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Abstract This paper investigates a class of fractional Sturm-Liouville dif-
ferential equations with mixed boundary conditions, which are subjected to
parameter and impulsive perturbations (including instantaneous and non-
instantaneous impulses). By employing the variational methods and criti-
cal point theorems, we derive several criteria that guarantee the existence of
at least one and two classical solutions, respectively, when the parameters fall
within different intervals. Furthermore, we provide an example to demonstrate
the effectiveness of our main results.
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1. Introduction

The purpose of this paper is to establish the existence and multiplicity of solutions
for the following impulsive fractional Sturm-Liouville equation (FSLE for short)
supplemented with mixed boundary conditions given by

DF(P(OFDFu(L)) +althu(t) = Mt u(t)), t € (sp,tua], k=0,1,---,n,
_A(tg%_l(p(tk)gggu(tk))) = Ik(u(tk)), k=1,2,---n,

D7 (pOF D) = DT (PE)FDFUE)), € (bryspls b =1,2,-- m,
DT (p(s)F D7 u(s;) = D7 (p(s)FDFu(s))), k=12, .,

u(0) = 0, Bu(T) + ﬁm%ﬂp(ﬂg@?u(ﬂ) —,
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where {D¢,, D% are the left Caputo fractional derivative and the right Riemann-
Liouville fractional derivative, respectively, of order « € (1/2,1], p(t) € C([0,T))
with 0 < po = ming ryp(t), q(t) € C([0,T]) with 0 < qo = ming 71q(t) < q(t) <
q° = maxp 71q(t), B,¢ are two constants with 3 > 0, A is a positive parameter,
0 =80 <t <81 << 8y <tgp1 =T, Iy € CR,R)(k=1,2,---,n) and
fk € C((5k7tk+1] X Rv R)(k:(), L2, n)7

AGDF (p()F D u(0)) =5 () DFU(E)— D5 (b1 )T DFu(t)),
DF )T D)= lim D5 ()5 DFu(1),

D5 bl )E DT u(si) =l D5 B0 DFu(t)

t—rsy;

Fractional differential equations are an important extension of integer-order dif-
ferential equations, introducing the concept of fractional order derivatives. Due to
the non-locality of fractional differential operators, fractional differential equations
can describe many natural phenomena more accurately. This new mathematical
tool provides a fresh perspective, enabling researchers to understand and explore
the dynamic behavior of complex systems more deeply. In the past few decades, frac-
tional differential equations have been widely used in many fields, including physics,
engineering, biology, and economics. For example, in physics, fractional differential
equations are used to describe super-diffusion phenomena [11]. In engineering, they
are used to model electronic circuits and control systems [15]. In biology, they are
used to simulate the dynamic changes of biological populations [13]. In economics,
they are used to predict the behavior of financial markets [7]. Therefore, the study
of fractional differential equations can not only promote the development of math-
ematical theory, but also provide powerful tools for solving practical problems.

On the other hand, impulsive differential equations, a unique subset of differen-
tial equations, are particularly effective in modeling sudden events or discontinuous
behaviors observed in various systems such as signal processing, automatic control,
flight object motions, multi-agent systems, time delays, and telecommunications.
Comprehensive descriptions and background readings on the origin and develop-
ment of the theory and applications of impulsive differential equations can be found
in the monographs [2,28]. With the significant advancements in the theory of
fractional impulsive differential equations and their extensive applications across
multiple fields, recent research has focused on exploring the existence and multi-
plicity of solutions for fractional boundary value problems influenced by impulsive
effects [19,21,26]. Specifically, in recent years, some scholars have been dedicated to
applying variational methods and critical point theory to study the existence and
multiplicity of solutions for fractional impulsive differential equations with Dirichet
boundary conditions and Sturm-Liouville boundary conditions. For instance, Hei-
darkhani and Salari [9] used variational methods and critical point theory to prove
that a class of fractional differential systems with impulses and Dirichet boundary
conditions has three weak solutions. Ledesma and Nyamoradi [17] constructed a
variational structure for a class of fractional impulsive differential equations with
(k,)-Hilfer fractional derivative operators and Dirichet boundary conditions, and
used the linking theorem to study the existence of weak solutions for this problem.
Li et al. [18] used the Mountain Pass theorem and iterative techniques to discuss
the existence of weak solutions for a class of fractional impulsive differential equa-
tions with (p,q)-Laplacian operators and Dirichet boundary conditions. Min and
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Chen [23] used the critical point theorem and variational methods to prove that a
class of fractional impulsive differential equations with p-Laplacian operators and
Sturm-Liouville boundary conditions has infinitely many weak solutions. Zhang and
Ni [31] used the critical point theorem to prove that a class of fractional p-Laplacian
differential equations with instantaneous impulses and non-instantaneous impulses
and Sturm-Liouville boundary conditions has three weak solutions.

