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Abstract This study investigates the application of the Caputo derivative
with a variable fractional order to time-dependent models of Ordinary Differ-
ential Equations (ODEs), aiming to enhance the simulation accuracy of dy-
namic systems characterized by complex, nonlinear temporal behaviors. The
proposed approach provides a more refined understanding and predictive ca-
pability for non-constant real-world phenomena, contributing to the devel-
opment of advanced scientific and engineering solutions. The research cen-
ters on a variable-order Lotka-Volterra predator-prey model, employing the
Arzelà-Ascoli and Schaefer fixed point theorems to establish the existence of
solutions, and the Banach fixed point theorem to demonstrate their unique-
ness. Numerical analyses are conducted to compare the proposed model with
its integer-order, fractional-order, and variable-order counterparts, utilizing
various time-varying and constant delay functions. The findings validate the
efficacy of the proposed method in accurately modeling dynamic systems.
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1. Introduction

Fractional differential equations (FDEs) have recently attracted significant interest
because of their extensive applicability in mathematical modeling across various ar-
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eas, such as physics, engineering, biological systems, and viscoelastic materials. The
equations we analyze belong to a specific category characterized by the presence of
fractional derivatives. The field of applied mathematics has recently experienced a
significant surge in interest in the study of differential equations. The fractional-
order differential operator is currently recognized as a more comprehensive form of
the conventional integer-order differential operator. The Riemann-Liouville (R-L),
Caputo, and Grunwald-Letnikov definitions are the three most frequently employed
definitions. Furthermore, fractional calculus regularly uses the Caputo derivative
and R-L operators for a wide range of scientific and practical applications. Frac-
tional derivatives provide various benefits, but in some cases, their use may be re-
stricted. The R-L derivative presents certain challenges when modeling real-world
systems with fractional differential equations. It is important to note that in the
context of R-L differentiation, the derivative of a constant is non-zero. If we exam-
ine the fractional differentiation of Mittag-Leffler and exponential functions, we find
that every function that remains constant at the origin also has a singularity. The
extent to which the R-L fractional derivative can be used efficiently is limited by
the prior identified difficulties. However, it should be emphasized that to determine
whether a function is differentiable while calculating its fractional derivative, the
Caputo derivative requires stricter regularity criteria. Only differentiable functions
can be employed with these derivatives. However, R-L fractional derivatives of any
order can be obtained for functions without a first-order derivative [20,34].

In recent years, fractional differential equations have gained popularity across
a wide range of domains. The controllability of damped dynamical systems repre-
sented by Hilfer fractional derivatives was studied by Naveen et al. [31]. In [30],
they also offered a qualitative study of an RLC circuit through the use of the Hil-
fer derivative and numerical methods via the Lagrange polynomial approach. The
qualitative analysis of variable-order fractional differential equations with constant
delay is explored by Naveen et al. in [29]. The predator-prey model was originally
examined in [38], and the shift from simple to complex dynamics in a predator-
prey-parasite model was investigated by Bairagi et al. [6]. The association between
incubation latency and infection rate is also examined in the article by Bairagi
et al. [11] investigates how interactions between predators, prey, and subsidies on
stepping-stone domains affect populations when there are delays in dispersal. In the
meantime, a fractional-order prey-predator system with time delay and a Monod-
haldane functional response was studied for stability by C. Rajivgandhi et al. [9].
Considering the distribution of prey, Alidousti et al. [5] investigated the stability
and bifurcation of a time-delay fractional predator-prey system. Fractional-order
delayed predator-prey systems with Holling type-II functional responses were stud-
ied by Rihan et al. [36]. A study on the modeling, analysis, and bifurcation control of
a delayed fractional-order predator-prey model was carried out by Huang et al. [17].
A study on the hybrid control of Hopf bifurcation in a Lotka-Volterra predator-prey
model with two delays was carried out by Peng et al. [33]. Finally, staged-structured
Lotka-Volterra predator-prey models and their possible use in pest control were ex-
amined by Shi et al. [37]. The ergodic property of the Lotka-Volterra predator-prey
model under regime switching was investigated by Zu et al. [41] using white noise
higher-order perturbation.

