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POSITIVE SOLUTIONS OF DISCRETE
BOUNDARY VALUE PROBLEM FOR A

SECOND-ORDER NONLINEAR DIFFERENCE
EQUATION WITH SINGULAR φ-LAPLACIAN

Ting Wang1, Man Xu1,† and Yanyun Li1

Abstract We establish the nonexistence, existence and multiplicity of posi-
tive solutions of the following discrete boundary value problem for a second-
order nonlinear difference equation with singular φ-Laplacian

−∇(kN−1φ(4vk))

= λNkN−1

(
f ′(ϕ−1(vk))√

1− (4vk)2
− f(ϕ−1(vk))H(ϕ−1(vk), k)

)
, k ∈ [2, n− 1]Z,

|4vk| < 1,

4v1 = 0 = vn,

where φ(s) = s√
1−s2

, φ : (−1, 1) → R is an increasing homeomorphism with

φ(0) = 0, λ is a positive parameter, 4 is the forward difference operator
defined by 4vk = vk+1 − vk, ∇ is the backward difference operator defined
by ∇vk = vk − vk−1, f ∈ C∞(I) and f > 0, I is an open interval in R,
ϕ(s) =

∫ s

0
dt

f(t)
, ϕ−1 is the inverse function of ϕ, H : I × [2, n − 1]Z → R is a

continuous function, [2, n − 1]Z := 2, 3, . . . , n− 1, and the integer n ≥ 4. By
using the method of lower and upper solutions, topological degree theory and
Szulkin’s critical point theory for convex, lower semicontinous perturbations
of C1-functionals, we determine the interval of parameter λ in which the above
problem has zero, one, two positive solutions according to sublinear at zero.

Keywords Positive solutions, discrete boundary value problem, singular φ-
Laplacian, lower and upper solutions, Szulkin’s critical point theory.
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1. Introduction

Let I ⊆ R be an open interval in R with the metric −dt2. Denote byM the (N+1)-
dimensional product manifold I×RN with N ≥ 1 endowed with the Lorentzian met-
ric g = −dt2 +f2(t)dx2, where f ∈ C∞(I), f > 0, is called the scale factor or warp-
ing function. Clearly, M is a Lorentzian warped product with base (I,−dt2), fiber
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(RN , dx2) and warping function f , we refer it as a Friedmann-Lemâıtre-Robertson-
Walker (FLRW) spacetime. In cosmology, the FLRW spacetime describes a spatially
homogeneous and isotropic universe, and plays an important role in the study of
the exact solution of the field equations of Einstein’s general theory of relativity. In
this case, the warping function f(t) is also interpreted as the radius of the universe
at time t, and the sign of its derivative indicates whether the universe is expanding
or contracting at time t in [1, 15, 17, 28, 32]. In particular, when f(t) ≡ 1 it is the
Minkowski spacetime. For more details, see [14] and the references therein.

Given f ∈ C∞(I), f > 0, for each u ∈ C∞(Ω), where Ω is a domain of RN ,
such that u(Ω) ⊆ I, we can consider its graph M = {(x, u(x)) : x ∈ Ω} in the
FLRW spacetime M. The graph M is spacelike whenever |gradu| < f(u) in Ω,
where gradu is the gradient of u in RN , and | · | is the Euclidean norm in RN . In
this case, the unit timelike normal vector field in the same time orientation of ∂t is
given by

A =
f(u)√

f(u)− |gradu|2

(
1

f2(u)
gradu+ ∂t

)
,

and the corresponding mean curvature associated to A, is defined by

1

N

{
div

(
gradu

f(u)
√
f2(u)− |gradu|2

)
+

f ′(u)√
f2(u)− |gradu|2

(
N +

|gradu|2

f2(u)

)}
:= Q,

where div denotes the divergence operator of RN , f ′(u) := f ′ ◦ u. Since |gradu| <
f(u) in Ω, then Q is a quasilinear elliptic operator. The question we are interested
in is the existence of spacelike graphs with a prescribed mean curvature function
in the FLRW spacetime M. The general problem of the curvature prescription is,
given a function H : I × RN → R, to obtain solutions of the quasilinear elliptic
equation

Q(u) = H(u, x), |gradu| < f(u), x ∈ Ω.

This equation is also known as the prescribed mean curvature spacelike equation
in FLRW spacetime. If H is a constant, it is called the prescribed constant mean
curvature spacelike equation. If H = 0, it is also called the maximal spacelike graph
equation.