Mixed boundary conditions are a significant class of boundary conditions for
differential equations, characterized by the boundary conditions involving a linear
combination of the variable’s value and its derivative. In many practical problems,
the boundary conditions not only involve the variable’s value but also relate to its
derivative. This situation is prevalent in various fields of natural science and engi-
neering, such as heat conduction, fluid mechanics, and circuits [6,16]. The study
of mixed boundary value problems can more accurately model these phenomena,
providing mathematical models that are more applicable to practical problems. In
recent years, the existence of solutions for mixed boundary value problems of frac-
tional differential equations has received widespread attention from scholars. For
instance, Lupiriska [20] utilized the Banach fixed-point theorem to meticulously
explore the existence and uniqueness of solutions for a class of Katugampola frac-
tional differential equations with mixed boundary conditions. Bourguiba et al. [4]
employed fixed-point theory and upper and lower solution methods to conduct a
detailed study on the existence and multiplicity of solutions for a class of fractional
difference equations with mixed boundary conditions. Almeida [3] applied the Ba-
nach and Leray-Schauder fixed-point theorems, carried out exhaustive study on the
existence and uniqueness of solutions for a class of fractional differential equations
with mixed boundary conditions. Carmona et al. [5] used variational methods,
conducted profound research on the existence of solutions for a class of fractional
elliptic equations with mixed boundary conditions that involve a concave-convex
term.

Through an in-depth study of relevant literature, we found that variational meth-
ods and critical point theorems are mainly used to handle Dirichlet boundary value
problems and Sturm-Liouville boundary value problems for fractional differential
equations. However, we have not yet found any literature that uses variational
methods and critical point theorem to discuss mixed boundary value problems for
impulsive fractional differential equations. Therefore, in this paper, we will use
variational methods and critical point theorems to explore the existence and mul-
tiplicity of solutions for impulse problem (1.1). The novelty and significance of our
current study compared to pre-existing literature, is manifested in:

e As far as we know, there has been no literature that applies variational meth-
ods and critical point theorem to study the existence of solutions to mixed
boundary value problems of fractional differential equations. In this paper, we
successfully establish the variational structure of the fractional mixed bound-
ary value problem (1.1) in a new fractional derivative space, and effectively
apply variational methods and critical point theorems to discuss the existence
of its solutions.

e Most of the existing literature that applies variational methods and critical
point theorem to study boundary value problems of fractional differential
equations discusses the existence of weak solutions [9,17,18,23,31]. In this
paper, we provide a proof for the existence of classical solutions to boundary
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value problem (1.1). When the nonlinearity of the equation exhibits different
growth at infinity, we apply variational methods, the least action principle and
the Mountain Pass Theorem to obtain different parameter ranges to ensure
the existence and multiplicity of classical solutions to problem (1.1).

e The concept of non-instantaneous impulses was first introduced by Hernandez
and O’Regan in 2013 ( [10]). These impulses, like instantaneous impulses, have
a wide range of applications. In this paper, the problem (1.1) we study is com-
posed of fractional impulse differential equations and non-homogeneous mixed
boundary conditions. This equation takes into account the perturbations of
both instantaneous impulses and non-instantaneous impulses. In the special
case tp=si(k=1,2,---,n), each interval of non-instantaneous impulses degen-
erates into a point, and BVP (1.1) degenerates into a single instantaneous im-
pulse problem. Therefore, compared with the existing literature [1,8,24,27],
the BVP model we discuss is more general. This generality allows our re-
search to cover a wider range of situations, thus having stronger theoretical
significance.