The prevailing importance of fractional-order models can be gauged in several
articles. The research work spans a diverse array of mathematical modeling tech-
niques applied to various ecological and epidemiological systems. For instance, Izadi
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et al. [18] introduced a novel Touchard polynomial-based spectral matrix colloca-
tion method to solve the Lotka-Volterra competition system with diffusion, offering
new insights into these classical biological systems. Boulaaras et al. [8] explore the
co-dynamics of vector-borne infections using optimal control theory, contributing to
the understanding of disease spread and control strategies. Naik et al. [26] and Naik
et al. [25] delve into the complexities of predator-prey dynamics through bifurcation
analysis and chaos theory, highlighting the intricate behavior of these ecological sys-
tems. Additionally, Danane et al. [10] model a three-species prey-predator system
using stochastic methods to incorporate Lévy jumps, providing a more realistic de-
piction of ecological interactions. Naik and colleagues [12,23,27,28] also investigate
the interplay between HIV and HCV co-infection using fractional-order models, as
well as the stability and bifurcation in predator-prey systems with specific refuge
and harvesting effects. These studies collectively advance the understanding of eco-
logical and epidemiological systems through sophisticated mathematical techniques.

Recent research in fractional calculus has significantly advanced the model-
ing and analysis of complex nonlinear systems across various scientific disciplines.
Higazy et al. in [16] applied fractional-order derivatives to predator-prey mod-
els, capturing memory effects in ecological interactions, while Abdul et al. in [1]
provided novel solutions to fractional logistic equations, offering insights into pop-
ulation dynamics. Ganie et al. in [15] extended soliton theory by simulating frac-
tional Hirota–Satsuma Korteweg–de Vries systems, and Abdul et al. [2] analyzed
the Zakharov–Kuznetsov equations, enhancing stability analysis in plasma physics.
Furthermore, Naik et al. in [24] explored bifurcations in discrete-time chemical
models using fractional techniques, and Abdul et al. [3] examined the stability of
solutions in coupled fractional differential equations. Together, these studies un-
derscore the growing importance of fractional calculus in understanding complex
systems.

In the Lotka-Volterra model, which is also called the predator-prey model, it
is common to use a set of first-order, nonlinear ODEs to show how two species
interact, with one acting as a predator and the other as a prey. This important
paradigm in ecological and mathematical sciences was independently proposed by
Alfred Lotka in 1925 and Vito Volterra in 1926. Two equations in the model describe
the dynamic changes in the two species populations. Let’s say P represents the
predator population and N represents the prey population. Given is the Lotka-
Volterra model:

dN

dp
= rN − aNP, (1.1)

where dN
dp reflects the prey population change rate over time. The prey’s growth

term is rN , where r is its natural growth rate without predators, a is a constant
denoting predator efficiency, and aNP is the rate at which predators kill prey. The
other equation involves:

dP

dp
= −sP + bNP, (1.2)

where the change in the predator population over time is denoted by dP
dp , s is the

predator’s natural mortality rate when there is no prey around, and −sP is the
predator’s death term. Predator population growth due to prey eating is denoted
by the constant bNP , where b represents the efficiency with which prey is converted
into predatory progeny. The population sizes of both species tend to fluctuate with
time, according to the Lotka-Volterra model. As a result of an increase in the
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number of potential meals, predator numbers will rise in tandem. If there are more
predators than prey, there will be fewer prey, which will cause there to be fewer
predators. This cycle continues, giving rise to the distinctive oscillations observed
in many predator-prey systems in nature.

Fractional calculus is a topic of active study. Several scientists have used
fractional-order derivatives to model dynamical systems. Some researchers use a
fixed fractional order, while others opt for a more flexible one. Some research also
integrates the time delay components into their dynamics, making the model more
adaptable and realistic. For example, in [22], R.M. May discussed the time delay
versus stability in population models with two and three trophic levels of the form
given below:

ẋ1(p) =x1(p) [k1 − ax1(p− τ)− bx2(p)] ,

ẋ2(p) =x2(p) [−k2 + cx1(p)− dx2(p)] .

Similarly, in [39], Yan et al investigated the Hopf bifurcation and global periodic
solutions in a delayed predator-prey system as follows:

ẋ1(p) =x1(p) [k1 − ax1(p− τ)− bx2(p)] ,

ẋ2(p) =x2(p) [−k2 + cx1(p)− dx2(p− τ)] .

In [13], T. Faria examined the Hopf bifurcation and stability of a system with two
discrete delays and instantaneous feedback control

ẋ1(p) =x1(p) [k1 − ax1(p)− bx2(p− τ2)] ,

ẋ2(p) =x2(p) [−k2 + cx1(p− τ1)− dx2(p)] .