In recent years, the solution of the boundary value problem for the prescribed
mean curvature spacelike equation in Minkowski spacetime has been widely con-
cerned by many scholars, whose attention is mainly on the positive solution. Read-
ers may refer to the literature [2–4, 8, 10–13, 16, 18–20, 23–26] and its citations. In
particular, based on the bifurcation method, Dai, Ma, Xu, Coelho et al. obtain
the existence and multiplicity of positive solutions in [10, 12, 13, 27]. For radially
symmetric solutions on the sphere, the results of existence and multiple solutions
have been established in [3, 4]. By using the method of lower and upper solutions
and topological degree, the nonexistence, existence and multiple solutions of pos-
itive solutions for Dirichlet system problems are studied in [18, 19]. In addition,
some scholars have focused on discrete forms of these problems [5, 6, 9, 21, 22, 27].
Based on the method of lower and upper solutions, topological degree and varia-
tional method, Chen, Ma, Liang obtained the nonexistence, existence and multiple
solutions of the positive solution of discrete robin boundary value problem in [9].
The solvability of Dirichlet problem is obtained by combining shooting method with
Euler’s method in [21].
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Compared with the study in Minkowski spacetime, the results of the bound-
ary value problem for the prescribed mean curvature spacelike equation in FLRW
spacetime are relatively few. Only in recent years, Mawhin and Torres [28, 30]
studied the existence of solutions to Neumann boundary value problems by using
Leray-Schauder degree theory. Bereanu, de la Fuente, Romero and Torres [1, 17]
prove that all solutions of Dirichlet boundary value problem are radially symmetric
by using Schauder fixed point theorem and give sufficient conditions for the ex-
istence of positive solutions. Dai, Romero, Torres [15] use the global bifurcation
theory to study the nonexistence, existence and multiple solutions of the positive
solutions of Dirichlet boundary value problems on the sphere. Bereanu and Tor-
res [7] use the critical point theory for strongly indefinite functionals to study the
infinite number of solutions of the Neumann boundary value problem when certain
assumptions are satified. Xu and Ma [31] obtained the existence of the solution of
the discrete Neumann boundary value problem based on the Brouwer degree. Xu
and Ma [32] proved the existence of solutions to the corresponding differential and
difference problems for Dirichlet boundary value problems, and that the solutions
of the discrete problems converge to the solutions of the continuous problems.

In this paper, we study the nonexistence, existence and multiplicity of posi-
tive solutions of the following discrete boundary value problem for a second-order
nonlinear difference equation with singular φ-Laplacian

−∇(kN−1φ(4vk))

= λNkN−1

(
f ′(ϕ−1(vk))√

1− (4vk)2
− f(ϕ−1(vk))H(ϕ−1(vk), k)

)
, k ∈ [2, n− 1]Z,

|4vk| < 1,

4v1 = 0 = vn,
(1.1)

where φ(s) = s√
1−s2 , φ : (−1, 1)→ R is an increasing homeomorphism with φ(0) =

0, λ is a positive parameter, 4 is the forward difference operator defined by 4vk =
vk+1 − vk, ∇ is the backward difference operator defined by ∇vk = vk − vk−1,
f ∈ C∞(I) and f > 0, I is an open interval in R, ϕ(s) =

∫ s
0

dt
f(t) , ϕ−1 is the inverse

function of ϕ, H : I × [2, n − 1]Z → R is a continuous function, [2, n − 1]Z :=
2, 3, . . . , n− 1, and the integer n ≥ 4.

This study is mainly motivated by the numerical approximation of radially sym-
metric spacelike solutions of the nonlinear Dirichlet problem for the prescribed mean
curvature spacelike equation in FLRW spacetime

div
( gradu

f(u)
√
f2(u)− |gradu|2

)
+

f ′(u)√
f2(u)− |gradu|2

(
N +

|gradu|2

f2(u)

)
= NH(u, |x|), x ∈ B,
|gradu| < f(u), x ∈ B,
u = 0, x ∈ ∂B,

where B = {x ∈ RN : |x| < R}, R is a positive number, f ∈ C∞(I), f > 0 and
H : I × [0,+∞)→ R is the prescribed mean curvature function.

Because (1.1) shows that ‖4v‖∞ < 1, we can deduce ‖v‖∞ =

∥∥∥∥n−1∑
i=k

4vi
∥∥∥∥
∞
<

n − 2, where ‖v‖∞ := max
k∈[2,n−1]Z

|vk|, this implies the image of nonnegative v =
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(v1, v2, · · · , vn) ∈ Rn is in [0, n − 2]. Therefore, when discussing (1.1), we always
assume ϕ−1([0, n− 2]) ⊂ I, which is equivalent to

IfR :=

[
0,

∫ n−2

0

f(ϕ−1(s))ds

]
⊂ I.

The main result is as follows.

Theorem 1.1. Assume that IfR ⊂ I and f ′(t) > 0, H(t, k) < f ′

f (t) for all k ∈
[2, n− 1]Z and t ∈ IfR \ {0}, and assume also that

(AfH)


lim
t→0+

Nf ′(t)

ϕ(t)
= f0,

lim
t→0+

Nf(t)H(t, k)

ϕ(t)
= H0,

f0 −H0 = 0.

Then there is a Λ > MN2

(n+1)N+2 such that problem (1.1) has zero, at least one or at

least two positive solutions when λ ∈ (0,Λ), λ = Λ, λ > Λ.

The rest of this paper is arranged as follows. In Section 2, we consider a more
general case than (1.1), give its fixed point reformulation, prove that all possible
solutions have a prior bound, and compute the corresponding topological degrees.
In Section 3, we present a lower and upper solution result for problem (1.1) with
λ = 1. In Section 4, we deal with a mixed boundary value problem, involving a more
general nonlinearity than that in (1.1). Using the Szulkin’s critical point theory we
prove the existence of positive solutions. Finally in Section 5 we give proof of the
main results.

2. Fixed point, a priori bound

The following assumptions are used throughout the paper.
If v ∈ Rp (p ≥ 1), where p is an integer, then we define ‖v‖∞ := max

k∈[1,p]Z
|vk|.

For every i, j ∈ N with i > j, we set
j∑
k=i

vk = 0. If α, β ∈ Rp, we write α ≤ β

(respectively, α < β) if αk ≤ βk (respectively, αk < βk) for all k ∈ [1, p]Z. Next we
introduce a closed subpace V n−2 = {v ∈ Rn : 4v1 = 0 = vn} with the orientation
of Rn and the norm ‖v‖∞ := max

k∈[2,n−1]Z
|vk|, whose elements can be associated with

the coordinates (v2, v3, · · · , vn−1) and correspond to the elements of Rn of the form
(v2, v2, · · · , vn−1, 0).

