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AN EFFECTIVE NUMERICAL ALGORITHM
FOR SOLVING THE LANE-EMDEN TYPE

EQUATION BASED ON THE VARIATIONAL
ITERATION METHOD COUPLED WITH THE

HOMOTOPY ANALYSIS METHOD
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Abstract This research introduces an effective numerical algorithm to de-
termine the numerical solution of the Lane-Emden equation. This method is
based on the variational iteration method coupled with the homotopy analysis
method. We also included the convergence study of the proposed algorithm.
Eight application problems of the Lane-Emden type equation of various kinds
with several types of initial and boundary conditions are included to demon-
strate the efficacy and accuracy of the proposed algorithm. The numerical
outcomes are contrasted with those obtained by other methods [12,20,21] and
the exact solution. Unlike other methods, the proposed algorithm does not re-
quire discretization or perturbation and can be applied easily and accurately.
The proposed method can solve complex problems with less computational
work and computation time.
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variational iteration method.
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1. Introduction

In recent years, singular Lane-Emden equations (LEE) have arisen in many real-
world applications in the fields of engineering and science. It arises in the modeling
of stellar structure, clusters of galaxies, the catalytic diffusion process, thermal
explosions, the behavior of gas clouds, population evolution, etc. In this article, we
consider the general Lane-Emden equation that arises in astrophysics

d2V (t)

dt2
+

α

t

dV (t)

dt
+ f(t, V (t)) = 0, 0 < t ≤ 1, α ≥ 0, (1.1)

with the initial and boundary conditions

V (0) = a, V ′(0) = b, a1V (1) + b1V
′(1) = c, (1.2)
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where α is a shape factor that describes the geometry of a gas vessel and f represents
a non-linear function.

It is difficult to capture a solution close to the singular point of any nonlinear
differential equation because the coefficients in the differential equation blow up
around singularities. Wazwaz [23] presented two different approaches for solving
LEEs using the Adomian decomposition technique. Yildirim and Ozis [24] pro-
posed a homotopy perturbation method to solve IVPs of LEEs. In [8], Ozturk and
Gulsu proposed an approximation algorithm using Hermite polynomials for solving
LEEs arising in astrophysics and engineering. In [22], Gorder et al. presented an
analytic solution using the homotopy analysis method and standard power series
approach of LEE that describes the thermal behaviour of a spherical gas cloud act-
ing under the mutual attraction of its molecules. Al-Hayani et al. [2] proposed an
algorithm using the homotopy analysis method to find the numerical solution for
IVPs of LEE. In [14], Singh et al. presented an algorithm for solving LEEs with
various boundary conditions using the Haar wavelet collocation method. In [3],
Dizicheh et al. presented a spectral method for finding the approximate solution
of LEEs using the Legendre wavelet. In [10], Sabir et al. proposed an algorithm
based on a Morlet wavelet neural network to solve second-order LEE. In [19], Ti-
wari et al. proposed an orthogonal polynomial wavelet method for solving strongly
nonlinear LEE. In [13], Singh proposed a scheme using Green’s function and de-
composition technique to solve coupled LEEs. In [11], Saha and Singh developed
a new method for dealing with IVPs of second-order Emden Fowler pantograph
differential equations using Laguerre polynomials. In [17], Sinha and Maroju
developed an algorithm for solving nonlinear LEEs using the variational iteration
method and the quasilinearization method. In [16], Sinha and Maroju introduce an
algorithm to solve coupled Lane-Emden type equations using the homotopy analy-
sis method by embedding the quasilinearization technique. In [1], Ahmed described
a numerical algorithm to obtain the approximate solution of singular LEEs us-
ing the first kind of shifted Chebyshev polynomials. In [7], Malele et al. used a
high-order compact-finite-difference scheme for solving LEEs with various boundary
conditions.