In [40], Yan et al discussed a Hopf bifurcation in a delayed Lotka- Volterra predator-
prey system as follows:

ẋ1(p) =x1(p) [k1 − ax1(p− τ)− bx2(p− τ)] ,

ẋ2(p) =x2(p) [−k2 + cx1(p− τ)− dx2(p− τ)] .

In [21], Li et al discussed the bifurcation for a fractional-order Lotka-Volterra
predator-prey model with delay feedback control such as the one given below:

Dϑx1(p) =x1(p) [k1 − ax1(p− τ)− bx2(p− τ)] ,

Dϑx2(p) =x2(p) [−k2 + cx1(p− τ)− dx2(p− τ)] .

Numerous studies have delved into the intricate complexities of the Lotka-Volterra
system within the framework of fractional calculus. In this new research, we in-
vestigate the role of variable-order fractional derivatives with time-varying delay in
understanding the behavior of the model’s solutions.

The novelty of this research lies in its exploration of the Lotka-Volterra predator-
prey model by incorporating variable-order fractional derivatives with time-varying
delay. While previous studies have extensively examined the model using fixed-
order fractional derivatives and time delays, this research introduces the concept of
variable-order fractional derivatives, which allows for a more flexible and accurate
representation of the dynamic interactions between predator and prey populations.
The inclusion of time-varying delay further enhances the model’s realism, making
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it more applicable to real-world ecological systems where delays and interactions
are not constant. This approach offers new insights into the complex behavior of
predator-prey systems, potentially leading to a deeper understanding of ecological
dynamics.

The article’s structure is as follows: In Section 2, the model is formulated and its
novelty is explained in detail. In Section 3, we explain the motivation of the variable-
order derivative. Then, in Section 4, we look into whether solution(s) to the initial
value problem for the variable-order time-varying delay differential equations exists
and is unique. In Section 5, we discussed the integer-order proposed system of
time-varying delay using the Adams-Bashforth-Moulton(ABM) predictor-corrector
method. In Section 5.1, we look at the results and discuss the proposed system’s
different variable orders and time-varying delays. Finally, the findings and future
remarks of the present study are outlined in Section 6.

2. Formulation of the model

This present research work is to study the existence and uniqueness of results for
the Lotka-Volterra predator-prey system of variable order with time-varying delay
components with initial conditions. Such a scenario can be represented by the
following equations:

Dϑ(p)
0,p x(p) =x(p) [k1 − ax(p− τ(p))− by(p− τ(p))] , x(0) = x0, (2.1)

Dϑ(p)
0,p y(p) =y(p) [−k2 + cx(p− τ(p))− dy(p− τ(p))] , y(0) = y0, (2.2)

where Dϑ(p)
0,p is a Caputo differential operator with fractional variable order function

ϑ(p), while k1, k2, a, b, c, d are the model’s parameters, and τ(p) is a time-varying
delay component. Now the proposed model is converted into a general coupled
system based upon Caputo fractional variable order derivative of the following form:

Dϑ(p)
0,p x(p) =g1(p, x(p), x(p− τ(p)), y(p), y(p− τ(p))), x(0) = x0, (2.3)

Dϑ(p)
0,p y(p) =g2(p, x(p), x(p− τ(p)), y(p), y(p− τ(p))), y(0) = y0, (2.4)

where p ∈ [0, T ], g1, g2 are in general nonlinear functions, and τ(p) is a time-varying
delay component.

The primary contribution of the present research study can be outlined as fol-
lows:

1. In recent studies, the fractional order Lotka-Volterra system with constant
delay is analyzed under the various distinct delays by Li et al in [21] includ-
ing some references cited therein. In the present study, however, fractional
variable order is used for the model under time-varying delay components.

2. By employing fixed point theory, the solution to the Caputo derivative of
variable-order time-varying delay differential equations (VOTDDEs) with the
initial condition has been attained. This approach establishes both the solu-
tions’ existence and uniqueness while examining the chaotic characteristics of
the proposed systems featuring time-dependent delays.

3. We employ the innovative hypothesis to confirm the existence and uniqueness
of solutions for VOTDDEs, specifically those described by (2.3)-(2.4) with
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time-varying delays. Subsequently, we demonstrate chaotic behavior, thus
validating the theoretical findings.