Let v = (v1, v2, · · · , vn) ∈ Rn. And then we define

4v = (4v1, · · · ,4vn−1) ∈ Rn−1,

where 4vk = vk+1 − vk, k ∈ [1, n − 1]Z, in addition, if there is ‖4v‖∞ :=
max

k∈[1,n−1]Z
|4vk| < 1,

∇
(
kN−1φ(4v)

)
=
(
∇(2N−1φ(4v2)), · · · ,∇

(
(n− 1)N−1φ(4vn−1)

))
∈ Rn−2
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is defined, where

∇
(
kN−1φ(4vk)

)
= kN−1φ(4vk)− (k − 1)N−1φ(4vk−1), k ∈ [2, n− 1]Z.

If v0 ∈ V n−2, then B(v0, ρ) := {v ∈ V n−2 : ‖v − v0‖∞ < ρ} (ρ > 0) is defined,
and we simply refer to B(0, ρ) as Bρ.

Moreover, to prove the simplicity of the procedure, if v = (v1, · · · , vp) ∈ Rp
(p ≥ 1), where p is an integer, then we sometimes express it as v without causing
ambiguity. It also satisfies the assumption that if v = (0, · · · , 0) ∈ V n−2, then there

is always H(0, k) = f ′

f (0), where k ∈ [2, n− 1]Z.
Next we consider the problem

∇(kN−1φ(4vk)) + kN−1g(k, vk,4vk) = 0, k ∈ [2, n− 1]Z,

|4vk| < 1,

4v1 = 0 = vn,

(2.1)

where N ≥ 1, and we also assume that
(Aφ) φ : (−1, 1)→ R is an odd, increasing homeomorphism with φ(0) = 0;
(Ag) g : [2, n−1]Z× [0,+∞)×(−1, 1)→ [0,+∞) is continuous and g(k, vk,4vk)

> 0 for all (k, vk,4vk) ∈ [2, n− 1]Z × (0,∞)× (−1, 1).
Let σ(k) = 1/kN−1, we define the operator

S : Rn−2 → Rn−2, Svk = σ(k)

k∑
i=2

iN−1vi, k ∈ [2, n− 1]Z,

K : Rn−2 → Rn−2, Kvk =

n−1∑
i=k

vi, k ∈ [2, n− 1]Z,

clearly, K ◦ φ−1 ◦ S : Rn−2 → Rn−2 is continuous. Furthermore, given a function
h = (h2, · · · , hn−1), the discrete problem

∇(kN−1φ(4vk)) + kN−1hk = 0, k ∈ [2, n− 1]Z, |4vk| < 1, 4v1 = 0 = vn

has a unique solution v ∈ V n−2 and

vk = K ◦ φ−1 ◦ S ◦ hk, k ∈ [2, n− 1]Z.

Let Ng be the Nemytskii operator associated with g,

Ng : Rn → Rn−2, Ng(v) = (g(2, v2,4v2), · · · , g(n− 1, vn−1,4vn−1)).

So problem (2.1) has the following fixed point reformulation.

Lemma 2.1. v = (v1, · · · , vn) ∈ Rn is the solution of (2.1) if and only if the
continuous operator

Ng : V n−2 → V n−2, Ng = K ◦ φ−1 ◦ S ◦Ng

has a fixed point, and in addition the fixed point of Ng satisfies

‖4v‖∞ < 1, ‖v‖∞ < n− 2 (2.2)

and
dB [I −Ng, Bρ, 0] = 1, for all ρ ≥ n− 2.
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Proof. Since the range of φ−1 is (−1, 1), the inequality (2.2) holds. Next, consider
the compact homotopy

H : [0, 1]× V n−2 → V n−2, H(τ, ·) = τNg(·),

and
H([0, 1]× V n−2) ⊂ Bn−2.

Then, from the invariance under homotopy of the Brouwer degree it follows that

dB [I −H(0, ·), Bρ, 0] = dB [I −H(1, ·), Bρ, 0]

= dB [I −Ng, Bρ, 0]

= dB [I,Bρ, 0] = 1,

for all ρ ≥ n− 2.

Lemma 2.2. Suppose that conditions (Aφ) and (Ag). Let v = (v1, · · · , vn) ∈ Rn be
a nontrivial solution of (2.1), then vk > 0, k ∈ [1, n− 1]Z. Moreover, vk is strictly
decreasing on k ∈ [2, n]Z.

Proof. From (2.1), we know that

4vk = −φ−1

(
1

kN−1

k∑
i=2

iN−1g(i, vi,4vi)

)
,

and 4vk ≤ 0 by using the assumption condition (Ag). Because of vn = 0, we can
derive vk ≥ 0, for all k ∈ [1, n]Z. Since v is a nontrivial solution, vk is not identically
zero, and then from (2.1) we can deduce 4vk < 0 and vk > 0, for all k ∈ [2, n− 1]Z.
Finally, using condition 4v1 = 0 = vn, we can know that vk > 0, k ∈ [1, n − 1]Z
and vk is strictly decreasing on k ∈ [2, n]Z.

In the next lemma we assume that g is sublinear with respect to φ at zero.

Lemma 2.3. Assume that conditions (Aφ), (Ag),

lim
s→0+

g(k, s,4s)
φ(s)

= 0 uniformly for k ×4s ∈ [2, n− 1]Z × (−1, 1) (2.3)

and

lim inf
s→0

φ(σs)

φ(s)
> 0 for all σ > 0. (2.4)

Then there exists ρ0 > 0 such that

dB [I −Ng, Bρ, 0] = 1, for all 0 < ρ ≤ ρ0,

where Ng is the fixed point operator associated to (2.1).

