} \\ q_{i,\kappa} - \lambda w_{i,\kappa} & 1 + (q_{i,\kappa} - \lambda w_{i,\kappa}) r_{i,\kappa-1} \end{pmatrix} \Psi_i(c_{i,2\kappa-1},\lambda).$$
(3.9)

Proof. We can see from the system (2.1) that u is constant on each subinterval where r identically zero and v is constant on each subinterval where both q and w are identically zero. The result follows from repeated applications of system (2.1).

Lemma 3.2. For each $\lambda \in \mathbb{C}$,

 $\Phi(t,\lambda) = [\phi_{ef}(t,\lambda)](t \in (a,c_1))$ denotes the fundamental matrix of the system (2.1) determined by $\Phi(a,\lambda) = I$;

 $\Psi_i(t,\lambda) = [\psi_{i,ef}(t,\lambda)](t \in (c_i, c_{i+1}), c_{n+1} = b, i = 1, 2, ..., n) \text{ denotes the fundamental matrix of the system (2.1) determined by } \Psi_i(c_i+,\lambda) = I.$

So we have

$$\Phi(b,\lambda) = \Psi_n(b,\lambda)G_n\Psi_{n-1}(c_n-\lambda)G_{n-1}\Psi_{n-2}(c_{n-1}-\lambda)\cdots G_1\Phi(c_1-\lambda),$$

where

$$G_i = [g_{i,ef}]_{2 \times 2} (i = 1, 2, ..., n; e, f = 1, 2).$$

Proof. From (1.3), we know that

$$C_i \Phi(c_i - \lambda) + D_i \Phi(c_i + \lambda) = 0,$$

 \mathbf{so}

$$\Phi(c_i+,\lambda) = -D_i^{-1}C_i\Phi(c_i-,\lambda) = G_i\Phi(c_i-,\lambda),$$

where

$$G_i = [g_{i,ef}]_{2 \times 2} (i = 1, 2, ..., n; e, f = 1, 2).$$

When i = 1, $\Psi_1(c_1+, \lambda) = I$, combining Lemma 3.1

$$\Psi_1(t,\lambda) = \Phi(t,\lambda) [G_1 \Phi(c_1 - \lambda)]^{-1}, \quad c_1 + \le t \le c_2 - \lambda,$$

let $t = c_2 -$, then

$$\Psi_1(c_2, \lambda) = \Phi(c_2, \lambda) [G_1 \Phi(c_1, \lambda)]^{-1}, \Phi(c_2, \lambda) = \Psi_1(c_2, \lambda) G_1 \Phi(c_1, \lambda).$$

When i = 2, $\Psi_2(c_2+,\lambda) = I$, we find that condition $\Phi(c_i+,\lambda) = -D_i^{-1}C_i\Phi(c_i-,\lambda)$ = $G_i\Phi(c_i-,\lambda)$ always holds, so

$$\Psi_2(t,\lambda) = \Phi(t,\lambda)[G_2\Phi(c_2-,\lambda)]^{-1}, \ c_2+\le t\le c_3-,$$

let $t = c_3 -$, then

$$\Psi_2(c_3-,\lambda) = \Phi(c_3-,\lambda)[G_2\Phi(c_2-,\lambda)]^{-1},$$

$$\Phi(c_3-,\lambda) = \Psi_2(c_3-,\lambda)G_2\Phi(c_2-,\lambda),$$

....

By repeated application of the above process, we have

$$\Phi(b,\lambda) = \Psi_n(b,\lambda)G_n\Psi_{n-1}(c_n-\lambda)G_{n-1}\Psi_{n-2}(c_{n-1}-\lambda)\cdots G_1\Phi(c_1-\lambda)$$

Lemma 3.3. For each $\lambda \in \mathbb{C}$,

 $\Phi(t,\lambda) = [\phi_{ef}(t,\lambda)](t \in (a,c_1))$ denotes the fundamental matrix of the system (2.1) determined by $\Phi(a,\lambda) = I$;

 $\Psi_i(t,\lambda) = [\psi_{i,ef}(t,\lambda)](t \in (c_i, c_{i+1}), c_{n+1} = b, i = 1, 2, ..., n) \text{ denotes the fundamental matrix of the system (2.1) determined by } \Psi_i(c_i+,\lambda) = I.$

For $\Phi(b, \lambda)$, we have the following result

$$\begin{split} & \phi_{11}(b,\lambda) \\ = & R \prod_{i=1}^{n} R_i G^* G^{**} \prod_{k=0}^{m_0-1} (q_k - \lambda w_k) \prod_{i=1}^{m_1-1} (q_{1,i} - \lambda w_{1,i}) \prod_{i=2}^{n} [\prod_{j=1}^{m_i-1} (q_{i,j} - \lambda w_{i,j})] \\ & + \phi_{11}'(b,\lambda), \\ & \phi_{12}(b,\lambda) \\ = & R \prod_{i=1}^{n} R_i G^* G^{**} \prod_{k=1}^{m_0-1} (q_k - \lambda w_k) \prod_{i=1}^{m_1-1} (q_{1,i} - \lambda w_{1,i}) \prod_{i=2}^{n} [\prod_{j=1}^{m_i-1} (q_{i,j} - \lambda w_{i,j})] \\ & + \phi_{12}'(b,\lambda), \\ & \phi_{21}(b,\lambda) \\ = & R \prod_{i=1}^{n} R_i G^* G^{**} \prod_{k=0}^{m_0-1} (q_k - \lambda w_k) \prod_{i=1}^{m_1-1} (q_{1,i} - \lambda w_{1,i}) \prod_{i=2}^{n} [\prod_{j=1}^{m_i} (q_{i,j} - \lambda w_{i,j})] \\ & + \phi_{21}'(b,\lambda), \\ & \phi_{22}(b,\lambda) \\ = & R \prod_{i=1}^{n} R_i G^* G^{**} \prod_{k=1}^{m_0-1} (q_k - \lambda w_k) \prod_{i=1}^{m_1-1} (q_{1,i} - \lambda w_{1,i}) \prod_{i=2}^{n} [\prod_{j=1}^{m_i} (q_{i,j} - \lambda w_{i,j})] \\ & + \phi_{22}'(b,\lambda), \end{split}$$

where

$$\begin{aligned} G^* &= g_{1,12} \left(q_{m_0} - \lambda w_{m_0} \right) (q_{1,0} - \lambda w_{1,0}) + g_{1,11} \left(q_{1,0} - \lambda w_{1,0} \right) \\ &+ g_{1,22} \left(q_{m_0} - \lambda w_{m_0} \right) + g_{1,21} , \\ G^{**} &= \prod_{i=2}^n \{ [g_{i,11} + g_{i,12} \left(q_{i-1,m_{i-1}} - \lambda w_{i-1,m_{i-1}} \right)] (q_{i,0} - \lambda w_{i,0}) \\ &+ [g_{i,21} + g_{i,22} \left(q_{i-1,m_{i-1}} - \lambda w_{i-1,m_{i-1}} \right)] \}, \\ R &= \prod_{k=0}^{m_0 - 1} r_k, R_i = \prod_{j=0}^{m_i - 1} r_{i,j} , \phi'_{ef}(b,\lambda) = o(R \prod_{i=1}^n R_i). \end{aligned}$$