4. Explore the variable order Lotka-Volterra predator-prey system of time-
varying delay differential equations (VOTDDEs) with an initial condition to
analyze its chaotic behavior. Next, compare the effects of time-varying delay
for both integer and variable orders to validate the obtained results. Finally,
implement these findings effectively in real-world scenarios.

3. Motivation for fractional-order systems

This is a big step forward in the modeling of complex dynamic systems, especially
where standard integer-order models fail. It uses ODE models with Caputo frac-
tional variable order derivatives and time delays. The Caputo fractional derivative, a
frequently used operator in fractional calculus, offers a more generalized and flexible
approach compared to standard derivatives [4,7,14,19,32,35]. Its main characteris-
tic is the use of non-integer-order differentiation, which improves the representation
of systems’ memories and genetic qualities. This is especially important when mod-
eling phenomena whose current state is affected not just by their recent past but
also by their longer-term background, as is the case in many biological, physical,
and engineering processes.

The Caputo operator’s variable fractional order increases its complexity even fur-
ther. When modeling complex systems with potentially evolving dynamics, variable-
order derivatives have the advantage of allowing the order of the derivative to alter
across time or space. In materials science, for instance, this allows for a more precise
depiction of the mechanical characteristics of viscoelastic materials as they evolve
over time or are subjected to varying degrees of stress. In neuroscience, variable-
order models are superior for capturing the neural network’s plasticity across time.
These models’ accuracy is further improved by the incorporation of temporal de-
lays. Systems such as population dynamics and control systems require time delays
because of the time lag between cause and effect. Time delays improve future state
prediction, which in turn improves planning and control across a wide range of sci-
entific and technical applications. There has been a major stride forward in the
modeling and understanding of complex, dynamic systems across many scientific
disciplines since the introduction of the Caputo fractional variable order derivatives
and time delays.

Additionally, the utilization of the Caputo fractional variable order derivative is
crucial in disciplines such as geophysics and finance, as it enables the capture of non-
local dynamics. This is particularly important in scenarios where long-range inter-
actions and memory effects have a significant impact. In the field of geophysics, the
intricate phenomena occurring within the Earth, such as the propagation of seismic
waves over different geological strata, demonstrate characteristics that can be more
accurately elucidated through the application of fractional calculus. This mathe-
matical framework allows for a more comprehensive understanding of the medium’s
nuanced and history-dependent interactions. In financial markets, the utilization of
variable-order derivatives offers an improved representation of non-linear dynamics
that are dependent on memory, such as market volatility and swings in asset prices.
This technique offers a more realistic and predictive framework compared to conven-
tional models, facilitating enhanced understanding and more resilient forecasting.



1008 P. A. Naik, S. Naveen, V. Parthiban, S. Qureshi, M. Alquran & M. Senol

The incorporation of time delay serves to enhance the effectiveness of these models
by acknowledging the temporal gap between acts and their discernible outcomes, a
prevalent occurrence in economic and ecological systems. The integration of vari-
able order and time delay into these extensive modeling capabilities establishes the
Caputo fractional derivative as a potent instrument in contemporary scientific study
and its practical implementation.

4. Main theoretical results

This section focuses on the examination of the presence and unique nature of solu-
tions utilizing fixed-point theory. Next, we analyze the contrast between the con-
ventional Lotka-Volterra predator-prey model and the variable-order system with
a time-dependent delay. Before establishing the theoretical analysis in this section,
readers must familiarize themselves with the fundamental principles of fractional
calculus. The ideas mentioned are the Rieman-Liouville integral of variable frac-
tional order, the Caputo differential operator with variable-order derivative, the
continuous operator, complete mapping, fixed points, and a uniformly bounded
sequence. The primary principles can be located in the reference [29].

4.1. Existence and uniqueness results

First, let us prove the existence theorem by using Arzela-Ascoli and Schaefer’s
fixed point theorem and next, the uniqueness theorem by using Banach contraction
principles for the problem (2.3)-(2.4). For this, we make the following assumptions.
(A1) Consider the function gi : J × Ω × Ω → Ω, where gi is continuous, and there
exist positive constants β1 and β2 such that

|gi(p, δ1, η1)− gi(p, δ2, η2)| ≤ β1|δ1 − δ2|+ β2|η1 − η2|, for i = 1, 2.