The structure of this paper is organized as follows: In Section 2, we will intro-
duce some basic definitions and preliminary knowledge, which will be used in the
subsequent sections. In Section 3, we construct a variational framework for prob-
lem (1.1), provide a proof of regularity, and propose some reasonable assumptions
for the nonlinear term of problem (1.1). In Section 4, based on the assumption
conditions proposed in Section 3, using variational methods and the Mountain Pass
Theorem, we prove the existence and multiplicity of solutions to problem (1.1). In
Section 5, we provide some examples to illustrate the main results of this paper.
The final section is a summary, where we review the research results of this paper
and look forward to future research directions.

2. Preliminaries

In this section, we first recall the definitions and related properties of the left and
right Riemann-Liouville, as well as Caputo fractional derivatives. Subsequently,
we re-examine the definition of the fractional derivative space E<, and within the
framework of this space, we propose a new fractional derivative space Ef that is
suitable for studying problem (1.1), and provide its related compact embedding
results. Then, we elaborate on the definition of the classical solution to problem
(1.1). Finally, we introduce the relevant critical point theorems that will be used in
this paper.

Definition 2.1 ( [15]). Let o > 0, u € C[0,T]. Then the left and right Riemann-
Liouville fractional integrals ¢®; “u(t) and ;®;%u(t) are respectively defined by

oszauu):ﬁ / (t— &) 'u(©)de, te0T],

! ) /tT (5 - t)ailu(f)dga te [OaT]

Dru(t) = T(a)

Definition 2.2 ( [15]). Let o € (0,1), u € C[0,7]. Then the left and right
Riemann-Liouville fractional derivatives ¢®u(t) and ;D%u(t) are respectively de-
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fined by
d 1 d [t o
0O7u(E) = 005 u(t) = rr o | (=0T w0, e .T)
d -1 d [T o
1D7u(t) = _%t@%—lu(t) = ma/t (€—1) "u(d¢, tel0, 1]

Definition 2.3 ( [15]). Let « € (0,1), u € ACI[0,T]. Then the left and right
Caputo fractional derivatives §Dfu(t) and {DSu(t) are respectively defined by

CDPu(t) = (DF () = — ) / (t— & W (e)de, te[0.T),
0

Nl-«
-1 d

Crya _ _ mya—1 _ “
t QTu(t) - tQT u (t> F(]. — Oé) dt

/t (€ - w(E)de, te[0.T)

Lemma 2.1 ( [14]). Let a € (0,1] and p € [1,+00). For any u € LP([0,T],RY),

Y o
10D ¢ “wllze (o, < m”uHm([o,t]), §€0,t], telo,T]

Lemma 2.2 ( [14]). Letn >0, p,q > 1, %+% <l+4+norp+#1,q#1, Z%—Fé =1+n,
then the following property of fractional integration

T T
| oo = [ (@7l
0 0
holds, provided that r(t) € LP([0,T],RN), y(t) € L4([0,T],RYN).
Definition 2.4 ( [29]). Let a € (1/2,1]. The fractional derivative space
E* = {uc AC([0,T],RY) : §D7u(t) € L*([0, T],R")},

is defined by the closure of C°°([0, 7], RY) with the norm

T T 1/2
||u||—</0 woPar + [ |€©?u(t)l2dt> | (2.1)

Remark 2.1 ( [29]). For any u € E®, then u € L2([0,T],RY) and {Dgu(t) €
L*([0, T],RY).

Lemma 2.3 ( [25]). Let p(t) € L*°([0,T7), essinfjo 1p(t) > 0 and q(t) € C([0,T])
is such that 0 < qo < q(t) < q%, an equivalent norm of (2.1) in E® is the following

i

a2 = (ATq(t)lu(t)zdt + ATp(t)oCQ?u(t)lzdty/Q- (2.2)

Lemma 2.4 ( [12]). A closed subspace of a reflexive Banach space is also reflezive.