In this research, we are going to introduce an effective numerical algorithm
called the homotopy variational iteration method (HVIM), which is based on the
variational iteration method [4,15,18] coupled with the homotopy analysis method
[5, 6, 16] to determine the numerical solution of the Lane-Emden type equation.
Also, the convergence study of HVIM is addressed under general conditions. We
included eight different kinds of nonlinear LEEs arises in astrophysics, where two
are boundary value problems and the remaining six are initial value problems. We
consider the LEEs containing nonlinear functions as exponential, trigonometric,
and hyperbolic, which is difficult to solve due to their strong nonlinearity, which
can be solved by means of the proposed HVIM. The numerical results obtained by
the proposed HVIM are compared with advanced Adomian decomposition method
[20, 21], homotopy perturbation method [12] and available exact solutions to check
the reliability of the method. Unlike other methods, the proposed algorithm does
not require discretization or perturbation and can be applied easily and accurately.
The proposed method can solve complex problems with less computational work
and computation time.
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2. The VIM and the Lagrange multiplier for LEEs

According to variational theory [4,15], correction functional for Lane-Emden equa-
tion (1.1) can be constructed as

Vk+1(t) = Vk(t) +

∫ t

0

λ(x)

[
d2Vk(x)

dx2
+

α

x

dVk(x)

dx
+ f(x, Ṽk)

]
dx, k = 0, 1, 2, ...

where, λ is a general Lagrange multiplier and, f(x, Ṽk) denote restricted variation,
i.e. δf(x, Ṽk) = 0.

δVk+1(t) = δVk(t) + δ

∫ t

0

λ(x)

[
d2Vk(x)

dx2
+

α

x

dVn(x)

dx

]
dx.

On simplifying the above equation, we get the following stationary conditions

1 +
α

t
λ(t)− λ′(t) = 0,

α (xλ′(x)− λ(x))

x2
− λ′′(x) = 0, λ(t) = 0.

Solving the above expression for λ, we obtained

λ(x) =


x log

(x
t

)
, α = 1,

x
(
xα−1 − tα−1

)
(α− 1)tα−1

, α ̸= 1.
(2.1)

3. Construction of homotopy variational iteration
method (HVIM)

In this part, we propose HVIM for solving the LEEs. Using the Lagrange multiplier
λ, we have the following variational iteration formula

Vk+1(t) = Vk(t) + c0

∫ t

0

λ(x)

[
d2Vk(x)

dx2
+

α

x

dVk(x)

dx
+ f(x, Vk)

]
dx, (3.1)

where c0 is a control parameter.
To obtain the series solution of (1.1), we couple the concept of VIM with HAM.

Using the homotopy analysis method, we get the following general zero-order de-
formation equation for (3.1) (see appendix in [12])

H(t, q, v) : = (1− q)[v0 − V ]

: = qh

∫ t

0

λ(x)

[
d2V (x)

dx2
+

α

x

dV (x)

dx
+ f(x, V (x))

]
dx, (3.2)

where q ∈ [0, 1] is an embedding parameter, h = −c0 is a convergence control
parameter and v0 is the initial guess satisfying (1.2). We have from (3.2)

H(t, 0, V ) = V − v0,

H(t, 1, V ) = h

∫ t

0

λ(x)

[
d2V (x)

dx2
+

α

x

dV (x)

dx
+ f(x, V (x))

]
dx.
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Therefore V (t, q) changes from v0(t) to the best approximate solution of (3.1) as q
varies from 0 to 1. Taylor series expansion of v(t,q) w.r.t. parameter q

V (t, q) = v0 +

∞∑
m=1

vmqm, (3.3)

where

vm =
1

m!

∂mv(t, q)

∂qm
|q=0 . (3.4)

If h ̸= 0 is chosen properly then the series (3.3) will be convergent at q = 1

V (t, 1) = V (t) =

∞∑
m=0

vm, (3.5)

which will be the solution of (1.1).
Defining the vector v⃗m = {v0, v1, . . . , vm} and differentiating (3.2)m times w.r.t.

parameter q, dividing it by m! and setting subsequently q = 0 then the mth-order
deformation equation is obtained

vm = ηvm−1 − hRm(t, v⃗m−1), (3.6)

where

η =

{
0, m ≤ 1,

1, m > 1,
(3.7)

and

Rm(t, v⃗m−1)

=
1

(m− 1)!