(A2) Assume the function is continuous and there exists a positive constant β3 such
that

|gi(p, s, δ1)− gi(p, s, δ2|) ≤ β3|δ1 − δ2|.
(A3) Assuming the function gi is completely continuous, there exists β4(·) ∈ L1(J,R)
such that

|gi(p, δ, η)| ≤ β4(p), p ∈ J, δ, η ∈ Ω.

Theorem 4.1. Assume that (A3) holds, then the system (2.3)-(2.4) has at least
one solution on J.

Proof. Let us consider the operator A is continuous and completely continuous.

Step 1. To illustrate the continuity of A, we examine a sequence xn converging to
a point x ∈ C

|(Axn)(p)− (Ax)(p)|

=
∣∣∣ 1

Γ(ϑ(p))

p∫
0

(p− s)ϑ(p)−1g1(s, xn(s), xn(s− τ(p))))ds

− 1

Γ(ϑ(p))

p∫
0

(p− s)ϑ(p)−1g1(s, x(s), x(s− τ(p)))ds
∣∣∣
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≤
∣∣∣ 1

Γ(ϑ(p))

p∫
0

(p− s)ϑ(p)−1g1(s, xn(s), xn(s− τ(p)))ds
∣∣∣,

∣∣∣− 1

Γ(ϑ(p))

p∫
0

(p− s)ϑ(p)−1g1(s, x(s), x(s− τ(p)))ds
∣∣∣

≤ 1

Γ(ϑ(p))

p∫
0

(p− s)ϑ(p)−1
∣∣∣g1(s, xn(s), xn(s− τ(p)))− g1(s, x(s), x(s− τ(p)))

∣∣∣ds
≤ Tϑ(p)

Γ(ϑ(p) + 1)

∥∥∥g1(s, xn(s), xn(s− τ(p)))− g1(s, x(s), x(s− τ(p)))
∥∥∥
C
.

As function f exhibits continuous behavior, we can conclude that

|(Axn)(p)− (Ax)(p)|

≤ Tϑ(p)

Γ(ϑ(p) + 1)

∥∥∥g1(s, xn(s), xn(s− τ(p)))− g1(s, x(s), x(s− τ(p)))
∥∥∥ → 0 as p → ∞.

Similarly,

|(Ayn)(p)− (Ay)(p)|

≤ Tϑ(p)

Γ(ϑ(p) + 1)

∥∥∥g2(s, yn(s), yn(s− τ(p)))− g2(s, y(s), y(s− τ(p)))
∥∥∥ → 0 as p → ∞.

Step 2. The operator A is bounded within its own set, where r > 0 is a positive
constant. For any x belonging to Br = {x ∈ C : |x| ≤ r}, it holds that |Ax| ≤ l,
where l is a positive constant

|(Ax(p))| =

∣∣∣∣∣∣ 1

Γ(ϑ(p))

p∫
0

(p− s)ϑ(p)−1g1(s, x(s), x(s− τ(p)))ds

∣∣∣∣∣∣
≤ 1

Γ(ϑ(p))

p∫
0

(p− s)ϑ(p)−1 |g1(s, x(s), x(s− τ(p)))| ds

≤ 1

Γ(ϑ(p))

p∫
0

(p− s)ϑ(p)−1 |β4(s)| ds

≤ 1

Γ(ϑ(p))

p∫
0

(p− s)ϑ(p)−1 ∥β4(s)∥ ds,

|(Ax(p))| ≤Tϑ(p) ∥β4(s)∥C
Γ(ϑ(p) + 1)

.

Similarly,

|(Ay(p))| ≤Tϑ(p) ∥β4(s)∥C
Γ(ϑ(p) + 1)

.
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Step 3. The operator A maps bounded sets to equicontinuous sets in C. Consider
0 ≤ p1, p2 ≤ T , where Br is a bounded set in C, and x belongs to Br

|(Ax)(p2)− (Ax)(p1)|

≤ 1

Γ(ϑ(p))

p2∫
0

(p2 − s)ϑ(p)−1 |g1(s, x(s), x(s− τ(p)))| ds

− 1

Γ(ϑ(p))

p1∫
0

(p1 − s)ϑ(p)−1 |g1(s, x(s), x(s− τ(p)))| ds

≤ 1

Γ(ϑ(p))

p2∫
0

(p2 − s)ϑ(p)−1 ∥g1(s, x(s), x(s− τ(p)))∥ ds

− 1

Γ(ϑ(p))