Proof. From Lemma 3.1 we know that

$$\Phi(c_1 - , \lambda) = \Phi(a_{2m_0+1}, \lambda)$$

$$= \begin{pmatrix} 1 & r_{m_0-1} \\ q_{m_0} - \lambda w_{m_0} & 1 + (q_{m_0} - \lambda w_{m_0})r_{m_0-1} \end{pmatrix} \Phi(a_{2m_0-1}, \lambda)$$

$$= \begin{pmatrix} 1 & r_{m_0-1} \\ q_{m_0} - \lambda w_{m_0} & 1 + (q_{m_0} - \lambda w_{m_0})r_{m_0-1} \end{pmatrix} \cdot \Phi(a_{2m_0-3}, \lambda)$$
$$\times \begin{pmatrix} 1 & r_{m_0-2} \\ q_{m_0-1} - \lambda w_{m_0-1} & 1 + (q_{m_0-1} - \lambda w_{m_0-1})r_{m_0-2} \end{pmatrix}$$
$$= \begin{pmatrix} \theta_{11} & \theta_{12} \\ \theta_{21} & \theta_{22} \end{pmatrix} \Phi(a_{2m_0-3}, \lambda),$$

where

$$\begin{split} \theta_{11} =& 1 + r_{m_0-1}(q_{m_0-1} - \lambda w_{m_0-1}) \\ =& r_{m_0-1}(q_{m_0-1} - \lambda w_{m_0-1}) + o(r_{m_0-1}(q_{m_0-1} - \lambda w_{m_0-1})), \\ \theta_{12} =& r_{m_0-2} + r_{m_0-1} + r_{m_0-2}r_{m_0-1}(q_{m_0-1} - \lambda w_{m_0-1}) \\ =& r_{m_0-2}r_{m_0-1}(q_{m_0-1} - \lambda w_{m_0-1}) + o(r_{m_0-2}r_{m_0-1}(q_{m_0-1} - \lambda w_{m_0-1})), \\ \theta_{21} =& (q_{m_0-1} - \lambda w_{m_0-1}) + (q_{m_0} - \lambda w_{m_0}) + r_{m_0-1}(q_{m_0-1} - \lambda w_{m_0-1})(q_{m_0} - \lambda w_{m_0}) \\ =& r_{m_0-1}(q_{m_0-1} - \lambda w_{m_0-1})(q_{m_0} - \lambda w_{m_0})), \\ \theta_{22} =& r_{m_0-2}(q_{m_0} - \lambda w_{m_0}) + 1 + r_{m_0-2}(q_{m_0-1} - \lambda w_{m_0-1}) + r_{m_0-1}(q_{m_0} - \lambda w_{m_0}) \\ & + r_{m_0-2}r_{m_0-1}(q_{m_0-1} - \lambda w_{m_0-1})(q_{m_0} - \lambda w_{m_0}) \\ =& r_{m_0-2}r_{m_0-1}(q_{m_0-1} - \lambda w_{m_0-1})(q_{m_0} - \lambda w_{m_0}) \\ \times (q_{m_0} - \lambda w_{m_0}) + o(r_{m_0-2}r_{m_0-1}(q_{m_0-1} - \lambda w_{m_0-1})(q_{m_0} - \lambda w_{m_0})), \end{split}$$

 $\quad \text{and} \quad$

$$\Phi(a_{2m_0-3},\lambda) = \begin{pmatrix} 1 & r_{m_0-3} \\ q_{m_0-2} - \lambda w_{m_0-2} & 1 + (q_{m_0-2} - \lambda w_{m_0-2})r_{m_0-3} \end{pmatrix} \Phi(a_{2m_0-5},\lambda),$$

so we have

$$\Phi(c_{1}-,\lambda) = \begin{pmatrix} \theta_{11} & \theta_{12} \\ \theta_{21} & \theta_{22} \end{pmatrix} \Phi(a_{2m_{0}-3},\lambda)$$

$$= \begin{pmatrix} \theta_{11} & \theta_{12} \\ \theta_{21} & \theta_{22} \end{pmatrix} \begin{pmatrix} 1 & r_{m_{0}-3} \\ q_{m_{0}-2} - \lambda w_{m_{0}-2} & 1 + (q_{m_{0}-2} - \lambda w_{m_{0}-2})r_{m_{0}-3} \end{pmatrix}$$

$$\times \Phi(a_{2m_{0}-5},\lambda)$$

$$= \begin{pmatrix} \eta_{11} & \eta_{12} \\ \eta_{21} & \eta_{22} \end{pmatrix} \Phi(a_{2m_{0}-5},\lambda),$$

where

 $\eta_{11} = \theta_{11} + (q_{m_0-2} - \lambda w_{m_0-2})\theta_{12}$

$$=r_{m_{0}-2}r_{m_{0}-1}(q_{m_{0}-2}-\lambda w_{m_{0}-2})(q_{m_{0}-1}-\lambda w_{m_{0}-1}) + o(r_{m_{0}-2}r_{m_{0}-1}(q_{m_{0}-2}-\lambda w_{m_{0}-2})(q_{m_{0}-1}-\lambda w_{m_{0}-1})),$$

$$\eta_{12} = r_{m_{0}-3}\theta_{11} + (1 + (q_{m_{0}-2}-\lambda w_{m_{0}-2})r_{m_{0}-3})\theta_{12} = r_{m_{0}-3}r_{m_{0}-2}r_{m_{0}-1}(q_{m_{0}-2}-\lambda w_{m_{0}-2})(q_{m_{0}-1}-\lambda w_{m_{0}-1}) + o(r_{m_{0}-3}r_{m_{0}-2}r_{m_{0}-1}(q_{m_{0}-2}-\lambda w_{m_{0}-2})(q_{m_{0}-1}-\lambda w_{m_{0}-1})),$$

$$\eta_{21} = \theta_{21} + (q_{m_{0}-2}-\lambda w_{m_{0}-2})\theta_{22} = r_{m_{0}-2}r_{m_{0}-1}(q_{m_{0}-2}-\lambda w_{m_{0}-2})(q_{m_{0}-1}-\lambda w_{m_{0}-1})(q_{m_{0}}-\lambda w_{m_{0}}) + o(r_{m_{0}-2}r_{m_{0}-1}(q_{m_{0}-2}-\lambda w_{m_{0}-2})(q_{m_{0}-1}-\lambda w_{m_{0}-1})(q_{m_{0}}-\lambda w_{m_{0}})),$$

$$\eta_{22} = r_{m_{0}-3}\theta_{21} + (1 + (q_{m_{0}-2}-\lambda w_{m_{0}-2})r_{m_{0}-3})\theta_{22} = r_{m_{0}-3}r_{m_{0}-2}r_{m_{0}-1}(q_{m_{0}-2}-\lambda w_{m_{0}-2})(q_{m_{0}-1}-\lambda w_{m_{0}-1})(q_{m_{0}}-\lambda w_{m_{0}})),$$

