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method for a class of n-th order ordinary differential equations with Lipschitz
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1. Introduction

The variational iteration method was first proposed by He to approximately solve
some nonlinear ordinary differential equations and nonlinear partial differential
equations without linearization or small perturbation [4-6,9]. This method was
shown by many authors to be superior to many other analytic approximation meth-
ods, such as Adomain’s decomposition method and perturbation methods. A key
point is that a correction functional is constructed by a general Lagrange multi-
plier [10], which can be identified via variational methods.

In this paper we attempt to use the variational iteration method to get an exact
solution of the following n-th order ordinary differential equation

) ua QU D) a0+ Fu) =0, bR,
w0 (0) = ug" ™, (0) = uf, u(0) = u, '
where a; € C"1(R), i =1,2,3,--- ,n— 1, F : R x R — R is continuous function

that is Lipschitz continuous with respect to the second variable, i.e., there exists
constant L > 0 such that

‘F(t,ul) — F(tﬂLg) < L\ul — ’lL2|7 Vt, Uy, U2 € R.

The motivation for the study of the above equation originated from nonlinear
oscillators. Several authors showed the validity of variational iteration method
and got approximate solutions of oscillation equations, see for example, [7, 15].
See [1,3,11,12,16,17] and the references therein for other new developments of
variational iteration methods. The oscillation equations considered in this paper
has more general form with Lipschitz nonlinear term. Our main theorem (Theorem
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3.1) shows that variational iteration sequence of (1.1) converges uniformly on any
finite time interval to an exact solution.

2. Preliminary

In this section, we briefly recall the basic idea of the variational iteration method.
Consider the following general nonlinear system

L(u(t)) + N(u(t) = g(t), (2.1)

where L is a linear operator, N is a nonlinear operator, and ¢ is a given continuous
function.

The essential technique of the variational iteration method is to construct a
correction functional for system (2.1) as follows

Uns1 (£) = un(t) + /O A(s; ) (Lun(s) + Ny (s) — g(s))ds, (2.2)

where X is a general Lagrange multiplier which can be determined by using the
variational approach, and @, denotes a restricted variation, i.e., 6@, = 0. See [2,8,
13,14, 18] for more details on iteration methods.

3. Main theorem

Theorem 3.1. For any given T > 0, any initial data v € C™([-T,T)) satisfying
the initial condition in (1.1), the variational iteration sequence of (1.1) converges
uniformly on [—T,T)] to an exact solution.

Proof. First we derive the variational iteration sequence of (1.1). Let A = A(s;t)
be a general Lagrange multiplier to be determined. Then the correction functional
for (1.1) is

g1 (t) =ug(t) + /0 A(s;t) (uén)(s) + anfl(s)u;n_l)(s) 4o
+a1(s)uy(s) + F(s,uk(s))) ds.

Making the above correction functional stationary, notice that dug(0) = 0,
t
§Uk+1(t) = 5uk(t) + (S/ )\(S,t) (ul(cn) (3) + anfl(s)(ﬂk)(n—l)(s) 4+ ..
0
+ar(s) (k) (s) + F(s, ik (s))) ds

= dug(t) + /Ot A(s; 1) (6ug) ™ (s)ds

n— n-1 j—1 )
= (1+ (—1)”-1‘287:? (1)) () + 3 (~1p gsj_? () (5u) ") (1)
j=1

+ t — nin)\ S; u s)ds
/0 ( 1) 98"( 7t)(5 k)( )
=0,
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where @, denotes the restricted variation, i.e., dt = 0.
Thus the arbitrariness of duy yields

™A

@(S7t) = O7 Vse [O,t],

N

m(t,t) :O, v] = 1,2,3,"'77,— 17
"1\

W(t;t) = (-1)",

which can be readily solved to obtain A(s;t) = ((n_ﬂ;, (s —t)"~ 1. So the variational

iteration sequence of (1.1) reads

g1 (t) =ur(t) + /0 (fl__l)ln)! (s—t)" ! (Uén) (5) + an—1(s)u "V (s) + -+

+ ay(s)u(s) + F(s, ug (s)))ds.

Now we define an operator A : CO([-T,T]) — C°([-T,T]) by
._ﬂfl L t (1) (s — t)n—l ‘ (4)
Arlu](t) ._j;( 1) /0 <(n T (s)) u(s)ds

1)
+ /0 1) F(s,u(s))ds.

It can be easily seen that Ag is well-defined. Also defined Ar : C™([-T,T]) —
C([=T,T]) by

~ t(_1\n s — n—1
Arfu] () =u(t) + /0 M(um)(s)Mn1(3)u<n1>(s)+...

+ ai(s)u'(s) + F(s, u(s)))ds.

The classical Cauchy-Lipschitz theorem and extension theorem guarantee that the
unique exact solution ¢(t) of (1.1) exists on [—T,T]. It is clear that ¢ is a fixed
point of Ap, i.e., Ar[p] = . Therefore for any v € C™([~T,T]) satisfying the
initial condition in (1.1), we have

[Ar[u](t) — o (1)]

= |Arf)(t) — Ar[e](®)]

S R R e o el CREFTUIORS SOOI

+F(s,0(s)) — Fls,9(s)) ) ds
B \nZl(—l)j /0 (Ww(s))m (v = )(s)

n /Ot W (F(s, v(s)) — F(s, w(S)))dS‘
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= |Ar[o](t) — Arle)(0)]

t
< T [ o= prl(s
0
< C(anv M)HU - (p”CO([—T,T])‘ﬂv Vie [_T7 T]7 (31)

where C(n, T, M) is a positive constant depending on n, T, M := max{||a;||cn—1 (—1.1));
1<j<n-—1}and L.
One more step iteration gives

B3(t) - o0)] = |Ar (Arl)) () — A (Arle)) 1)
< 01| [ At - Arids)las
= C(n,T) /Ot |Ar[v)(s) — Arlel(s)|ds|

t
< O T MP| [ o= gllongnmysds|
0

C(n, T, M)?||v — -
_Cn ) IIUQ' Pleciran oy g o [T, 7.

Inductively we have

C(n, T, M)N|lv — |l co(—7,1)) N

A [0 - (1) < - Vie[-T.T].
Thus
X C(n, T M)NHU_SDHCO([—TT]
N s 4y s ) N
HAT [v] - SDHO,H,T] < N @2T)N =0, N — cc.
The proof is complete. O

Example 3.1. (Dissipative pendulum)
Consider the equation of dissipative pendulum with external force

{u”(t) +u'(t) +sin(u(t)) =0, t € R,

u(0) = A > 0,4/(0) = 0. (3.2)

Here F(u) = sinw is a Lipschitz function with Lipschitz constant 1. The variational
iteration formula for this equation reads

Uns1 (£) = un(t) + /0 t(s — 1) (u;;(s) ol (s) + sin(un(s)))ds.

Rewrite (3.2) into planar system

{i) = —v — sin(u). (3:3)

It can be easily seen that (0,0) is a saddle point, so for A > 0 small, the orbit of
(3.3) will spiral towards the origin. For A = 0.1, initial approximation guess v(t) =
Acos(t) and time interval [0, 5]. Figure 1 and Figure 2 show a comparison between
the exact solutions versus 10-th and 15-th approximation solutions respectively.
Graphically, the more we iterate, the closer, in an uniform way, these two solutions
with each other.
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