∂m−1

∂qm−1

∫ t

0

λ(x)

[
d2V (x, q)

dx2
+

α

x

dV (x, q)

dx
+ f(x, q, V )

]
dx

=

∫ t

0

λ(x)

[
d2vm−1(x)

dx2
+

α

x

dvm−1(x)

dx
+

1

(m− 1)!

∂m−1

∂qm−1
f

( ∞∑
i=0

viq
i

)
|q=0

]
dx

=

∫ t

0

λ(x)

[
d2vm−1(x)

dx2
+

α

x

dvm−1(x)

dx
+ Pm−1

]
dx, (3.8)

where

Pm−1 =
1

(m− 1)!

∂m−1

∂qm−1
f

( ∞∑
i=0

viq
i

)
|q=0 . (3.9)

Therefore choosing the initial guess v0 satisfying (1.2), vm,m ≥ 1 are successively
obtained. Hence the kth-order approximate solution of (1.1) can be obtained by

Vk(t) =

k∑
m=0

vm. (3.10)
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4. Convergence analysis

From (3.6)-(3.10), we have

Vk =

k∑
m=0

vm

=

k∑
m=0

vm−1 − h

k∑
m=0

∫ t

0

λ(x)

[
d2vm−1(x)

dx2
+

α

x

dvm−1(x)

dx
+ Pm−1

]
dx

= Vk−1 − h

∫ t

0

λ(x)

[
d2Vk−1(x)

dx2
+

α

x

dVk−1(x)

dx
+

k∑
m=0

Pm−1

]
dx.

Using the relation
∑k

m=0 Pm ≤ f(Vk) [9]

Vk ≤ Vk−1 − h

∫ t

0

λ(x)

[
d2Vk−1(x)

dx2
+

α

x

dVk−1(x)

dx
+ f(Vk(x))

]
dx.

Now, consider the Banach space X = (C[0, l] : L′[0,∞], ∥V ∥) with defined norm

∥V ∥ = sup
t∈[0,l]

∫ ∞

0

| V (t) | dt, (4.1)

and defined the operator M : X → X as

M [V ] = −h

∫ t

0

λ(x)

[
d2V (x)

dx2
+

α

x

dV (x)

dx
+ f(V (x))

]
dx. (4.2)

Consider the components vk and wk for k = 0, 1 as{
w0 = v0,

A0 = w0,

and {
w1(t) = M [w0],

A1(t) = w0(t) + w1(t).

In general for m > 2, we get{
wm(t) = M [w0 + w1 + w2 + . . .+ wm−1],

Am(t) = w0(t) + w1(t) + w2(t) + . . .+ wm(t).
(4.3)

Thus, we have

V (t) = lim
m→∞

vm(t) =

∞∑
m=0

wm(t).

Therefore choosing the initial guess w0 = v0 satisfying (1.2), we can obtain the

approximate solution by kth order truncated series
∑k

m=0 wm.
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Theorem 4.1. Suppose the condition ∥M [w0+w1+w2+ . . .+wm]∥ ≤ K∥M [w0+
w1 + w2 + . . . + wm−1]∥ such that there exist K ∈ (0, 1) and Bm ≤ K for all

m ∈ N∪{0} then the series
∑k

m=0 vm obtained from (3.10) is convergent in Banach
space X = (C[0, l] : L′[0,∞], ∥V ∥), where

Bm =


∥wm+1∥
∥wm∥

, ∥wm∥ ≠ 0,

0, ∥wm∥ = 0.

Proof.

∥Am −Am−1∥ = ∥wm+1∥ ≤ K∥wm∥ ≤ K2∥wm−1∥ ≤ . . . ≤ K∥w0∥.

Using triangular inequality for all m, p ∈ N with m > p

∥Am −Ap∥ ≤ ∥Am −Am−1∥+ ∥Am−1 −Am−2∥+ ∥Am−2 −Am−3∥
+...+ ∥Ap+1 −Ap∥

≤ Km∥w0∥+Km−1∥w0∥+Km−2∥w0∥+ . . .+Kp+1∥w0∥
≤ Kp+1

(
1 +K +K2 + ...+Km−p−1

)
∥w0∥

= Kp+1

(
1−Km−p

1−K

)
∥v0∥.