p1∫
0

(p1 − s)ϑ(p)−1 ∥g1(s, x(s), x(s− τ(p)))∥ ds

≤ 1

Γ(ϑ(p))

p2∫
0

[
(p2 − s)ϑ(p)−1 − (p1 − s)ϑ(p)−1

]
∥g1(s, x(s), x(s− τ(p)))∥ ds

+
1

Γ(ϑ(p))

p2∫
p1

[
(p2 − s)ϑ(p)−1

]
∥g1(s, x(s), x(s− τ(p))))∥ ds

≤
∥β4(s)∥C
Γ(ϑ(p))

p2∫
0

[
(p2 − s)ϑ(p)−1 − (p1 − s)ϑ(p)−1

]
ds

+
∥β4(s)∥C
Γ(ϑ(p))

p2∫
p1

(p2 − s)ϑ(p)−1ds.

Given p2 > p1, the right side of the inequality becomes 0. Utilizing the completely
continuous definitions, it becomes apparent that the operator A : C → C demon-
strates complete continuity. By applying the Arzelà-Ascoli theorem, we establish
its compactness. Moreover, by identifying A as a fixed point, it follows, by the prin-
ciples outlined in Schaefer’s fixed point theorem, that it constitutes a solution for
(2.3)-(2.4). Consequently, the existence of at least one solution within the interval
J for the system is affirmed.

Next, let us prove the uniqueness theorem of the system (2.3)-(2.4) by using the
Banach contraction principles.

Theorem 4.2. Suppose that the assumptions (A1), (A2) and the following inequal-
ity holds

(β1 + β2β3)
Tϑ(p)

Γ(ϑ(p+ 1))
< 1, (4.1)

then the problem (2.3)-(2.4) has a unique solution of J.

Proof. We define the operator A : C → C to map the system (2.3)-(2.4) into a
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fixed-point problem.

(Ax)(p) = x0 +
1

Γ(ϑ(p))

p∫
0

(p− s)ϑ(p)−1g1(s, x(s), x(s− τ(p)))ds.

Now, let us consider the system has as another solution x(p). Letting x, z ∈ C(J,R)
and p ∈ J, we have

|(Ax)(p)− (Az)(p)|

=| 1

Γ(ϑ(p))

p∫
0

(p− s)ϑ(p)−1g1(s, x(s), x(s− τ(p)))ds

− 1

Γ(ϑ(p))

p∫
0

(p− s)ϑ(p)−1g1(s, z(s), z(s− τ(p)))ds|

≤ 1

Γ(ϑ(p))

p∫
0

(p− s)ϑ(p)−1|g1(s, x(s), x(s− τ(p)))− g1(s, z(s), z(s− τ(p)))|ds.

By using the assumptions (A1) and (A2), we get

≤ (β1 + β2β3)
|x(s)− z(s)|

Γ(ϑ(p))

p∫
0

(p− s)ϑ(p)−1ds

≤ (β1 + β2β3)
Tϑ(p)

Γ(ϑ(p) + 1)
∥x− z∥C.

Similarly,

|(Ay)(p)− (Az)(p)| ≤(β1 + β2β3)
Tϑ(p)

Γ(ϑ(p) + 1)
∥y − z∥C.

The equation (4.1) establishes that the operator A is a contraction. Applying the
Banach contraction principle confirms the existence of a fixed point for A, thereby
demonstrating the uniqueness of the problem (2.3)-(2.4).

5. Numerical approach

Within this section, we utilize the ABM predictor-corrector technique to carry out
the numerical solution of nonlinear VOTDDEs. Let’s analyze the resulting variable-
order fractional system outlined in equation (2.3)-(2.4). By applying the fractional
integrator to both sides of the system (2.3)-(2.4), we assert the following:

x(pr+1) = x0 +
1

Γ(ϑ(pr+1))

pr+1∫
0

(pr+1 − s)ϑ(pr+1)−1g1(s, x(s), x(s− τ(p)))ds. (5.1)

Subsequently, we employ the product trapezoidal quadrature formula to compute
the integral in equation (5.1). This process yields the ensuing corrector formula:

x(pr+1) =x0 +
hϑ(pr+1)

Γ(ϑ(pr+1) + 2)
g1(pr+1, x(pr+1), x(pr+1 − τ(p)))