Definition 2.5. Let o € (1/2,1]. The fractional derivative space

ES = {ue E* : u(0) = 0},
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is defined by the closure of C*°([0,7],R") with the norm

T T 1/2
_ Caa
|u|a,2</0 a()lu(t)Pdt + / p<t>o©tu<t>|2dt) ,

where p(t) € C'([0,T]) with 0 < po = mingg myp(t), q(t) € C([0,T]) with 0 < qo =
mingo 7q(t) < q(t) < q° = max yq(t).
Lemma 2.5. Let o € (1/2,1]. Then EY is a reflexive and separable Banach space.

Proof. Obviously, Ef is a closed subspace of E%. By the similar method used in
(Lemma 4.2, [29]) and combined with Lemma 2.4, we can show that E§ is a reflexive
and separable Banach space. O

Lemma 2.6. Assume that o > 1/2 and the sequence {uy} converges weakly to u in
ES, i.e., uy — u. Then u, — u in C([0,T],RY), i.e., |[un — ttl[oc — 0 as n — co.

Proof. The proof of this Lemma, while not overly complex, is omitted here. For
a thorough and rigorous demonstration of this Lemma, readers are directed to refer
to Proposition 5.5 in [29]. O

Definition 2.6. A function
tet1

ue fucaco.r) s [ @OMOPHOIEDUOR) dr<oo, k=012, n}
Sk

is called a classical solution of (1.1), if u satisfies equation in (1.1), the limits
DX p(ED)TDeutE)) and D5 (p(s)§DPu(s)) exist and satisfy the impulsive
conditions of problem (1.1) and the boundary conditions

1
p(T)

u(0) =0, pu(T)+ DX Hp(T)SDoU(T)) = ¢,

hold.

Theorem 2.1 ( [22]). Let X be a reflexive Banach space and let ¢ : ¥ — (—00, +00]
s weakly lower semi-continuous on X. If p has a bounded minimizing sequence, then
@ has a minimum on X.

Remark 2.2 ( [22]). If ¢ : X — (—o00,+00] is coercive. Then ¢ has a bounded
minimizing sequence.

Lemma 2.7 (Theorem 38.A, [30]). For the functional § : M C X — [—o00,+0o0]
with M # (), min,eonF (1) = & has a solution in case the following hold:

(i) X is a real reflexive Banach space.

(ii) M is bounded and weak sequentially closed, i.e., by definition, for each se-
quence Uy, in M such that u,, — u as m — 400, we always have u € M.

(iii) F is sequentially weakly lower semi-continuous on 9.

Definition 2.7 ( [22]). Let J : ¥ — R differentiable and ¢ € R. We say that J
satisfies the (PS).-condition if the existence of a sequence u,, in X such that

J(um) = ¢, J' () — 0, as m — 400,

implies that c is a critical value of J.
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Definition 2.8 ( [22]). Let X be a real reflexive Banach space. If any sequence
Uy, C X for which J(u,,) is bounded and J'(u,,) — 0 as m — 0 possesses a
convergent subsequence, then we say J satisfies (PS)-condition.

Remark 2.3 ( [22]). The (PS)-condition implies the (PS).-condition for each ¢ € R.

Theorem 2.2 (Theorem 4.10, [22]). Let X be a Banach space and J € C*(X,R).
Assume that there exist uyg € X,u1 € X, and a bounded open neighborhood Q of ug
such that u; € X\Q and

inf J > max{J (uo), J (1) }.

Let
I'={geC([0,1],X) : g(0) = uo, g(1) =w }

(lnd
f
CcC = ln max J(g( ))

If J satisfies the (PS).-condition, then ¢ is a critical value of J and ¢ > max{J(ug),

J(ul)}.

3. Auxiliary lemmas

In this section, we construct the variational structure of problem (1.1) in the frac-
tional derivative space E§, and prove the regularity of the solution to problem (1.1).
We also provide proofs for the relevant auxiliary lemmas, and propose a series of
reasonable assumptions for the nonlinear terms. These assumptions, along with the
proofs of the auxiliary lemmas, serve the main conclusions in the following section.
To begin with, we define the fractional space Ef equipped with the norm

|u|a=(/oTp< Coy( |dt+2/ |dt>1/2. 3.1)

Lemma 3.1. For u € Ef, the norm ||u||a,2 defined in Lemma 2.3 is equivalent to
[|u||a, that is, there exist two positive constants my1 and meo such that

< mal||ul|a2, forallu e Ef.