$$+ o(r_{m_{0}-3}r_{m_{0}-2}r_{m_{0}-1}(q_{m_{0}-2}-\lambda w_{m_{0}-2})(q_{m_{0}-1}-\lambda w_{m_{0}-1})(q_{m_{0}}-\lambda w_{m_{0}})),$$

$$\cdots$$

By repeated application of the above method, finally we can get

$$\Phi(c_1 -, \lambda) = \begin{pmatrix} \xi_{11} & \xi_{12} \\ \xi_{21} & \xi_{22} \end{pmatrix} \Phi(a_1, \lambda),$$

where

$$\begin{split} \xi_{11} &= \prod_{k=1}^{m_0 - 1} r_k \prod_{k=1}^{m_0 - 1} (q_k - \lambda w_k) + o(\prod_{k=1}^{m_0 - 1} r_k \prod_{k=1}^{m_0 - 1} (q_k - \lambda w_k)),\\ \xi_{12} &= \prod_{k=0}^{m_0 - 1} r_k \prod_{k=1}^{m_0 - 1} (q_k - \lambda w_k) + o(\prod_{k=0}^{m_0 - 1} r_k \prod_{k=1}^{m_0 - 1} (q_k - \lambda w_k)),\\ \xi_{21} &= \prod_{k=1}^{m_0 - 1} r_k \prod_{k=1}^{m_0} (q_k - \lambda w_k) + o(\prod_{k=1}^{m_0 - 1} r_k \prod_{k=1}^{m_0} (q_k - \lambda w_k)),\\ \xi_{22} &= \prod_{k=0}^{m_0 - 1} r_k \prod_{k=1}^{m_0} (q_k - \lambda w_k) + o(\prod_{k=0}^{m_0 - 1} r_k \prod_{k=1}^{m_0} (q_k - \lambda w_k)). \end{split}$$

And

$$\Phi(a_1,\lambda) = \begin{pmatrix} 1 & 0 \\ q_0 - \lambda w_0 & 1 \end{pmatrix},$$

 \mathbf{SO}

$$\Phi(c_1 -, \lambda) = \begin{pmatrix} \xi_{11} & \xi_{12} \\ \xi_{21} & \xi_{22} \end{pmatrix} \Phi(a_1, \lambda)$$
$$= \begin{pmatrix} \xi_{11} & \xi_{12} \\ \xi_{21} & \xi_{22} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ q_0 - \lambda w_0 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} \xi_{11} + \xi_{12}(q_0 - \lambda w_0) & \xi_{12} \\ \xi_{21} + \xi_{22}(q_0 - \lambda w_0) & \xi_{22} \end{pmatrix}$$

$$= \begin{pmatrix} \phi_{11}(c_1, \lambda) & \phi_{12}(c_1, \lambda) \\ \phi_{21}(c_1, \lambda) & \phi_{22}(c_1, \lambda) \end{pmatrix}.$$

It means that

$$\phi_{11}(c_1,\lambda) = \prod_{k=0}^{m_0-1} r_k \prod_{k=0}^{m_0-1} (q_k - \lambda w_k) + o(\prod_{k=0}^{m_0-1} r_k \prod_{k=0}^{m_0-1} (q_k - \lambda w_k)),$$

$$\phi_{12}(c_1,\lambda) = \prod_{k=0}^{m_0-1} r_k \prod_{k=1}^{m_0-1} (q_k - \lambda w_k) + o(\prod_{k=0}^{m_0-1} r_k \prod_{k=1}^{m_0-1} (q_k - \lambda w_k)),$$

$$\phi_{21}(c_1,\lambda) = \prod_{k=0}^{m_0-1} r_k \prod_{k=0}^{m_0} (q_k - \lambda w_k) + o(\prod_{k=0}^{m_0-1} r_k \prod_{k=0}^{m_0} (q_k - \lambda w_k)),$$

$$\phi_{22}(c_1,\lambda) = \prod_{k=0}^{m_0-1} r_k \prod_{k=1}^{m_0} (q_k - \lambda w_k) + o(\prod_{k=0}^{m_0-1} r_k \prod_{k=1}^{m_0} (q_k - \lambda w_k)),$$

(3.10)

and

$$\begin{split} \psi_{1,11}\left(c_{2}-,\lambda\right) &= \prod_{i=0}^{m_{1}-1} r_{1,i} \prod_{i=0}^{m_{1}-1} (q_{1,i}-\lambda w_{1,i}) + o\left(\prod_{i=0}^{m_{1}-1} r_{1,i} \prod_{i=0}^{m_{1}-1} (q_{1,i}-\lambda w_{1,i})\right), \\ \psi_{1,12}\left(c_{2}-,\lambda\right) &= \prod_{i=0}^{m_{1}-1} r_{1,i} \prod_{i=1}^{m_{1}-1} (q_{1,i}-\lambda w_{1,i}) + o\left(\prod_{i=0}^{m_{1}-1} r_{1,i} \prod_{i=1}^{m_{1}-1} (q_{1,i}-\lambda w_{1,i})\right), \\ \psi_{1,21}\left(c_{2}-,\lambda\right) &= \prod_{i=0}^{m_{1}-1} r_{1,i} \prod_{i=0}^{m_{1}} (q_{1,i}-\lambda w_{1,i}) + o\left(\prod_{i=0}^{m_{1}-1} r_{1,i} \prod_{i=0}^{m_{1}} (q_{1,i}-\lambda w_{1,i})\right), \\ \psi_{1,22}\left(c_{2}-,\lambda\right) &= \prod_{i=0}^{m_{1}-1} r_{1,i} \prod_{i=1}^{m_{1}} (q_{1,i}-\lambda w_{1,i}) + o\left(\prod_{i=0}^{m_{1}-1} r_{1,i} \prod_{i=1}^{m_{1}} (q_{1,i}-\lambda w_{1,i})\right). \end{split}$$

$$(3.11)$$

By repeated application of the above method, then

$$\psi_{i,11}(c_{i+1}-,\lambda) = \prod_{j=0}^{m_i-1} r_{i,j} \prod_{j=0}^{m_i-1} (q_{i,j}-\lambda w_{i,j}) + o(\prod_{j=0}^{m_i-1} r_{i,j} \prod_{j=0}^{m_i-1} (q_{i,j}-\lambda w_{i,j})),$$

$$\psi_{i,12}(c_{i+1}-,\lambda) = \prod_{j=0}^{m_i-1} r_{i,j} \prod_{j=1}^{m_i-1} (q_{i,j}-\lambda w_{i,j}) + o(\prod_{j=0}^{m_i-1} r_{i,j} \prod_{j=1}^{m_i-1} (q_{i,j}-\lambda w_{i,j})),$$

$$\psi_{i,21}(c_{i+1}-,\lambda) = \prod_{j=0}^{m_i-1} r_{i,j} \prod_{j=0}^{m_i} (q_{i,j}-\lambda w_{i,j}) + o(\prod_{j=0}^{m_i-1} r_{i,j} \prod_{j=0}^{m_i} (q_{i,j}-\lambda w_{i,j})),$$

$$\psi_{i,22}(c_{i+1}-,\lambda) = \prod_{j=0}^{m_i-1} r_{i,j} \prod_{j=1}^{m_i} (q_{i,j}-\lambda w_{i,j}) + o(\prod_{j=0}^{m_i-1} r_{i,j} \prod_{j=1}^{m_i} (q_{i,j}-\lambda w_{i,j})),$$

$$i = 2, 3, \cdots, n.$$

(3.12)