Since K ∈ (0, 1), therefore

∥Am −Ap∥ ≤
(
Kp+1

1−K

)
∥v0∥.

Taking m, p → ∞, we get Am → Ap. Therefore < Am > is a Cauchy in Banach

space X. Hence
∑k

m=0 vm converges to the solution.

5. Numerical results

In this section, we include eight application problems of the Lane-Emden type
equation with various initial and boundary conditions and compare the obtained
numerical results by using the proposed homotopy variational iteration method
with those obtained by advanced Adomian decomposition method (AADM) [20,21]
and homotopy perturbation method (HPM) [12] to illustrate the applicability and
accuracy of the homotopy variational iteration method.

Example 5.1. Consider the following nonlinear LEE that arises in equilibrium
isothermal gas sphere

d2V (t)

dt2
+

2

t

d

dt
V (t) = −V 5 (5.1)

with the initial and boundary conditions

V (0) = 1, V ′(0) = 0, V (1) =

√
3

4
.
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The exact solution is

V (t) =

√
3

x+ t2
.

Here α = 2, so LEE in (5.1) is spherical.
On applying the proposed HVIM, we get the following (k+1)th iterative scheme

for (5.1)

Vk+1(t) = Vk − h

∫ t

0

x (x− t)

t

[
d2Vk(x)

dx2
+

α

x

dVk(x)

dx
+

k∑
m=0

Pm

]
dx,

where Pm can be obtain from (3.9).
Applying the proposed HVIM, with the initial guess V0 = v0 = 1 and h = −1,

the 4th-order approximate solution for (5.1) can be obtained as

V4(t) = 1− 0.166667t2 + 0.0416667t4 − 0.0115741t6 + 0.00337577t8.

Table 1. Comparison of numerical results of Example 5.1.

t V (t) V4(t) AADM [21] HPM [12] R4 r4 [21] r4 [12]

0.1 0.9983374885 0.9983374885 0.9819992464 0.9901138001 1.01030E − 13 1.63382E − 02 8.22369E − 03

0.2 0.9933992678 0.9933992679 0.9774514890 0.9856630325 1.02452E − 10 1.59478E − 02 7.73624E − 03

0.3 0.9853292782 0.9853292840 0.9700154210 0.9783541835 5.82008E − 09 1.53139E − 02 6.97509E − 03

0.4 0.9743547037 0.9743548049 0.9599063336 0.9683460216 1.01246E − 07 1.44484E − 02 6.00868E − 03

0.5 0.9607689228 0.9607698417 0.9474256347 0.9558512822 9.18870E − 07 1.33433E − 02 4.91764E − 03

0.6 0.9449111825 0.9449167000 0.9329608489 0.9411276222 5.51748E − 06 1.19503E − 02 3.78356E − 03

0.7 0.9271455408 0.9271704283 0.9169856171 0.9244666981 2.48875E − 05 1.01599E − 02 2.67884E − 03

0.8 0.9078412990 0.9079322864 0.9000596969 0.9061819006 9.09874E − 05 7.78160E − 03 1.65940E − 03

0.9 0.8873565094 0.8876397215 0.8828289622 0.8865953896 2.83212E − 04 4.52755E − 03 7.61120E − 04

1.0 0.8660254038 0.8668016975 0.8660254038 0.8660252039 7.76294E − 04 1.11022E − 16 1.99841E − 07

(a) HVIM Vs AADM Vs HPM (b) Absolute error

Figure 1. Graphical comparison for Example 5.1.

In Table 1, we compare the approximate solutions and corresponding absolute
errors obtained by HVIM with the existing AADM [21], HPM [12] and available
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Exact solution. Figure 1 displays the comparison of numerical solutions and cor-
responding absolute errors obtained by HVIM with the existing methods [12, 21].
We conclude that the proposed HVIM has greater efficiency, and we reach good
accuracy within a few iterations.