Proof. Obviously, we can obtain ||u||,<mgl|u||s,2, by choosing ma=1. On the
other hand, for u € Eff, by using Lemma 2.1, we have

T T
[ wopa= [ oope §opupa
0

) [
(et )2p Pu(D)dr
“(rrm) ol

[Jull3
0
:=A||u||i~

u(t)|?dt
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It follows that

]2, =[ul2 +Z/ (1)|2dt

<l +a° [ o
<(1+a"A)Jul[3-
Take m1=(1 + q°A)~1/2, we get my|[u||a.2 < |[u]|a- The proof is complete. O

Remark 3.1. If « € (1/2,1], then ||u||c < M||u||n, where
Ta—(1/2)p61/2

I(o)[2(a — 1)+ 1]1/*

Proof. For any u € Ef, by using the Holder’s inequality, we have

u(t)| < oD; (5 Dfu(t))|
- F(la)‘/o (t—s)a*g@gu(s)ds\

ﬁ (/Ot (t— 5)2(06_1)ds)1/2 (/OT |g®§u(s)|2ds)1/2

a—(1/2)
< Po 73 / p(1)l6D \dt)
I'(a)[2(a — 1) + 1]

S M||u||01a

which implies that ||u||cc < M]||u||o. The remark is proved. O

Lemma 3.2. A function u € E§ is a solution of problem (1.1), then the following
identity

/ p(HSDou(t) S D0 dt+2/tk+l o(t)dt — (c — Bu(T))p(T)o(T)
S ) R OCINOTES SYATCRNTS (32)
k=0" Sk k=1

holds for any v € Ef.
Proof. For v € EF, one has v(0) = 0. By Lemma 2.2, we have

/O © D3 (B DIU(E)olt)dt
T q
- / D8 (S D u(t))o(t)d

dt
=3 [ S b e
k=0" 5k

*Z/k L o5 (0§ Dpu(e) oty
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tet1

:_Z @O‘ 1 C:Da k+1+2/ ga 1 C:Da ()) (t)dt

_Z @al C@u +Z/ t@&l Cga()) ()

Sk

_ /+ (p(£)G D7 u(t))o D70’ (¢ )dt+Z/ (p(D)§ DFu(t)oDy "o (t)dt

k=0" 5k k=1"1tk

= > I(ulty))o(ty) — (e = Bu(T))p(T)o(T) (3-3)
k=1

n

— = 3" Lult)o(t) — (c — Bu(T))p(T)o(T) + / p(05 DEu(t)§ Do (1) dt.

k=1

On the other hand, since (D5 (p(£)§Dou(t)=D5  (p(ENTDu(t!)), te(tr, skl,
k=1,2,--- ,n, one has

/0 D (p(E)5DLu(t) o (t)dt

-y [ stpws oo - Z / g O D)o
k=0 5k

tk+1

- Z /tk+1 t)dt + A Z/ Yo(t)dt. (3.4)

Combining Egs. (3.3) and (3.4), we can get Eq. (3.2) immediately. The proof is
complete. O

Definition 3.1. A function u € EF is called a weak solution of problem (1.1), if
(3.2) holds for any v € E§.

Define the functional J : E§ — R by

n

s =02y [ B,
k=0 sk

where

u(tk)
o) = 3l = 3= [ ne+ Be - pucr?

and u
Fr(t,u) = / be(t, 5)ds, for all (£,u) € [sg, tes] X R.
0

By using the continuity of f; and Iy, one has that J € C*(ES,R), and for any
u, v € Ef,

0 >= /p H5Du(t)§ D ( dt+Z/ o(t)dt

=2 / o fi(t, u(t))o(t)dt

k=0" 5k
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- Zlk — (¢ = Bu(T))p(T)o(T). (3.5)

Thus, the weak solutions of problem (1.1) are the critical points of J.

Lemma 3.3. The functional J : E§ — R is sequentially weakly lower semi-
continuous.