From Lemma 3.2, we have

$$\Phi(c_n-\lambda)=\Psi_{n-1}(c_n-\lambda)G_{n-1}\Psi_{n-2}(c_{n-1}-\lambda)\cdots G_1\Phi(c_1-\lambda).$$

In combination with $(3.10)\sim(3.12)$, and

$$\Phi(c_2-,\lambda) = \Psi_1(c_2-,\lambda)G_1\Phi(c_1-,\lambda),$$

we can obtain

$$\begin{split} \phi_{11}(c_{2}-,\lambda) &= RR_{1}G^{*}\prod_{k=0}^{m_{0}-1}(q_{k}-\lambda w_{k})\prod_{i=1}^{m_{1}-1}(q_{1,i}-\lambda w_{1,i}) + \phi_{11}'(c_{2}-,\lambda), \\ \phi_{12}(c_{2}-,\lambda) &= RR_{1}G^{*}\prod_{k=1}^{m_{0}-1}(q_{k}-\lambda w_{k})\prod_{i=1}^{m_{1}-1}(q_{1,i}-\lambda w_{1,i}) + \phi_{12}'(c_{2}-,\lambda), \\ \phi_{21}(c_{2}-,\lambda) &= RR_{1}G^{*}\prod_{k=0}^{m_{0}-1}(q_{k}-\lambda w_{k})\prod_{i=1}^{m_{1}}(q_{1,i}-\lambda w_{1,i}) + \phi_{21}'(c_{2}-,\lambda), \\ \phi_{22}(c_{2}-,\lambda) &= RR_{1}G^{*}\prod_{k=1}^{m_{0}-1}(q_{k}-\lambda w_{k})\prod_{i=1}^{m_{1}}(q_{1,i}-\lambda w_{1,i}) + \phi_{22}'(c_{2}-,\lambda), \end{split}$$

where

$$G^* = g_{1,12} (q_{m_0} - \lambda w_{m_0})(q_{1,0} - \lambda w_{1,0}) + g_{1,11} (q_{1,0} - \lambda w_{1,0}) + g_{1,22} (q_{m_0} - \lambda w_{m_0}) + g_{1,21}, R = \prod_{k=0}^{m_0-1} r_k, R_1 = \prod_{i=0}^{m_1-1} r_{1,i}, \phi'_{ef}(c_2 - \lambda) = o(RR_1).$$

Similarly, we know that

$$\Phi(c_3-,\lambda) = \Psi_2(c_3-,\lambda)G_2\Phi(c_2-,\lambda),$$

 \mathbf{SO}

$$\begin{split} \phi_{11}(c_3-,\lambda) \\ = & RR_1R_2G^*G^{2*}\prod_{k=0}^{m_0-1}(q_k-\lambda w_k)\prod_{i=1}^{m_1-1}(q_{1,i}-\lambda w_{1,i})\prod_{j=1}^{m_2-1}(q_{2,j}-\lambda w_{2,j}) \\ &+ \phi_{11}'(c_3-,\lambda), \\ \phi_{12}(c_3-,\lambda) \\ = & RR_1R_2G^*G^{2*}\prod_{k=1}^{m_0-1}(q_k-\lambda w_k)\prod_{i=1}^{m_1-1}(q_{1,i}-\lambda w_{1,i})\prod_{j=1}^{m_2-1}(q_{2,j}-\lambda w_{2,j}) \\ &+ \phi_{12}'(c_3-,\lambda), \\ \phi_{21}(c_3-,\lambda) \\ = & RR_1R_2G^*G^{2*}\prod_{k=0}^{m_0-1}(q_k-\lambda w_k)\prod_{i=1}^{m_1-1}(q_{1,i}-\lambda w_{1,i})\prod_{j=1}^{m_2}(q_{2,j}-\lambda w_{2,j}) \\ &+ \phi_{21}'(c_3-,\lambda), \\ \phi_{22}(c_3-,\lambda), \\ \phi_{22}(c_3-,\lambda) \end{split}$$

$$= RR_1 R_2 G^* G^{2*} \prod_{k=1}^{m_0 - 1} (q_k - \lambda w_k) \prod_{i=1}^{m_1 - 1} (q_{1,i} - \lambda w_{1,i}) \prod_{j=1}^{m_2} (q_{2,j} - \lambda w_{2,j}) + \phi_{22}'(c_3 - , \lambda),$$

where

$$G^{*} = g_{1,12} (q_{m_{0}} - \lambda w_{m_{0}})(q_{1,0} - \lambda w_{1,0}) + g_{1,11} (q_{1,0} - \lambda w_{1,0}) + g_{1,22} (q_{m_{0}} - \lambda w_{m_{0}}) + g_{1,21}, G^{2*} = [g_{2,11} + g_{2,12} (q_{1,m_{1}} - \lambda w_{1,m_{1}})](q_{2,0} - \lambda w_{2,0}) + [g_{2,21} + g_{2,22} (q_{1,m_{1}} - \lambda w_{1,m_{1}})], R = \prod_{k=0}^{m_{0}-1} r_{k}, R_{1} = \prod_{i=0}^{m_{1}-1} r_{1,i}, R_{2} = \prod_{j=0}^{m_{2}-1} r_{2,j}, \phi_{ef}'(c_{3} - \lambda) = o(RR_{1}R_{2}), \cdots$$