Proof. From (2.4) we know that there exists ε > 0 such that

nNε

N
≤ lim inf

s→0

φ(s/(n− 2))

φ(s)
. (2.5)

From (2.3) we know that sε > 0 makes

g(k, s,4s) ≤ εφ(s), for k × s×4s ∈ [2, n− 1]Z × [0, sε]× (−1, 1). (2.6)



1026 T. Wang, M. Xu & Y. Li

In the following we consider the compact homotopy

H : [0, 1]× V n−2 → V n−2, H(τ, v) = τNg(v),

where v = (v1, · · · , vn) ∈ Rn.
We claim that there exists ρ0 > 0 such that

v 6= H(τ, v), for (τ, v) ∈ [0, 1]× (Bρ0 \ {0}). (2.7)

In fact, suppose there exists

vm = τmNg(vm), τm ∈ [0, 1],

where vm = (vm1 , · · · , vmn ), vm ∈ V n−2 \ {0}, m ∈ N and ‖vm‖∞ → 0. According
to lemma 2.2, we obtain that vmk is strictly decreasing function with respect to k,
and vmk > 0 on k ∈ [1, n− 1]Z.

Suppose we have that ‖vm‖∞ ≤ sε for all m ∈ N, and we know that

g(k, vmk ,4vmk ) ≤ εφ(‖vm‖∞), for m ∈ N, k ∈ [2, n− 1]Z.

from (2.6). So for any m ∈ N, we have that

‖vm‖∞ ≤
n−1∑
j=k

φ−1

[
1

jN−1

j∑
i=2

iN−1g(i, vmi ,4vmi )

]

≤
n−1∑
j=k

φ−1

(
(j + 1)N

N · jN−1
· εφ(‖vm‖∞)

)

< (n− 2)φ−1

(
nN

N
· εφ(‖vm‖∞)

)
,

consequently,

φ
(
‖vm‖∞
n−2

)
φ(‖vm‖∞)

<
nNε

N
.

Since ‖vm‖∞ → 0, this contradicts (2.5). Thus, the homotopy invariance of Brouwer
degree shows that for any ρ ∈ (0, ρ0] there is

dB [I −H(1, ·), Bρ, 0] = dB [I −H(0, ·), Bρ, 0] = 1.

Then the lemma is proved.

Lemma 2.4. Let k0 ∈ (0, 1) be given. Then

|4vs| ≤ 1− k0, ∀v ∈ A, ∀s ∈ [2, n− 1]Z,

where

A :=
{
v ∈ V n−2 | − 1 < 4vk < 0 for k ∈ [2, n− 1]Z, ‖v‖∞ ≤ 1− k0

}
.

Proof. Let a = 1− k0, I = [2, n− 1]Z. Then

0 < a < 1.

Since 4vk < 0 on [2, n − 1]Z. If there exists s ∈ I such that |4vs| > 1 − k0 = a,
then 4vs > a or 4vs < −a. If 4vs < −a, which is 4vs = vs+1 − vs < −a. Thus,
we have that −a > 4vs = vs+1 − vs ≥ vn − vs ≥ −vs, s ∈ [2, n− 1]Z, which means
vs > a = 1 − k0. This is a contradiction. Analogously, we can get a contradiction
for the other case.
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3. Lower and upper solutions

Next in this section, we develop the method of lower and upper solutions for the
mixed boundary value problem

∇(kN−1φ(4vk)) +NkN−1

(
f ′(ϕ−1(vk))√

1− (4vk)2
− f(ϕ−1(vk))H(ϕ−1(vk), k)

)
= 0,

k ∈ [2, n− 1]Z,

|4vk| < 1,

4v1 = 0 = vn.
(3.1)

Let’s say F : [2, n− 1]Z × ϕ(I)× (−1, 1)→ R is defined by

F (r, s, t) =
Nf ′(ϕ−1(s))√

1− t2
−Nf(ϕ−1(s))H(ϕ−1(s), r).

Moreover we define the Nemytskii operator associated with F as

NF : Rn → Rn−2, NF (v) = (F (2, v2,4v2), · · · , F (n− 1, vn−1,4vn−1)).

Note that if v = (v1, · · · , vn) ∈ Rn is the solution of (3.1) if and only if v ∈ V n−2

and v is a fixed point of the continuous operator

NF : V n−2 → V n−2, NF = K ◦ φ−1 ◦ S ◦NF .

Definition 3.1. A function α = (α1, · · · , αn) is called a lower solution of (3.1) if
‖4α‖∞ < 1, IfR ⊂ I and

−∇(kN−1φ(4αk))

≤ NkN−1

(
f ′(ϕ−1(αk))√

1− (4αk)2
− f(ϕ−1(αk))H(ϕ−1(αk), k)

)
, k ∈ [2, n− 1]Z,

4α1 = 0, αn ≤ 0.

A function β = (β1, · · · , βn) is called an upper solution of (3.1) if ‖4β‖∞ < 1,
IfR ⊂ I and

−∇(kN−1φ(4βk))

≥ NkN−1

(
f ′(ϕ−1(βk))√

1− (4βk)2
− f(ϕ−1(βk))H(ϕ−1(βk), k)

)
, k ∈ [2, n− 1]Z,

4β1 = 0, βn ≥ 0.

Such a lower or an upper solution is called strict if the above inequalities are strict.