Example 5.2. Consider the following nonlinear LEE that arises in thermal explo-
sion in cylindrical vessel

d2V (t)

dt2
+

1

t

d

dt
V (t) = −ceV (t) (5.2)

with the initial and boundary conditions

V (0) = 2 ln2(2− 2
√
3), V ′(0) = 0, V (1) = 0.

The exact solution is

V (t) = 2 ln

(
1 + c1
1 + c1t2

)
, where c1 =

(8− 2c) +−
√

(8− 2c)
2 − 4c2

2c
.

Here α = 1, so LEE in (5.2) is cylindrical.
On applying the proposed HVIM for c = 1 with the initial guess V0 = v0 =

2 ln2(2 − 2
√
3) and h = −1, the 4th-order approximate solution for (5.2) can be

obtained as

V4(t) = 0.316694− 0.343146t2 + 0.0294373t4 − 0.00336709t6 + 0.000433276t8.

Table 2. Comparison of numerical results of Example 5.2.

t V (t) V4(t) AADM [21] HPM [12] R4 r4 [21] r4 [12]

0.1 0.3132658505 0.3132658505 0.3091110525 0.3107822715 5.88418E − 15 4.15480E − 03 2.48358E − 03

0.2 0.3030154228 0.3030154228 0.2989032977 0.3006563961 6.05554E − 12 4.11213E − 03 2.35903E − 03

0.3 0.2860472653 0.2860472657 0.2820071442 0.2838860900 3.46709E − 10 4.04012E − 03 2.16118E − 03

0.4 0.2625311275 0.2625311336 0.2585977491 0.2606277580 6.09658E − 09 3.93338E − 03 1.90337E − 03

0.5 0.2326967839 0.2326968399 0.2289203320 0.2310948050 5.60745E − 08 3.77645E − 03 1.60198E − 03

0.6 0.1968268057 0.1968271477 0.1932901754 0.1955522821 3.42017E − 07 3.53663E − 03 1.27452E − 03

0.7 0.1552481067 0.1552496768 0.1520926245 0.1543102970 1.57011E − 06 3.15548E − 03 9.3781E − 04

0.8 0.1083227634 0.1083286149 0.1057830873 0.1077164120 5.85148E − 06 2.53968E − 03 6.06351E − 04

0.9 0.0564386025 0.0564571922 0.0548870346 0.0561472994 1.85898E − 05 1.55157E − 03 2.91303E − 04

1.0 0.0000000000 0.0000520553 −2.082E − 17 −2.594E − 08 5.20553E − 05 2.08167E − 17 2.59375E − 08

In Table 2, we compare the approximate solutions and corresponding absolute
errors obtained by HVIM with the existing AADM [21], HPM [12] and available
Exact solution. Figure 2 displays the comparison of numerical solutions and cor-
responding absolute errors obtained by HVIM with the existing methods [12, 21].
We conclude that the proposed HVIM has greater efficiency, and we reach good
accuracy within a few iterations.

Example 5.3. Consider the following nonlinear singular boundary value problem
of LEE

d2V (t)

dt2
+

2

t

d

dt
V (t) =

c1V (t)

c2 + V (t)
(5.3)
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(a) HVIM Vs AADM Vs HPM (b) Absolute error

Figure 2. Graphical comparison for Example 5.2.

with the boundary conditions

V ′(0) = 0, 5V (1) + V ′(1) = 5,

where c1 = 0.76129 and c2 = 0.03119 Here α = 2, so LEE in (5.3) is spherical.
On applying the proposed HVIM with the initial guess V0 = v0 = 1 and h = −1,

the 4th-order approximate solution for (5.3) can be obtained as

V4(t) = 1.+ 0.123044t2 + 0.000137378t4 − 7.73281588853816× 10−6t6

+5.307578546053464× 10−7t8.