Similarly, because

$$\Phi(b,\lambda) = \Psi_n(b,\lambda)G_n\Psi_{n-1}(c_n-\lambda)G_{n-1}\Psi_{n-2}(c_{n-1}-\lambda)\cdots G_1\Phi(c_1-\lambda),$$

we have

$$\begin{split} \phi_{11}(b,\lambda) &= R \prod_{i=1}^{n} R_{i} G^{*} G^{**} \prod_{k=0}^{m_{0}-1} (q_{k} - \lambda w_{k}) \prod_{i=1}^{m_{1}-i} (q_{1,i} - \lambda w_{1,i}) \prod_{i=2}^{n} [\prod_{j=1}^{m_{i}-1} (q_{i,j} - \lambda w_{i,j})] \\ &+ \phi_{11}'(b,\lambda), \end{split} \\ \phi_{12}(b,\lambda) &= R \prod_{i=1}^{n} R_{i} G^{*} G^{**} \prod_{k=1}^{m_{0}-1} (q_{k} - \lambda w_{k}) \prod_{i=1}^{m_{1}-i} (q_{1,i} - \lambda w_{1,i}) \prod_{i=2}^{n} [\prod_{j=1}^{m_{i}-1} (q_{i,j} - \lambda w_{i,j})] \\ &+ \phi_{12}'(b,\lambda), \end{split} \\ \phi_{21}(b,\lambda) &= R \prod_{i=1}^{n} R_{i} G^{*} G^{**} \prod_{k=0}^{m_{0}-1} (q_{k} - \lambda w_{k}) \prod_{i=1}^{m_{1}-i} (q_{1,i} - \lambda w_{1,i}) \prod_{i=2}^{n} [\prod_{j=1}^{m_{i}} (q_{i,j} - \lambda w_{i,j})] \\ &+ \phi_{21}'(b,\lambda), \end{split} \\ \phi_{22}(b,\lambda) &= R \prod_{i=1}^{n} R_{i} G^{*} G^{**} \prod_{k=1}^{m_{0}-1} (q_{k} - \lambda w_{k}) \prod_{i=1}^{m_{1}-1} (q_{1,i} - \lambda w_{1,i}) \prod_{i=2}^{n} [\prod_{j=1}^{m_{i}} (q_{i,j} - \lambda w_{i,j})] \\ &+ \phi_{21}'(b,\lambda), \end{split}$$

where

$$G^* = g_{1,12} (q_{m_0} - \lambda w_{m_0})(q_{1,0} - \lambda w_{1,0}) + g_{1,11} (q_{1,0} - \lambda w_{1,0}) + g_{1,22} (q_{m_0} - \lambda w_{m_0}) + g_{1,21},$$

$$G^{**} = \prod_{i=2}^n \{ [g_{i,11} + g_{i,12} (q_{i-1,m_{i-1}} - \lambda w_{i-1,m_{i-1}})](q_{i,0} - \lambda w_{i,0}) + [g_{i,21} + g_{i,22} (q_{i-1,m_{i-1}} - \lambda w_{i-1,m_{i-1}})] \},$$

SLP with n transmission conditions and spectral parameters in the BC

$$R = \prod_{k=0}^{m_0-1} r_k, R_i = \prod_{j=0}^{m_i-1} r_{i,j}, \phi'_{ef}(b,\lambda) = o(R \prod_{i=1}^n R_i).$$

Therefore, the conclusion is proved.

Theorem 3.1. Let $m_i \in \mathbb{N}(i = 0, 1, \dots, n)$, $g_{1,12} g_{i,12} \neq 0, i = 2, 3, \dots, n$, and $H(\lambda) = (h_{ij}(\lambda))_{2 \times 2}$ be defined as in Lemma 2.1. Then

(1) If $h_{21}(\lambda) \neq 0$, then the SLP (1.1)~(1.3) has exactly $(m_0 + m_1 + m_2 + \dots + m_n + 2n + 1)$ eigenvalues.

(2) If $h_{21}(\lambda) = 0$, $h_{11}(\lambda)w_0 + \prod_{i=2}^n h_{22}(\lambda)w_{i,m_i} \neq 0$, then the SLP (1.1)~(1.3) has exactly $(m_0 + m_1 + m_2 + \dots + m_n + 2n)$ eigenvalues.

(3) If $h_{21}(\lambda) = h_{11}(\lambda) = h_{22}(\lambda) = 0, h_{12}(\lambda) \neq 0$, then the SLP (1.1)~(1.3) has exactly $(m_0 + m_1 + m_2 + \dots + m_n + n + 1)$ eigenvalues.

(4) If none of the above conditions holds, then the SLP (1.1)~(1.3) either has k eigenvalues, $k \in \{1, 2, \dots, m_0 + m_1 + \dots + m_n + n\}$ or is degenerate.

Proof. From Lemma 2.1 we know

$$\triangle(\lambda) = h_{11}(\lambda)\phi_{11}(b,\lambda) + h_{12}(\lambda)\phi_{12}(b,\lambda) + h_{21}(\lambda)\phi_{21}(b,\lambda) + h_{22}(\lambda)\phi_{22}(b,\lambda),$$

and observe that from the Lemma 3.3 the degree of λ of $\phi_{11}(b, \lambda)$, $\phi_{12}(b, \lambda)$, $\phi_{21}(b, \lambda)$, $\phi_{22}(b, \lambda)$ in $\triangle(\lambda)$ are $m_0 + m_1 + \cdots + m_n + n$, $m_0 + m_1 + \cdots + m_n + n - 1$, $m_0 + m_1 + \cdots + m_n + 2n - 1$, $m_0 + m_1 + \cdots + m_n + 2n - 2$, respectively. Thus when $h_{21}(\lambda) \neq 0$, we can deduce from (2.2) that the characteristic function $\triangle(\lambda)$ is also a polynomial function of λ and with the degree is $m_0 + m_1 + \cdots + m_n + 2n + 1$. Hence from Fundamental Theorem of Algebra, we know that $\triangle(\lambda)$ has exactly $m_0 + m_1 + \cdots + m_n + 2n + 1$ eigenvalues. Then we complete the proof of case (1), and the other cases can be proved in the same way.

Theorem 3.2. Let $m_i \in \mathbb{N}(i = 0, 1, \dots, n)$, $g_{1,12} g_{i,12} = 0, i = 2, 3, \dots, n$, but $g_{1,12} \prod_{i=2}^{n} (g_{i,11} w_{i,0} + g_{i,22} w_{i-1,m_{i-1}}) \neq 0$. Then

(1) If $h_{21}(\lambda) \neq 0$, then the SLP (1.1)~(1.3) has exactly $(m_0+m_1+\cdots+m_n+n+2)$ eigenvalues.

(2) If $h_{21}(\lambda) = 0$, $h_{11}(\lambda)w_0 + \prod_{i=2}^n h_{22}(\lambda)w_{i,m_i} \neq 0$, then the SLP (1.1)~(1.3) has exactly $(m_0 + m_1 + m_2 + \dots + m_n + 1)$ eigenvalues.

(3) If $h_{21}(\lambda) = h_{11}(\lambda) = h_{22}(\lambda) = 0, h_{12}(\lambda) \neq 0$, then the SLP (1.1)~(1.3) has exactly $(m_0 + m_1 + m_2 + \dots + m_n + 2)$ eigenvalues.

(4) If none of the above conditions holds, then the SLP (1.1)~(1.3) either has k eigenvalues, $k \in \{1, 2, \dots, m_0 + m_1 + \dots + m_n + 1\}$ or is degenerate.

Proof. The proof is similar to Theorem 3.1.

Theorem 3.3. Let $m_i \in \mathbb{N}(i = 0, 1, \dots, n)$, $g_{1,12} = 0$, but $(g_{1,11} w_{1,0} + g_{1,22} w_{m_0}) \times g_{i,12} \neq 0, i = 2, 3, \dots, n$. Then

(1) If $h_{21}(\lambda) \neq 0$, then the SLP (1.1)~(1.3) has exactly $(m_0+m_1+\cdots+m_n+2n)$ eigenvalues.