Theorem 3.1. Assume that IfR ⊂ I and f ′(t) > 0, H(t, k) < f ′

f (t) for all k ∈
[2, n− 1]Z and t ∈ IfR \ {0}. If (3.1) has a lower solution α = (α1, · · · , αn) and an
upper solution β = (β1, · · · , βn) such that αk ≤ βk for all k ∈ [1, n]Z, then (3.1) has
at least one solution v = (v1, · · · , vn) such that αk ≤ vk ≤ βk, where k ∈ [1, n]Z.
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Proof. Let γ : [2, n− 1]Z × R→ R be the continuous function defined by

γ(k, vk) =


αk, vk < αk,

vk, αk ≤ vk ≤ βk,
βk, vk > βk.

We consider the modified problem

∇(kN−1φ(4vk)) + kN−1
(Nf ′(ϕ−1(γ(k, vk)))√

1− (4vk)2

−NH(ϕ−1(γ(k, vk)), k)f(ϕ−1(γ(k, vk)))− vk + γ(k, vk)
)

= 0, k ∈ [2, n− 1]Z,

|4vk| < 1,

4v1 = 0 = vn.
(3.2)

We claim that (3.2) has at least one solution. Denote

F (r, s, t) =
Nf ′(ϕ−1(s))√

1− t2
−Nf(ϕ−1(s))H(ϕ−1(s), r).

In fact, (3.2) is equivalent to the fixed point problem v = NF̃ (v), where F̃ =
F (k, γ(k, vk),4vk) − vk + γ(k, vk), k ∈ [2, n − 1]Z. Since ‖4v‖∞ = ‖φ−1 ◦ S ◦
NF̃ (v)‖∞ < 1, we can have ‖v‖∞ = ‖K(4v)‖∞, which leads to ‖v‖∞ < n − 2.
Using Schauder fixed point theorem, we can deduce that there exists v ∈ V n−2

such that v = NF̃ (v).
Below we will prove that if v is a solution of (3.2), then there is αk ≤ vk ≤ βk

on k ∈ [1, n]Z.
Suppose by contradiction that there is some i ∈ [1, n]Z such that

max
j∈[1,n]Z

[αj − vj ] = αi − vi > 0.

If i ∈ [2, n − 1]Z, there is 4αi ≤ 4vi and 4vi−1 ≤ 4αi−1. Since φ is an
increasing homeomorphism, there is

∇(iN−1φ(4αi)) ≤ ∇(iN−1φ(4vi)).

From f ′(t) > 0 and α is a lower solution of (3.1), we know that

∇(iN−1φ(4αi))
≤∇(iN−1φ(4vi))

=iN−1

(
−Nf

′(ϕ−1(αi))√
1− (4vi)2

+NH(ϕ−1(αi), i)f(ϕ−1(αi)) + vi − αi

)

<iN−1

(
−Nf

′(ϕ−1(αi))√
1− (4vi)2

+NH(ϕ−1(αi), i)f(ϕ−1(αi))

)

≤iN−1

(
−Nf

′(ϕ−1(αi))√
1− (4αi)2

+NH(ϕ−1(αi), i)f(ϕ−1(αi))

)
≤∇(iN−1φ(4αi)),
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but this is a contradiction.

If i = n, then αn − vn > 0, and it follows from vn = 0 and definition of lower
solutions that this is also a contradiction.

If i = 1, then using 4α1 = 0 = 4v1 we know that α1 = α2 and v1 = v2,
which means that i = 2 is also the maximum point. The proof process is the same
as i ∈ [2, n − 1]Z, which is still a contradiction. So for k ∈ [1, n]Z, we have that
αk ≤ vk. Analogously, for k ∈ [1, n]Z, we have that vk ≤ βk. The proof of the
theorem is completed.

Theorem 3.2. Assume that (3.1) has a lower solution α = (α1, · · · , αn) and an
upper solution β = (β1, · · · , βn) such that αk ≤ βk for all k ∈ [1, n]Z. Let Ωα,β :=
{v ∈ V n−2 : α ≤ v ≤ β}. Assume also that (3.1) has an unique solution v0 in Ωα,β
and there exists ρ0 > 0 such that B(v0, ρ0) ⊂ Ωα,β. Then

dB [I −Ng, B(v0, ρ), 0] = 1, for 0 < ρ ≤ ρ0,

where Ng is the fixed point operator associated to (3.1).

Proof. Let Nγ be the fixed point operator associated to the modified problem
(3.2). According to theorem 3.1, any fixed point v of Nγ is contained in Ωα,β and
v is also a fixed point of Ng. Thus, v0 is the unique fixed point of Nγ . Now,

dB [I −Nγ , B(v0, ρ), 0] = 1, for all ρ > 0

is obtained from lemma 2.1 and the excision property of the Brouwer degree. The
result follows from the fact Nγ(v) = Ng(v) for v ∈ B(v0, ρ0).

4. Variational solutions

First consider the mixed boundary value problem

∇(kN−1φ(4vk))+kN−1g(k, vk,4vk) = 0, k ∈ [2, n−1]Z, |4vk| < 1, 4v1 = 0 = vn,
(4.1)

and satisfy the following assumptions

(Ag′) g : [2, n− 1]Z × R× (−1, 1)→ R is a continuous function;

(AΦ) Φ : [−1, 1] → R is continuous, of class C1 on (−1, 1), Φ(0) = 0 and
φ := Φ′ : (−1, 1)→ R is an increasing homeomorphism such that φ(0) = 0.