Table 3. Numerical comparison of Example 5.3.

t V4(t) AADM [21] R4 r4 [21]

0.1 1.0012304530 0.8296798519 4.47975E − 14 7.37113E − 01

0.2 1.0049219764 0.8333484897 1.14257E − 11 7.37113E − 01

0.3 1.0110750606 0.8394636718 2.91129E − 10 7.37113E − 01

0.4 1.0196905138 0.8480265769 2.88457E − 09 7.37113E − 01

0.5 1.0307694490 0.8590388551 1.70170E − 08 7.37113E − 01

0.6 1.0443132659 0.8725026281 7.22638E − 08 7.37113E − 01

0.7 1.0603236294 0.8884204889 2.44447E − 07 7.37113E − 01

0.8 1.0788024451 0.9067955021 6.99766E − 07 7.37113E − 01

0.9 1.0997518334 0.9276312038 1.76274E − 06 7.37113E − 01

1.0 1.1231741029 0.9509316014 4.01325E − 06 7.37113E − 01

In Table 3, we compare the approximate solutions and corresponding absolute
residual errors obtained by HVIM with the existing AADM [20]. Figure 3 displays
the comparison of numerical solutions and corresponding absolute residual errors
obtained by HVIM with the AADM [20]. We conclude that the proposed HVIM
has greater efficiency, and we reach good accuracy within a few iterations.

Example 5.4. Consider the following nonlinear initial value problem of LEE arises
in astrophysics

d2V (t)

dt2
+

2

t

d

dt
V (t) = −eV (x) (5.4)
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(a) HVIM Vs AADM (b) Absolute residual error

Figure 3. Graphical comparison for Example 5.3.

with the initial conditions

V (0) = 0, V ′(0) = 0.

On applying the proposed HVIM with the initial guess V0 = v0 = 0 and h = −1,
the 4th-order approximate solution for (5.4) can be obtained as

V4(t) = −0.166667t2 + 0.00833333t4 − 0.000529101t6 + 0.0000373555t8.

Table 4. Numerical comparison of Example 5.4.

t V4(t) AADM [20] R4 r4 [20]

0.1 −0.0016658339 −0.0016658333 3.07854E − 12 2.22006E − 06

0.2 −0.0066533671 −0.0066533333 7.85679E − 10 3.54178E − 05

0.3 −0.0149328833 −0.0149325000 2.00348E − 08 1.78437E − 04

0.4 −0.0264554760 −0.0264533333 1.98721E − 07 5.60158E − 04

0.5 −0.0411539546 −0.0411458333 1.17389E − 06 1.35583E − 03

0.6 −0.0589440583 −0.0589200000 4.99298E − 06 2.78219E − 03

0.7 −0.0797259280 −0.0796658333 1.69206E − 05 5.09154E − 03

0.8 −0.1033857667 −0.1032533333 4.85356E − 05 8.56513E − 03

0.9 −0.1297976054 −0.1295325000 1.22531E − 04 1.35060E − 02

1.0 −0.1588250784 −0.1583333333 2.79618E − 04 2.02319E − 02

In Table 4, we compare the approximate solutions and corresponding absolute
residual errors obtained by HVIM with the existing AADM [20]. Figure 4 displays
the comparison of numerical solutions and corresponding absolute residual errors
obtained by HVIM with the AADM [20]. We conclude that the proposed HVIM
has greater efficiency, and we reach good accuracy within a few iterations.

Example 5.5. Consider the following nonlinear trigonometric problem of LEE

d2V (t)

dt2
+

2

t

d

dt
V (t) = −Sin(V (t)) (5.5)

with the initial conditions

V (0) = 1, V ′(0) = 0.
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(a) HVIM Vs AADM (b) Absolute residual error

Figure 4. Graphical comparison for Example 5.4.

On applying the proposed HVIM with the initial guess V0 = v0 = 1 and h = −1,
the 4th-order approximate solution for (5.5) can be obtained as

V4(t) = 1− 0.140245t2 + 0.00378874t4 + 0.000148292t6 − 0.0000107728t8.