(2) If $h_{21}(\lambda) = 0$, $h_{11}(\lambda)w_0 + \prod_{i=2}^n h_{22}(\lambda)w_{i,m_i} \neq 0$, then the SLP (1.1)~(1.3) has exactly $(m_0 + m_1 + m_2 + \dots + m_n + 2n - 1)$ eigenvalues.

(3) If $h_{21}(\lambda) = h_{11}(\lambda) = h_{22}(\lambda) = 0, h_{12}(\lambda) \neq 0$, then the SLP (1.1)~(1.3) has exactly $(m_0 + m_1 + m_2 + \dots + m_n + n)$ eigenvalues.

(4) If none of the above conditions holds, then the SLP (1.1)~(1.3) either has k eigenvalues, $k \in \{1, 2, \dots, m_0 + m_1 + \dots + m_n + n - 1\}$ or is degenerate.

Proof. The proof is similar to Theorem 3.1.

Theorem 3.4. Let $m_i \in \mathbb{N}(i = 0, 1, 2, \dots, n), g_{1,12} = (g_{1,11} w_{1,0} + g_{1,22} w_{m_0})g_{i,12} = (g_{1,11} w_{1,12} + g_{1,22} w_{m_0})g_{i,12} = (g_{1,$

0, but $(g_{1,11} w_{1,0} + g_{1,22} w_{m_0})(g_{i,11} w_{i,0} + g_{i,22} w_{i-1,m_{i-1}}) \neq 0, i = 2, 3, \cdots, n$. Then (1) If $h_{21}(\lambda) \neq 0$, then the SLP (1.1)~(1.3) has exactly $(m_0 + m_1 + \cdots + m_n + n + 1)$ eigenvalues.

(2) If $h_{21}(\lambda) = 0$, $h_{11}w_0 + \prod_{i=2}^n h_{22}(\lambda)w_{i,m_i} \neq 0$, then the SLP (1.1)~(1.3) has exactly $(m_0 + m_1 + m_2 + \dots + m_n + n)$ eigenvalues.

(3) If $h_{21}(\lambda) = h_{11}(\lambda) = h_{22}(\lambda) = 0, h_{12}(\lambda) \neq 0$, then the SLP (1.1)~(1.3) has exactly $(m_0 + m_1 + m_2 + \dots + m_n + 1)$ eigenvalues.

(4) If none of the above conditions holds, then the SLP (1.1)~(1.3) either has k eigenvalues, for $k \in \{1, 2, \dots, m_0 + m_1 + \dots + m_n\}$ or is degenerate.

Proof. The proof is similar to Theorem 3.1.

4. Main result

Theorem 4.1. Given any γ disjoint open sets $N_l, N_l \in \mathbb{C}$ and any γ integers $n_l(l = 1, 2, ..., \gamma)$, there exists an SLP (1.1)~(1.3) with exactly $n_l + 2$ eigenvalues in N_l .

Proof. By constructing the SLP $(1.1)\sim(1.3)$, we assume that (1.4) and $(3.1)\sim(3.3)$ hold, $g_{1,12} g_{i,12} \neq 0$, $a_{21} = a_{22} = b_{11} = b_{12} = 0$, and $a_{11} = \lambda \alpha'_1 - \alpha_1, a_{12} = -\lambda \alpha'_2 + \alpha_2, b_{21} = \lambda \beta'_1 + \beta_1, b_{22} = -\lambda \beta'_2 - \beta_2$. Let $m_0 + m_1 + \cdots + m_n + n = \sum_{l=0}^{\gamma} n_l$. Then by Lemma 3.3 the characteristic function defined by equation (2.3), $\Delta(\lambda) = h_{11}(\lambda)\phi_{11}(b,\lambda) + h_{12}(\lambda)\phi_{12}(b,\lambda) + h_{21}(\lambda)\phi_{21}(b,\lambda) + h_{22}(\lambda)\phi_{22}(b,\lambda)$. Because the calculation of $\Delta(\lambda)$ is rather tedious, it is omitted here. Then it follows from Rouche's theorem that the $\Delta(\lambda)$ has exactly $n_l + 2$ roots in N_l .

5. A case study

In order to demonstrate the analysis results we have obtained, we consider the following SLP with three transmission conditions and spectral parameters in the boundary conditions:

$$\begin{cases} -(py')' + qy = \lambda wy, \quad t \in J = (-6, -3) \cup (-3, 0) \cup (0, 3) \cup (3, 9), \\ \lambda y(-6) + (py')(-6) = 0, \\ 3y(9) + (\lambda - 1)(py')(9) = 0, \\ -2(py')(-3-) + y(-3+) = 0, \\ y(-3-) + (py')(-3+) = 0, \\ -(py')(0-) + y(0+) = 0, \\ 2y(0-) + (py')(0+) = 0, \\ 2(py')(3-) + y(3+) = 0, \\ -y(3-) + (py')(3+) = 0. \end{cases}$$
(5.1)

Let n = 2, we choose $m_0 = 1, m_1 = 1, m_2 = 2, m_3 = 2$ and suppose p, q, w are

piecewise polynomial functions defined as follows:

∞ ,	$t \in (-6, -5),$,		())	$t \in (-6, -5)$
1,	$t \in (-5, -4),$	1,	$t \in (-6, -5),$),)	$U \subset (0, 0),$
\sim	$t \in (-4, -3)$	0,	$t \in (-5, -4),$		J,	$t \in (-5, -4),$
∞ ,	$\iota \subset (-4, -5),$	1.	$t \in (-4, -3).$	1	L,	$t \in (-4, -3),$
∞ ,	$t\in(-3,-2),$		$t \in (2, 2)$	3	3,	$t \in (-3, -2),$
1	$t \in (-2, -1)$	1,	$\iota \in (-3, -2),$)	$t \in (-2, -1)$
2'	$v \in (-2, -1),$	2,	$t \in (-2, -1),$	1	, 1	$t \in (-2, -1),$
∞ ,	$t \in (-1,0),$	3,	$t\in(-1,0),$		L,	$\iota \in (-1,0),$
∞ ,	$t \in (0, 1),$	1,	$t \in (0, 1),$	1	L,	$t \in (0,1),$
1.	$t \in (1, 2), \qquad a(t) = s$	J ₁	$t \in (1, 2), i$	$v(t) = \int \frac{1}{2}$	1	$t \in (1, 2)$
_,	$f \in (2, 2)$)	$t \in (2, 2)$	~ (*)	2'	$v \in (1, 2),$
∞ ,	$\iota \in (2, 5),$	1,	$\iota \in (2,3),$	1	L,	$t \in (2,3),$
1,	$t \in (3,4),$	0,	$t \in (3,4),$).	$t \in (3, 4),$
∞ ,	$t \in (4,5),$	1,	$t \in (4,5),$	1	í	$t \in (4, 5)$
∞ ,	$t \in (5, 6),$	2,	$t \in (5, 6),$		L, I	$t \in (1, 6),$
1			$t \in (6, 7)$	¹	ι,	$t\in(5,6),$
$\frac{1}{2}$,	$t \in (6,7),$	10,	$\iota \subset (0, 1),$	0),	$t\in(6,7),$
2	$t \in (7, 8)$	1,	$t\in(7,8),$	2	2,	$t \in (7,8),$
∞ ,	$\iota \in (1,0),$	(0,	$t \in (8,9);$	lo)	$t \in (8, 9)$
(1,	$t \in (8,9);$			(,	0 (0,0).
	$ \begin{pmatrix} \infty, \\ 1, \\ \infty, \\ \infty, \\ \frac{1}{2}, \\ \infty, \\ 1, \\ \infty, \\ 1, \\ \infty, \\ \frac{1}{2}, \\ \infty, \\ 1, \\ 1$	$ \begin{cases} \infty, & t \in (-6, -5), \\ 1, & t \in (-5, -4), \\ \infty, & t \in (-4, -3), \\ \infty, & t \in (-3, -2), \\ \frac{1}{2}, & t \in (-2, -1), \\ \infty, & t \in (-1, 0), \\ \infty, & t \in (0, 1), \\ 1, & t \in (1, 2), q(t) = 4 \\ \infty$	$\begin{cases} \infty, t \in (-6, -5), \\ 1, t \in (-5, -4), \\ \infty, t \in (-4, -3), \\ \infty, t \in (-3, -2), \\ \frac{1}{2}, t \in (-2, -1), \\ \infty, t \in (-1, 0), \\ \infty, t \in (0, 1), \\ 1, t \in (1, 2), q(t) = \begin{cases} 1, \\ 0, \\ 1, \\ 1, \\ 2, \\ 3, \\ 1, \\ 1, \\ t \in (1, 2), \\ \infty, t \in (2, 3), \\ 1, \\ 1, \\ t \in (3, 4), \\ \infty, t \in (2, 3), \\ 1, \\ 1, \\ t \in (3, 4), \\ \infty, t \in (5, 6), \\ \frac{1}{2}, t \in (6, 7), \\ \infty, t \in (7, 8), \\ 1, \\ 0, \\ 1, \\ t \in (8, 9); \end{cases}$	$\begin{cases} \infty, & t \in (-6, -5), \\ 1, & t \in (-5, -4), \\ \infty, & t \in (-4, -3), \\ \infty, & t \in (-3, -2), \\ \frac{1}{2}, & t \in (-2, -1), \\ \infty, & t \in (-1, 0), \\ \infty, & t \in (0, 1), \\ 1, & t \in (1, 2), \\ \infty, & t \in (2, 3), \\ 1, & t \in (3, 4), \\ \infty, & t \in (4, 5), \\ \infty, & t \in (5, 6), \\ \frac{1}{2}, & t \in (6, 7), \\ \infty, & t \in (7, 8), \\ 1, & t \in (8, 9); \end{cases} $ $\begin{cases} 1, & t \in (-6, -5), \\ 0, & t \in (-5, -4), \\ 1, & t \in (-5, -4), \\ 1, & t \in (-3, -2), \\ 2, & t \in (-1, 0), \\ 1, & t \in (0, 1), \\ 1, & t \in (0, 1), \\ 1, & t \in (1, 2), \\ 0, & t \in (1, 2), \\ 0, & t \in (1, 2), \\ 0, & t \in (3, 4), \\ 1, & t \in (4, 5), \\ 2, & t \in (5, 6), \\ 0, & t \in (6, 7), \\ 1, & t \in (7, 8), \\ 0, & t \in (8, 9); \end{cases}$	$ \begin{cases} \infty, & t \in (-6, -5), \\ 1, & t \in (-5, -4), \\ \infty, & t \in (-4, -3), \\ \infty, & t \in (-3, -2), \\ \frac{1}{2}, & t \in (-2, -1), \\ \infty, & t \in (-1, 0), \\ \infty, & t \in (0, 1), \\ 1, & t \in (1, 2), \\ \infty, & t \in (2, 3), \\ 1, & t \in (3, 4), \\ \infty, & t \in (4, 5), \\ \infty, & t \in (5, 6), \\ \frac{1}{2}, & t \in (6, 7), \\ \infty, & t \in (7, 8), \\ 1, & t \in (8, 9); \end{cases} $ $ \begin{cases} 1, & t \in (-6, -5), \\ 0, & t \in (-5, -4), \\ 1, & t \in (-3, -2), \\ 2, & t \in (-1, 0), \\ 1, & t \in (0, 1), \\ 1, & t \in (1, 2), \\ 0, & t \in (0, 1), \\ 1, & t \in (2, 3), \\ 0, & t \in (3, 4), \\ 1, & t \in (4, 5), \\ 2, & t \in (5, 6), \\ 0, & t \in (6, 7), \\ 1, & t \in (7, 8), \\ 0, & t \in (8, 9); \end{cases} $	$ \begin{cases} \infty, & t \in (-6, -5), \\ 1, & t \in (-5, -4), \\ \infty, & t \in (-4, -3), \\ \infty, & t \in (-3, -2), \\ \frac{1}{2}, & t \in (-2, -1), \\ \infty, & t \in (-1, 0), \\ \infty, & t \in (0, 1), \\ 1, & t \in (1, 2), \\ \infty, & t \in (2, 3), \\ 1, & t \in (3, 4), \\ \infty, & t \in (4, 5), \\ \infty, & t \in (5, 6), \\ \frac{1}{2}, & t \in (6, 7), \\ \infty, & t \in (7, 8), \\ 1, & t \in (8, 9); \end{cases} $ $ \begin{cases} 1, & t \in (-6, -5), \\ 0, & t \in (-5, -4), \\ 1, & t \in (-4, -3), \\ 1, & t \in (-4, -3), \\ 1, & t \in (-3, -2), \\ 2, & t \in (-2, -1), \\ 3, & t \in (-1, 0), \\ 1, & t \in (-1, 0), \\ 1, & t \in (0, 1), \\ 1, & t \in (0, 1), \\ 1, & t \in (0, 1), \\ 1, & t \in (1, 2), \\ 0, & t \in (0, 1), \\ 1, & t \in (1, 2), \\ 0, & t \in (3, 4), \\ 0, & t \in (3, 4), \\ 1, & t \in (4, 5), \\ 2, & t \in (5, 6), \\ 0, & t \in (6, 7), \\ 1, & t \in (7, 8), \\ 0, & t \in (8, 9); \end{cases} $