Proof. Let {un}5_; be a weakly convergent sequence to u in E§. It follows from
Lemma 2.6 that {un}5°_; is convergent uniformly to u in C[0,7T]. On account of
the continuity of fx and Iy, yields that

Um(tk) tk+1
pim = Z/ dP—AZ/ i (t, un (1) dt + pé?(c—ﬁum(T))Q
(3.6)
n (tr) tht1
:72/0 A d;—AZ/ Fk.(t,u(t))dtJrpég)(cfﬂu(T))Q.
k=1 Sk

Since |[u]|2 is continuous and convex, it follows that 1|[u|[2 is also sequentially
weakly lower semi-continuous, that is,

2
llmJlrIlf HumH 7||u||o¢

Using this property and (3.6), we conclude that J(u) is sequentially weakly lower
semi-continuous. The proof is complete. O

Lemma 3.4. If u € E§ is a weak solution of problem (1.1), then u € E§ is a
classical solution of problem (1.1).

Proof. By standard arguments, we have that if u is a classical solution of problem
(1.1), then it is also a weak solution of (1.1). On the other hand, if u € EJ is a
weak solution of (1.1), then u(0) =0 and < J'(u),v >= 0 for all v € E§, i.e.,

/0 p(£)5DFu(HS Do dt+Z / o(t)dt — (c — Bu(T))p(T)o(T)
Y [ i+ 3 ntutes)oie) 67)
k=0" Sk k=1

Without loss of generality, let v € C§°(sg,tx+1] be such that v(t) = 0 for all
t €[0,s) U (tx+1,T], £ = 0,1,2,---,n. By plugging v(¢) into (3.7) and applying
Lemma 2.2, we obtain

th+1

/ SR S DE (bt + / a(bu(tyo(t)dt

Sk Sk

tht1
:)\/ fe(t,u(t)o(t)dt, k=0,1,2,---n,

Sk

and

/ OG0 D (1)t = / " 0% (pOE DD (B)dt < +oo.

Sk Sk
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The above equality implies that

D)D) + a(t)u(t) = Ak, u(t)), (3.8)
for a.e. t€(sk, trr1], £ =0,1,2,--+ ,n. Since u € E, we have
tk+1
/ W()2 + g(B)[u(t)2)dt < +00, k= 0,1,2, -+ n,

Using (3.8) and the fact that fi € C((sg, tk+1] X R,R), we deduce that
D7 (p()F D)) € AC([sk thta])-
Hence, the following limits exist

D5 (p(sE DR u(s])) = lim (DF (5D u()),

25—)5,:r
D5 bl )E D ult ) = lim D5 (S DFu(H).
k+1
Combining (3.7) and (3.8), we obtain
T n thi1 d
JRECEOEOTEDS / D5 (D) ol
k=0" 5k
— (e = Au(T) sz w(t)olt) = 0,
that is,
Ztg%il(p(t;+1)g©?u(tlz+1)) o(tyyq) — Zt@%*l(p(SI)gQ?U(SI))U(Si)
k=0 k=0
(3.9)
+Z () D5 u(t)§ D o (t)dt—(c—Bu(T) sz u(tx))o(ty,) =0.
k=1"1tk

By choosing the test function v € C§°(ty, si] such that v(t) = 0 for ¢t € [0,t;] U
(sg, T], k =1,2, -, n, without loss of generality, we can insert v(¢) into (3.9) and
obtain ;D% (p(t)§Dgu(t)) = Constant, ¢ € (tg, sx], k =1,2,---,n, i.e.,

DT T D)) =D (p(sy )5 Diulsy))

IR (3.10)
=D (p()§Du(L)), te(ty, sil, k=1,2,- - n.

By plugging (3.10) into (3.9), we get

n n

D DG Pt DT Ut )0t y) — > D5 (p(s)F DPu(s)))v(s))
k=0 k=0

+Zt5‘3“ NG Dt )o(sk) — D eDF (p(E)E DT u(E))o(tr)

k=1

— (¢ — Bu(T) Z I (u(ty)) =0,
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that is,

n

D@5 (bt )5 DFu(ty) — D5 (p(tH)F D)) — Le(ulty)o(tr)
k=1

+ Y DT RENTOMuE)) — D5 (p(s)E DFulsi))]o(sk)
k=
+ D57 (p(T)§ DFu(T)) — (¢ = fu(T))p(T)]o(T) = 0.