Define a convex set

K := {u ∈ Rn : ‖4u‖∞ ≤ 1},

where u = (u1, · · · , un), and obviously the convex set K is closed in Rn. This means
that

K0 := {u ∈ K : un = 0}

is also a convex, closed subset of Rn. Since there is

‖u‖∞ ≤ n− 1 for all u ∈ K0, (4.2)

we know that K0 is bounded in Rn.
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Next, we introduce the functional Ψ : Rn → (−∞,+∞], defined by

Ψ(u) =


n−1∑
k=2

kN−1Φ(4uk), if u ∈ K0,

+∞, if u ∈ Rn \K0

is proper, convex and lower semicontinuous. Obviously Ψ is bounded on K0.
We define G : [2, n− 1]Z × R× (−1, 1)→ R by

G(k, s, t) = −
∫ s

0

kN−1g(k, ξ, t)dξ for all (k, s, t) ∈ [2, n− 1]Z × R× (−1, 1),

and

G(u) =

n−1∑
k=2

G(k, uk,4uk) for u ∈ Rn.

It’s obvious that G ∈ C1(Rn,R). Thus the energy functional I = Ψ + G has the
structure required by Szulkin’s critical point theory [29]. Accordingly, a function
v ∈ Rn is a critical point of I if v ∈ K0 and

Ψ(u)−Ψ(v) + 〈G′(v), u− v〉 ≥ 0 for all u ∈ Rn,

or, equivalently

n−1∑
k=2

kN−1(Φ(4uk)−Φ(4vk)− g(k, vk,4vk)(uk − vk)) ≥ 0, for all u ∈ K0. (4.3)

Lemma 4.1. Assuming that (AΦ). Then for every h ∈ Rn−2 and h = (h2, · · · ,
hn−1), the problem

∇(kN−1φ(4vk)) + kN−1hk = 0, k ∈ [2, n− 1]Z, 4v1 = 0 = vn (4.4)

has a unique solution v(h), which is also the unique solution in K0 of the variational
inequality

n−1∑
k=2

kN−1(Φ(4uk)− Φ(4vk)− hk(uk − vk)) ≥ 0, for all u ∈ K0, (4.5)

and the unique minimum over K0 of the strictly convex functional J : K0 → R
defined by

J (u) =

n−1∑
k=2

kN−1(Φ(4uk)− hkuk), for all u ∈ K0.

Proof. Clearly (4.4) has a unique solution

vk(h) = K ◦ φ−1 ◦ S ◦ hk.

Set v := v(h) is a solution of (4.4). Next, taking u ∈ K0, multiplying (4.4) by
uk − vk and summing over [2, n− 1]Z, we can derive

n−1∑
k=2

kN−1(φ(4vk)(4uk −4vk)− hk(uk − vk)) = 0, for all u ∈ K0.
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And then from the convexity inequality

Φ(4uk)− Φ(4vk) ≥ φ(4vk)(4uk −4vk),

we deduce that (4.5) holds.
In fact, it is easy to conclude that v ∈ K0 is a solution of (4.5) if and only if it

is a minimum of J on K0. Moreover, since Φ is strictly convex, we know that J is
also strictly convex. This means that the uniqueness of the minimum of J on K0.

Lemma 4.2. Assumes that the conditions (AΦ) and (Ag′) are satisfied. Then every
critical point of I is a solution of (4.1). In addition, (4.1) has a solution that is a
minimum point of I on Rn.

Proof. Let v ∈ K0 be the critical point of I. Then v solves the variational
inequality (4.5) with hk = (k, vk,4vk) (see (4.3)), whereas from lemma 4.1, it is
known that v is the solution of (4.1). From the definition of I, we know that
I(u) = +∞ on u ∈ Rn \K0, thus

inf
Rn
I := inf

K0

I := c0.

According to (4.2) we know that I is bounded on K0. Let {vm} ⊂ K0 be such that
I(vm) → c0. Using the compactness of K0 that we have assumed, we know that
there exists v ∈ K0 such that there is vm → v in Rn. It follows that G(vm)→ G(v)
and Ψ(v) ≤ lim inf

k→∞
Ψ(vm). Therefore I(v) ≤ c0 and v is a minimum of I on Rn. It

can be seen from [29] that v is a critical point of I and hence a solution of (4.1).

Now consider the special example of g(k, s, t) =
(
Nf ′(ϕ−1(s))√

1−t2 −Nf(ϕ−1(s))

H(ϕ−1(s), k)
)

in (4.1).

∇

(
kN−1 4vk√

1− (4vk)2

)

+ kN−1

(
Nf ′(ϕ−1(vk))√

1− (4vk)2
−Nf(ϕ−1(vk))H(ϕ−1(vk), k)

)
= 0, k ∈ [2, n− 1]Z,

|4vk| < 1,

4v1 = 0 = vn,
(4.6)

satisfy the following assumption
(As) g : [2, n− 1]Z × (0,+∞)× (−1, 1) → R is a continuous function such that

g(k, 0, t) = 0 and g(k, s, t) > 0 for all s > 0.
According to lemma 2.2, the solution of (4.6) is nonnegative. We use

g̃(k, s, t) =

{
g(k, s, t), s ≥ 0,

0, s < 0

instead of g(k, s, t) in (4.6). In order to simplify notation, the modified function
g̃(k, s, t) is still represented by g(k, s, t). Accordingly, Φ(s) = 1 −

√
1− s2 (s ∈

[−1, 1]) and

G(k, s, t) = −
∫ s

0

kN−1g(k, ξ, t)dξ,
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the energy functional I : Rn → (−∞,+∞] associated to (4.6) will be

I(u) =

n−1∑
k=2

kN−1

(
1−

√
1− (4uk)2 −

∫ uk

0

g(k, ξ, t)dξ

)

and I = +∞ on Rn \K0.