From the SLP (5.1), we have

$$A_{\lambda} = \begin{pmatrix} 1 & -\lambda \\ 0 & 0 \end{pmatrix}, \ B_{\lambda} = \begin{pmatrix} 0 & 0 \\ 3 & \lambda - 1 \end{pmatrix},$$
$$C_{1} = \begin{pmatrix} 0 & -2 \\ 1 & 0 \end{pmatrix}, \ D_{1} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \ C_{2} = \begin{pmatrix} 0 & -1 \\ 2 & 0 \end{pmatrix},$$
$$D_{2} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \ C_{3} = \begin{pmatrix} 0 & 2 \\ -1 & 0 \end{pmatrix}, \ D_{3} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix},$$

and

$$\begin{split} &\det(C_1) = \det(C_2) = \det(C_3) = 2 > 0, \ \det(D_1) = \det(D_2) = \det(D_3) = 1 > 0, \\ &G_1 = -D_1^{-1}C_1 = \begin{pmatrix} 0 & 2 \\ -1 & 0 \end{pmatrix}, \ G_2 = -D_2^{-1}C_2 = \begin{pmatrix} 0 & 1 \\ -2 & 0 \end{pmatrix}, \ G_3 = -D_3^{-1}C_3 = \begin{pmatrix} 0 & -2 \\ 1 & 0 \end{pmatrix}, \\ &g_{1,12} = 2 \neq 0, \ g_{2,12} = 1 \neq 0. \end{split}$$

We can deduce that the the characteristic function

$$\triangle(\lambda) = -3\lambda^8 - 22\lambda^7 + 43\lambda^6 - 15\lambda^5 - 126\lambda^4 + 138\lambda^3 - 63\lambda^2 + 13\lambda - 1$$

so the SLP (5.1) has exactly $m_0 + m_1 + m_2 + m_3 + n = 8$ eigenvalues

 $\lambda_1 = -8.9338, \ \lambda_2 = -1.6971, \ \lambda_3 = 0.2107 - 0.0438i,$

(5.2)

$$\begin{split} \lambda_4 &= 0.2107 + 0.0438i, \ \lambda_5 &= 0.3401 - 0.2543i, \ \lambda_6 &= 0.3401 + 0.2543i, \\ \lambda_7 &= 1.0979 - 1.1932i, \ \lambda_8 &= 1.0979 + 1.1932i. \end{split}$$

6. Conclusion

By using the construction method of discontinuous function solution, it is concluded that the finite spectrum of SLP with n transmission conditions and spectral parameters in the boundary conditions has at most $m_0 + m_1 + \cdots + m_n + 2n + 1$ eigenvalues. In addition, we show that these $m_0 + m_1 + \cdots + m_n + 2n + 1$ eigenvalues can be distributed arbitrarily throughout the complex plane in the non-self-adjoint case and anywhere along the real line in the self-adjoint case. Finally, we give a specific example to verify the accuracy of this conclusion.

Acknowledgements

The authors would like to thank the editor and the referees for their valuable suggestions and comments. We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

References

- J. J. Ao, F. Z. Bo and J. Sun, Fourth order boundary value problems with finite spectrum, Appl. Math. Comput., 2014, 244, 952–958.
- [2] J. J. Ao and J. Sun, Matrix representations of Sturm-Liouville problems with eigenparameter-dependent boundary conditions, Linear. Algebra. Appl., 2013, 438(5), 2359–2365.
- [3] J. J. Ao and J. Sun, Matrix representations of Sturm-Liouville problems with coupled eigenparameter-dependent boundary conditions, Appl. Math. Comput., 2014, 244, 142–148.
- [4] J. J. Ao, J. Sun and A. Zettl, Finite spectrum of 2nth order boundary value problems, Appl. Math. Lett., 2015, 42, 1–8.
- [5] J. J. Ao, J. Sun and A. Zettl, Matrix representations of fourth order boundary value problems with finite spectrum, Linear. Algebra. Appl., 2012, 436(7), 2359– 2365.
- [6] J. J. Ao, J. Sun and M. Z. Zhang, The finite spectrum of Sturm-Liouville problems with transmission conditions, Appl. Math. Comput., 2011, 218, 1166– 1173.
- [7] J. J. Ao, J. Sun and M. Z. Zhang, The finite spectrum of Sturm-Liouville problems with transmission conditions and eigenparameter-dependent boundary conditions, Results. Math., 2013, 63, 1057–1070.
- [8] F. V. Atkinson, Discrete and Continuous Boundary Problems, Acdemic Press, New York/London, 1964.
- B. Chanane, Accurate solutions of fourth order Sturm-Liouville problems, J. Comput. Appl. Math., 2010, 234, 3064–3071.

- [10] B. Chanane, Sturm-Liouville problems with impulse effects, Appl. Math. Comput., 2010, 190, 610–626.
- [11] Y. J. Cui and J. X. Sun, Existence of multiple positive solutions for fourthorder boundary value problems in Banach spaces, Bound. Value. Probl., 2012, 107, 1–13.
- [12] W. N. Everitt and D. Race, On necessary and sufficient conditions for the existence of Carathéodory solutions of ordinary differential equations, Quaest. Math., 1978, 2, 507–512.
- [13] Q. K. Kong, H. Y. Wu and A. Zettl, Dependence of the n th Sturm-Liouville eigenvalue on the problem, J. Differ. Equations, 1999, 156, 328–354.
- [14] Q. K. Kong, H. Y. Wu and A. Zettl, Sturm-Liouville problems with finite spectrum, J. Math. Anal. Appl., 2001, 263, 748–762.
- [15] Q. K. Kong and A. Zettl, Eigenvalues of regular Sturm-Liouville problems, J. Differ. Equations, 1996, 131, 1–19.
- [16] Q. K. Kong and A. Zettl, Inverse Sturm-Liouville problems with finite spectrum, J. Math. Anal. Appl., 2012, 386, 1–9.
- [17] O. Sh. Mukhtarov, M. Kadakal and F. S. Muhtarov, Eigenvalues and nomarlized eigenfunctions of discontinuous Sturm-Liouville problem with transmission conditions, Rep. Math. Phys., 2004, 54(3), 41–56.
- [18] O. Sh. Mukhtarov and S. Yakubov, Problems for ordinary differential equations with transmission conditions, Appl. Anal., 2002, 81, 1033–1064.
- [19] J. Wang, R. R. Yang and H. F. Huo, Dynamics of a diffusive viral infection model with impulsive CTL immune response, Appl. Anal., 2023, 103(1), 106– 123.
- [20] J. Wang, R. R. Yang, J. Wang and J. X. Cao, Threshold dynamics scenario of a plants- pollinators cooperative system with impulsive effect on a periodically evolving domain, Eur. J. Appl. Math., 2024. DOI: 10.1017/S0956792524000135.
- [21] M. Z. Xu, W. Y. Wang and J. J. Ao, Finite spectrum of Sturm-Liouville problems with n transmission conditions, Iran. J. Sci. Technol. A., 2018, 42, 811– 817.
- [22] A. Zettl, Sturm-Liouville Theory, Mathematical Surveys and Monographs, American Mathematical Society, 2005.
- [23] X. Y. Zhang and J. Sun, A class of fourth-order differential operator with eigenparameter-dependent boundary and transmission conditions, Acta. Math. Appl. Sin-E., 2013, 26(1), 205–219.