1012 P. A. Naik, S. Naveen, V. Parthiban, S. Qureshi, M. Alquran & M. Senol

+
hϑ(pr+1)

Γ(ϑ(pr+1) + 2)

r∑
i=0

bi,r+1 g1(pi, x(pi), x(pi − τ(p))),

and

xq (pr+1) =x0 +
1

Γ (ϑ (pr+1))

r∑
i=0

ci,r+1 g1(pi, x(pi), x(pi − τ(p))), (5.2)

where

bi,r+1

=


rϑ(pr+1)+1 − (r − ϑ (pr+1)) (r + 1)ϑ(pr+1), i = 0,

(r − i+ 2)ϑ(pr+1)+1 + (r − i)ϑ(pr+1)+1 − 2(r − i+ 1)ϑ(pr+1)+1, 1 ≤ i ≤ r,

1, i = r + 1,

(5.3)

ci,r+1

=
hϑ(pr+1)

ϑ (pr+1)

(
(r − i+ 1)ϑ(pr+1) − (r − i)ϑ(pr+1)

)
. (5.4)

The above technique is a well-known approach to solving fractional dynamical sys-
tems. Therefore we employ it to discuss the numerical applications in the subsection
that follows.

5.1. Numerical applications

Here, we use the ABM predictor-corrector approach as given above, an effective
approximation scheme for the numerical solution of the Caputo fractional variable
order derivative of the proposed model (2.3)-(2.4).

Consider the variable order Caputo fractional Lotka- Volterra predator-prey
model with the time-varying delay of the form given in (2.1-2.2). Let us take the
system’s parameter values k1 = k2 = 1 and a = b = 1, c = 2, d = 1. While the
model has its limitations and simplifications, it has been widely used in various
fields to understand the interactions between species in ecosystems. In ecology
and conservation biology, the model helps ecologists understand the population
dynamics and interactions between predators and prey in ecosystems. It can be
used to predict how changes in one population might affect the other and how
disturbances (natural or human-induced) can impact the stability of ecosystems. In
epidemiology, it has been adapted to study the dynamics of infectious diseases in
populations. In this context, one species represents the infected individuals (prey),
and the other species represents the predators (e.g., the immune system or medical
interventions). This can help in understanding the spread and control of diseases.

The chaotic behavior shows the relationship between the prey populations and
the predator population x, y; respectively. The time response of the state equa-
tion x(p) represents the prey population as a function of time p. It shows how the
prey population changes over time according to the Lotka-Volterra equations. The
curve may exhibit oscillations or other patterns, reflecting the dynamic nature of
the predator-prey interaction. The time response of the state equation y(p) repre-
sents the predator population as a function of time p. It shows how the predator
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population changes over time, according to the model. The curves in various plots
may also display oscillations or other patterns, illustrating the impact of the prey
population on the predator population and vice versa.

Let us consider the system (2.1-2.2) to be an integer-order model, that is, when
the order ϑ(p) = 1. Figure 1 represents the dynamical behavior of an integer-order
Lotka- Volterra predator-prey system with a time-varying delay component taken
to be τ(p) = 80ep

1+ep . Based on this Figure, it is easy to observe that the oscillations
take a long time to be damped out.

The Lotka-Volterra predator-prey model, when considered with a constant
fractional-order ϑ = 0.95 (an arbitrary choice), is simulated in Figure 2 having
a time-varying delay component τ(p) = 80ep

1+ep . Figure 2a represents the chaotic
nature of the predator-prey model, Figure 2b shows the phase portrait plotted for
the state variable x(p) vs time. Figure 2c displays the phase portraits for the state
variable y(p) vs time where p ∈ [0, 300]. According to this Figure, the oscillations
begin to vanish when p → 100. Such behavior was not possible to observe with the
integer-order version of the model under consideration.

In Figure 3, we have shown the variable-order version of the Lotka- Volterra
predator-prey model with a constant delay as τ(p) = 0.75 while the variable-order
ϑ(p) is taken to be ϑ(p) = 0.98 + 0.04 cos( p

10 ). This Figure shows large oscillations
in time series plots and the same behavior is depicted by the phase portrait, where
the system has quite complex and chaotic behavior. One of the reasons could be
the absence of the negative exponential terms in τ(p).