Theorem 4.1. Suppose that (As) holds. Let

inf
K0

I < 0.

Then problem (4.6) has at least one solution v such that vk > 0 on k ∈ [2, n − 1]Z
and vk is strictly decreasing with respect to k ∈ [2, n]Z.

Proof. By lemma 4.2 and I(0) = 0, we obtain that (4.6) has a nontrivial nonneg-
ative solution v. By lemma 2.2, we can easily conclude that vk s strictly decreasing
with respect to k ∈ [2, n]Z.

Corollary 4.1. Suppose that condition (As) is satisfied. Then for sufficiently large
λ > 0 the problem

−∇(kN−1φ(4vk))

= λNkN−1

(
f ′(ϕ−1(vk))√

1− (4vk)2
− f(ϕ−1(vk))H(ϕ−1(vk), k)

)
, k ∈ [2, n− 1]Z,

|4vk| < 1,

4v1 = 0 = vn

has at least one solution v ∈ Rn such that vk > 0 on k ∈ [2, n−1]Z and vk is strictly
decreasing with respect to k ∈ [2, n]Z.

5. Proof of main result

Proof of Theorem 1.1 Let’s say

Sj := {λ > 0 : (1.1) has at least j positive solutions}, (j = 1, 2).

5.1. The existence of Λ

Let λ > 0, v = (v1, . . . , vn) is a positive solution of (1.1). Firstly, using hypothesis
(AfH), we have that for any ε0 > 0, there exists δ1, such that |ϕ−1(vk) − 0| < δ1,

there can be
∣∣∣Nf ′(ϕ−1(vk))

vk
− f0

∣∣∣ < ε0. For the above ε0, there exists δ2, such that

there exists |ϕ−1(vk)− 0| < δ2, there implies that
∣∣∣Nf(ϕ−1(vk))H(ϕ−1(vk),k)

vk
−H0

∣∣∣ <
ε0.

Secondly, using lemma 2.4, let k0 = a0, a0 is the constant that satisfies the
definition, then there is I = [2, n− 1]Z. Hence, ‖v‖∞ ≤ 1 − a0, |4vs| ≤ 1 − a0 for
all s ∈ I.
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To sum (1.1) from 2 to k, we obtain that

−kN−1φ(4vk) = λ

k∑
i=2

iN−1

(
Nf ′(ϕ−1(vi))√

1− (4vi)2
−Nf(ϕ−1(vi))H(ϕ−1(vi), i)

)

< λ

k∑
i=2

iN−1

(
f0vi√

1− (4vi)2
−H0vi

)

≤ λ
k∑
i=2

iN−1f0vi

(
1√

1− (1− a0)2
− 1

)

< λ

k∑
i=2

iN−1f0 (n− 2)

(
1√

1− (1− a0)2
− 1

)

≤ λM0(n− 2)
(k + 1)N

N
,

where M0 = f0

(
1√

1−(1−a0)2
− 1

)
.

Since vk is strictly decreasing on k ∈ [2, n]Z, there is

−4vk ≤ −
4vk√

1− (4vk)2
<
λM0(n− 2)(k + 1)N

N · kN−1
(5.1)

for each k ∈ [2, n− 1]Z.
Summing (5.1) from 2 to n− 1, we have that

v2 <
λM0(n− 2)

N
·
n−1∑
i=2

(i+ 1)N

iN−1
<
λM0(n− 2)(n+ 1)N+1

N2
<
λM0(n+ 1)N+2

N2
.

(5.2)
Next, using v2 > 0, we obtain that

λ >
MN2

(n+ 1)N+2
,

where M = v2/M0.
We know from corollary 4.1 that the problem (1.1) has at least one positive

solution for sufficiently large λ > 0. In particular, S1 6= ∅. We can define

Λ = Λ(n) := inf S1.

Clearly, we have that Λ ≥ MN2

(n+1)N+2 . We will prove Λ ∈ S1.

Let λm → Λ, vm = (vm1 , . . . , v
m
n ) > 0, λm × vm ∈ S1 × V n−2, and

vmk = K ◦ φ−1 ◦ S ◦

(
λm

(
Nf ′(ϕ−1(vmk ))√

1− (4vmk )2
−Nf(ϕ−1(vmk ))H(ϕ−1(vmk ), k)

))
.

From (2.2) and the Arzelà-Ascoli theorem we know that there exists v = (v1, . . . , vn)
∈ Rn, after taking a subsequence such that {vm} → v in Rn. We have that vk > 0
and

vk = K ◦ φ−1 ◦ S ◦

(
Λ

(
Nf ′(ϕ−1(vk))√

1− (4vk)2
−Nf(ϕ−1(vk))H(ϕ−1(vk), k)

))
.
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It can be seen from (5.2) that there is a constant c1 > 0 which makes vm2 > c1, for
all m ∈ N. This means that v2 ≥ c1. By lemma 2.2, we get vk > 0 on k ∈ [1, n−1]Z.

Hence, Λ ∈ S1. Obviously, Λ > MN2

(n+1)N+2 .