Table 5. Numerical comparison of Example 5.5.

t V4(t) AADM [20] R4 r4 [20]

0.1 0.9985979274 0.9985979272 9.82547E − 15 6.22130E − 07

0.2 0.9943962649 0.9943962554 2.75274E − 12 9.92073E − 06

0.3 0.9874087314 0.9874086240 8.26175E − 11 4.99427E − 05

0.4 0.9776583658 0.9776577655 9.93206E − 10 1.56603E − 04

0.5 0.9651777802 0.9651755052 7.19872E − 09 3.78449E − 04

0.6 0.9500094993 0.9500027615 3.76175E − 08 7.74951E − 04

0.7 0.9322063712 0.9321895459 1.55867E − 07 1.41434E − 03

0.8 0.9118320290 0.9117949626 5.42366E − 07 2.37100E − 03

0.9 0.8889613799 0.8888872089 1.64595E − 06 3.72255E − 03

1.0 0.8636810942 0.8635435751 4.47304E − 06 5.54644E − 03

In Table 5, we compare the approximate solutions and corresponding absolute
residual errors obtained by HVIM with the existing AADM [20]. Figure 5 displays
the comparison of numerical solutions and corresponding absolute residual errors
obtained by HVIM with the AADM [20]. We conclude that the proposed HVIM
has greater efficiency, and we reach good accuracy within a few iterations.

Example 5.6. Consider the following nonlinear trigonometric problem of LEE

d2V (t)

dt2
+

2

t

d

dt
V (t) = −Cos(V (t)) (5.6)

with the initial conditions

V (0) = 1 +
π

2
, V ′(0) = 0.
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(a) HVIM Vs AADM (b) Absolute residual error

Figure 5. Graphical comparison for Example 5.5.

On applying the proposed HVIM with the initial guess V0 = v0 = 1+ π
2 and h = −1,

the 4th-order approximate solution for (5.6) can be obtained as

V4(t) = 2.5708 + 0.140245t2 + 0.00378874t4 − 0.000148292t6 − 0.0000107728t8.

Table 6. Numerical comparison of Example 5.6.

t V4(t) AADM [20] R4 r4 [20]

0.1 2.5721991572 2.5721991573 8.93730E − 15 6.23521E − 07

0.2 2.5764121858 2.5764121953 1.99557E − 12 1.00098E − 05

0.3 2.5834489715 2.5834490804 3.89438E − 11 5.09567E − 05

0.4 2.5933319303 2.5933325448 2.17682E − 10 1.62300E − 04

0.5 2.6060920549 2.6060944140 2.33805E − 11 4.00182E − 04

0.6 2.6217685068 2.6217756065 7.09392E − 09 8.39837E − 04

0.7 2.6404080661 2.6404261335 5.29620E − 08 1.57792E − 03

0.8 2.6620644183 2.6621050994 2.51166E − 07 2.73540E − 03

0.9 2.6867972559 2.6868807016 9.29641E − 07 4.46098E − 03

1.0 2.7146711656 2.7148302302 2.90866E − 06 6.93514E − 03

In Table 6, we compare the approximate solutions and corresponding absolute
residual errors obtained by HVIM with the existing AADM [20]. Figure 6 displays
the comparison of numerical solutions and corresponding absolute residual errors
obtained by HVIM with the AADM [20]. We conclude that the proposed HVIM
has greater efficiency, and we reach good accuracy within a few iterations.

Example 5.7. Consider the following nonlinear hyperbolic problem of LEE

d2V (t)

dt2
+

2

t

d

dt
V (t) = −Sinh(V (t)) (5.7)

with the initial conditions

V (0) = 1, V ′(0) = 0.

On applying the proposed HVIM with the initial guess V0 = v0 = 1 and h = −1,
the 4th-order approximate solution for (5.7) can be obtained as

V4(t) = 1− 0.195867t2 + 0.0151119t4 − 0.00109194t6 + 0.000098555t8.
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(a) HVIM Vs AADM (b) Absolute residual error

Figure 6. Graphical comparison for Example 5.6.