Figure 4, represents the variable-order version of the Lotka- Volterra predator-
prey model with a constant delay as τ(p) = 0.6 while the variable-order ϑ(p) is taken
to be ϑ(p) = 0.98+ 0.04 cos( p

10 ). This figure shows comparatively small oscillations
in time series plots and the same behavior is depicted by the phase portrait, where
the system has reasonable chaotic behavior. One of the reasons could be the absence
of the negative exponential terms in τ(p) with a smaller magnitude.

This time, Figure 5 is obtained with variable-order ϑ(p) = 0.98 + 0.04 cos( p
10 )

and time-varying delay τ(p) = 80ep

1+ep . Once again, larger oscillations with complex
chaotic behavior are noted. Both the fractional variable-order and the time-delay
component are taken to be functions. Strange chaotic patterns, impossible to obtain
when the model is classical, are observed as shown in Figure 5a. The same is true
for Figure 5b and Figure 5c.

In Figures 6 and 7, we have shown that the fractional variable-order function ϑ(p)
with time-varying delay component τ(p) plays an important role in the dynamics of
the Lotka-Volterra predator-prey system. Same fractional variable-order function
ϑ(p) = 0.98 + 0.04 cos( p

10 ) is chosen for both figures while τ(p) = 30 + 30.5| sin(p)|
is chosen for Figure 6 and τ(p) = 30 + 30.5| sin(p)| is for Figure 7. It can be seen
in Figure 6 that when the oscillatory function sin(p) is chosen to be absolutely
continuous then the oscillations are controlled to a large extent while, on the other
hand, an opposite behavior can be observed in Figure 7.
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Figure 1. Dynamical response of the integer-order version of the Lotka-Volterra predator-prey model

with time-varying delay function τ(p) = 80ep

1+ep .

Figure 2. Dynamical response of the fractional-order (ϑ = 0.95) version of the Lotka-Volterra predator-

prey model with time-varying delay function τ(p) = 80ep

1+ep .

Figure 3. Variable order constant delay with τ(p) = 0.75.

Figure 4. Variable order constant delay τ(p) = 0.60.
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Figure 5. Variable order constant delay τ(p) = 0.60.

Figure 6. Variable order constant delay τ(p) = 0.60.

Figure 7. Variable order constant delay τ(p) = 0.60.

6. Conclusion

This study rigorously examines the existence and uniqueness of a fractional variable-
order ϑ(p) Lotka-Volterra predator-prey model, incorporating a time-varying delay
component τ(p). The present work examines the comparison between distinct con-
stant and time delays of integer-, constant fractional-, and variable orders. The
efficacy of the established technique is verified by conducting several simulations
using various types of fractional variable-order functions and time delays. The
Adams Bashforth Moulton predictor-corrector scheme is a robust and versatile tool
for numerically solving variable-order fractional differential equations. Moreover,
this method has more accuracy and efficiency when compared to the existing nu-
merical schemes. The variable order fractional derivative for the Lotka-Volterra
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system has long-range interactions and memory effects. We can adjust the sys-
tem’s order to enhance its stability and accuracy for the proposed model. It is
important to mention that there are other potential applications for the approaches
that utilize time delay as a bifurcation parameter. These applications include more
intricate models with varying delays, as well as the study of Hopf bifurcation in
higher-dimensional fractional-order systems.

The objective of the planned future research is to investigate the dynamic com-
plexity and stability features of Lotka-Volterra predator-prey fractional variable
order systems of ODEs with time delay. Future research will prioritize the integra-
tion of variable-order fractional calculus concepts with the classical Lotka-Volterra
model. This will involve including temporal delays to create a more precise rep-
resentation of real-world ecological and biological systems. The study aims to ex-
amine the impact of varied order and time delays on the presence and stability of
equilibria, oscillatory behaviors, and the potential for chaos in predator-prey and
competitive systems. Additionally, advanced mathematical models will be used to
develop numerical methods for simulating the intricate dynamics of ecological and
other natural systems. This will allow for a deeper understanding of their long-
term behavior. This research field has promise for applications in comprehending
population dynamics, modeling diseases, and managing resources, providing a more
holistic framework for forecasting and overseeing natural occurrences. Future re-
search should also explore the potential of integrating stochastic elements into the
fractional variable-order Lotka-Volterra models to account for environmental un-
certainties. Additionally, the application of these models to real-world data could
further validate their accuracy and provide insights into the practical implications
of time-varying delays in ecological and biological systems.
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