Next, let λ0 > Λ, where λ0 is arbitrary. We will show λ0 ∈ S1. Suppose v1 is a
positive solution of (1.1) with λ = Λ. It is easy to know that v1 is a lower solution
to problem (1.1) when λ = λ0. Construct the upper solution, let H > 0, the integer
ñ > n, while considering the problem

∇

(
kN−1 4vk√

1− (4vk)2

)
+kN−1H = 0, k ∈ [2, ñ−1]Z, |4vk| < 1, 4v1 = 0 = vñ.

(5.3)
By calculation we can get

vk =

ñ−1∑
j=k

1
jN−1

j∑
i=2

iN−1H√
1 +

(
1

jN−1

j∑
i=2

iN−1H

)2
.

For fixed λ2 > λ0, let v2 is the solution of problem (5.3) corresponding to H =
λ2M0(ñ− 2). By v2

n > 0 and

λ0

(
Nf ′(ϕ−1(v2

k))√
1− (4v2

k)2
−Nf(ϕ−1(v2

k))H(ϕ−1(v2
k), k)

)
≤λ2M0(ñ− 2), for all k ∈ [2, n− 1]Z.

We can see that v2 is an upper solution of problem (1.1) when λ = λ0, then

v2
n =

ñ−1∑
j=n

1
jN−1

j∑
i=2

iN−1H√
1 +

(
1

jN−1

j∑
i=2

iN−1H

)2
.

Hence there exists ñ such that v1
2 < v2

n. Consider that v1
k, v

2
k is strictly decreasing,

then there is v1
k < v2

k for all k ∈ [1, n]Z. It follows from theorem 3.1 that λ0 ∈ S1.
Hence, S1 = [Λ,∞).

5.2. Multiplicity

Let λ0 > Λ. We will show that λ0 ∈ S2. Let v1, v2 be constructed as above. Let
v0 be a solution of (1.1) with λ = λ0 such that v1 ≤ v0 ≤ v2, where v0 ∈ Ωv1,v2 :=
{v ∈ V n−2 : v1 ≤ v ≤ v2}.

First, we claim that there exists ε > 0 such that B(v0, ε) ⊂ Ωv1,v2 . For all
k ∈ [2, n− 1]Z, there is

v2
k =

ñ−1∑
j=k

φ−1

(
1

jN−1

j∑
i=2

λ2i
N−1M0(ñ− 2)

)
.
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Consequently,

v2
k >

n−1∑
j=k

φ−1

(
1

jN−1

j∑
i=2

λ2i
N−1

(
Nf ′(ϕ−1(v2

i ))√
1− (4v2

i )2
−Nf(ϕ−1(v2

i ))H(ϕ−1(v2
i ), i)

))

≥
n−1∑
j=k

φ−1

(
1

jN−1

j∑
i=2

λ0i
N−1

(
Nf ′(ϕ−1(v0

i ))√
1− (4v0

i )2
−Nf(ϕ−1(v0

i ))H(ϕ−1(v0
i ), i)

))
= v0

k.

Therefore, there exists ε2 > 0 such that v2 ≥ v for all v ∈ B(v0, ε2). Similarly on
[1,m]Z there is v1 < v0 for some m ∈ [2, n − 1]Z. Therefore ε3 > 0 can be found
such that

v ∈ V n−2, and ‖v − v0‖∞ ≤ ε3 ⇒ v ≥ v1 on k ∈ [1,m]Z. (5.4)

Obviously if m = n− 1, our claim holds. Otherwise, 4v0
k < 4v1

k on k ∈ [m,n− 1]Z
is obtained from

−4v0
k = φ−1 ◦ S ◦ λ0

(
Nf ′(ϕ−1(v0

k))√
1− (4v0

k)2
−Nf(ϕ−1(v0

k))H(ϕ−1(v0
k), k)

)
and

−4v1
k = φ−1 ◦ S ◦ Λ

(
Nf ′(ϕ−1(v1

k))√
1− (4v1

k)2
−Nf(ϕ−1(v1

k))H(ϕ−1(v1
k), k)

)
.

So there exists ε1 ∈ (0, ε3) such that 4vk < 4v1
k on k ∈ [m,n − 1]Z, where v ∈

B(v0, ε1). Then using v0
n = 0 = vn, we know that v > v1 on k ∈ [m,n−1]Z for all v ∈

B(v0, ε1). From (5.4) we can see that our claim is valid when ε ∈ (0,min{ε1, ε2}).
If the second solution of (1.1) is contained in Ωv1,v2 , and this solution is nontrivial,
then the proof of the multiplicity is completed.

If not, using theorem 3.2 we have that

dB [I −Nλ0
, B(v0, ρ), 0] = 1, for all 0 < ρ ≤ ε,

where Nλ0
is the fixed point operator associated to (1.1) with λ = λ0. Moreover,

according to lemma 2.1, we obtain that

dB [I −Nλ0
, Bρ, 0] = 1, for all ρ ≥ n− 2.

From lemma 2.3 we have that

dB [I −Nλ0
, Bρ, 0] = 1, for all ρ sufficiently small.

When ρ1, ρ2 is sufficiently small and ρ3 ≥ n − 2 such that B(v0, ρ1) ∩ Bρ2 = ∅,
B(v0, ρ1) ∪Bρ2 ⊂ Bρ3 . Thus, from the additivity-excision property of the Brouwer
degree it follows that

dB [I −Nλ0
, Bρ3 \ [B(v0, ρ1)

⋃
Bρ2 ], 0] = −1,

which, together with the existence property of the Brouwer degree, imply that Nλ0

has a fixed point ṽ0 ∈ Bρ3 \ [B(v0, ρ1)
⋃
Bρ2 ]. So we conclude that (1.1) has a

second positive solution, and the proof is completed.
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