Table 7. Numerical comparison of Example 5.7.

t V4(t) AADM [20] R4 r4 [20]

0.1 0.9980428414 0.9980428425 1.05561E − 11 4.58075E − 06

0.2 0.9921894348 0.9921895044 2.69214E − 09 7.30338E − 05

0.3 0.9824935991 0.9824943887 6.85614E − 08 3.67576E − 04

0.4 0.9690437586 0.9690481667 6.78844E − 07 1.15231E − 03

0.5 0.9519611019 0.9519777785 4.00117E − 06 2.78429E − 03

0.6 0.9313971428 0.9314464330 1.69733E − 05 5.70182E − 03

0.7 0.9075308232 0.9076536075 5.73456E − 05 1.04108E − 02

0.8 0.8805653368 0.8808350478 1.63936E − 04 1.74699E − 02

0.9 0.8507248911 0.8512627685 4.12348E − 04 2.74757E − 02

1.0 0.8182516669 0.8192450528 9.37302E − 04 4.10482E − 02

(a) HVIM Vs AADM (b) Absolute residual error

Figure 7. Graphical comparison for Example 5.7.

In Table 7, we compare the approximate solutions and corresponding absolute
residual errors obtained by HVIM with the existing AADM [20]. Figure 7 displays
the comparison of numerical solutions and corresponding absolute residual errors
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obtained by HVIM with the AADM [20]. We conclude that the proposed HVIM
has greater efficiency, and we reach good accuracy within a few iterations.

Example 5.8. Consider the following nonlinear hyperbolic problem of LEE

d2V (t)

dt2
+

2

t

d

dt
V (t) = −Cosh(V (t)) (5.8)

with the initial conditions

V (0) = 1, V ′(0) = 0.

On applying the proposed HVIM with the initial guess V0 = v0 = 1 and h = −1,
the 4th-order approximate solution for (5.8) can be obtained as

V4(t) = 1− 0.25718t2 + 0.0151119t4 − 0.00163787t6 + 0.000156302t8.

Table 8. Numerical comparison of Example 5.8.

t V4(t) AADM [20] R4 r4 [20]

0.1 0.9974297085 0.9974297101 1.87563E − 11 6.86973E − 06

0.2 0.9897368704 0.9897369748 4.78081E − 09 1.09470E − 04

0.3 0.9769750133 0.9769761970 1.21639E − 07 5.50470E − 04

0.4 0.9592314419 0.9592380482 1.20279E − 06 1.72350E − 03

0.5 0.9366244873 0.9366494684 7.07739E − 06 4.15761E − 03

0.6 0.9092998754 0.9093736665 2.99615E − 05 8.49689E − 03

0.7 0.8774264367 0.8776101198 1.00985E − 04 1.54763E − 02

0.8 0.8411914399 0.8415945740 2.87901E − 04 2.58950E − 02

0.9 0.8007958965 0.8015990439 7.21930E − 04 4.05892E − 02

1.0 0.7564502464 0.7579318126 1.63541E − 03 6.04043E − 02

(a) HVIM Vs AADM (b) Absolute residual error

Figure 8. Graphical comparison for Example 5.8.

In Table 8, we compare the approximate solutions and corresponding absolute
residual errors obtained by HVIM with the existing AADM [20]. Figure 8 displays
the comparison of numerical solutions and corresponding absolute residual errors
obtained by HVIM with the AADM [20]. We conclude that the proposed HVIM
has greater efficiency, and we reach good accuracy within a few iterations.
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6. Conclusion

In this research, we introduced an effective numerical algorithm called the homo-
topy variational iteration method using the variational iteration method combined
with the homotopy analysis method to determine the numerical solution of Lane-
Emden type equations. The convergence study is addressed under general con-
ditions. Eight problems of different kinds of LEEs with strong nonlinearities are
included and solved by means of the proposed HVIM to test the efficiency. The
method is compared with the exact solution and existing methods [12,20,21]. Unlike
other methods, the proposed algorithm does not require discretization or perturba-
tion and can be applied easily and accurately. The proposed HVIM can solve highly
nonlinear LEEs with less computational work and computation time and converge
to the solution in a few iterations.
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