=

From this, it follows that
1
p(T)
DT pEFOF ) — DT (6§D ulty ) = ~Le(u(tn), k=1,2,---

Au(T) + D77 (p(T)§DFu(T)) = «,

and

D D) = D5 (T D)), k=12 n
Combining this with (3.9), we also obtain

D5 bl )E DR u(s) = D (T DFu(T )y k=120

Therefore, u satisfy the equation, the impulsive conditions, and the boundary con-
ditions of problem (1.1), i.e., u is a classical solution of (1.1). The proof is complete.
O

Assumption 3.1. In this paper, we make the following assumptions:

(Hy) There exist constants ar, > 0, by, >0 and v € [0,1), k =1,2,---,n such that
[T ()| < ag + bilr|™, foreveryreR, k=1,2,---,n.

(H3) There exist constant u€l0,2) and functions 7§ (t)€C([sk, trs1])(k=0,1,2, -,
n) with essinfr(t) > 0 such that

Fk(t,?) k

lim sup < 11°(t), uniformly for almost everyt € sk, tg41]. (3.11)

|z] =400 |ZC\“

(H3) There exist functions 75 (t)€C([s, trr1])(k=0,1,2, - - - n) with essinfr¥(t) > 0

such that
Fi(t
lim sup k( ;?) 5 (t), uniformly for almost everyt € [sg, txt1]. (3.12)
|x|=+o0 |ZC|

(Hy) There exists a constant o > 2 such that 0 < oFg(t,xr) < rfx(t,x) for every
t € [sk,tks1] (K=0,1,2,---.n) and r € R\ {0}.

Remark 3.2. According to assumptions (Hy)-(Hy), it follows
e For u € E§, (Hy) implies that

n

1
() > 2 = (aeMulla +
k=1

by
WMWHHUHQHI),
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and
1 n bk
) < (= LA 2 ( M| |u||y + —F— ppvet? 'Yk"rl) A
0 = G+ A0lE + 32 (bl + g b ) + 4o
where

Ay = Bp(T)M?, Ay = p(’ﬁT)cz.
e Under assumption (Hz), there is a constant Az > 0 such that
Fi(t, 1) <TF(t)|t]* + As, for almost every t€[sy, tr1] and all reR. (3.13)
e Under assumption (Hs), there is a constant A4 > 0 such that

Fi(t, 1) <75 (t)|z)? + A4, for almost every t€[sg, tr41] and all r€R. (3.14)

e Under assumption (Hy), there is a constant As > 0 such that

Fy(t,) < File|” < Flel”, (t,x) € [sk, thga] x [=1,1], (3.15)
and
Fk(ur‘) Z Ek|?‘a - A5 Z E‘ﬂg - A57 (tax) S [5k7tk+1} X Ra (316)
where
F, = max Fy(t,x) >0, Fy= min Fy(t,x) >0,
te[sp,trt1],|x|=1 - t€[sk, tis1],|x|=1
F:maX{F‘O)Fla"'7FH}? E:min{EOaE17"'7En}'
Proof. In fact, in view of (H;), one has
u(ty) by —
I (r)dr| < aglu(te)| + u(te)| " .
[ ] < audutol + o)
By using Remark 3.1, we obtain
n u(tr) n u(tr)
> fkoc)dx‘ <>/ Ik<zc>dx'
k=170 k=110
n by,
<3 [awlutn)l + u(ty) ] 3.17
< 3 fauhutta)] + = futeo)| (3.17)

by
ap M| |u MY |u 7""“)
kM| HaJr%_'_l [[ue] [ )

INA
~

and
(¢ = pu(T))* < 2(c* + B2M2|[u][2). (3.18)
It follows from (3.17) and (3.18) that

n u(tk)
o) =l -3 [ s+ B e pucr)y?
k=1
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1 ) u(ty)
> S lullz - \ (8.19)
1 i b
> Sl = 37 (Ml + =5 M ful ),
pt Yk
and
U(tk)
p(T
2w = [Jul - Z/ dx+§7)<c—/su< ))?
p(T
< Il + o + XD @ e e

b
(5 + Al +Z (el + 5 A ) + Ao
k=1

By virtue of (Hz), we can find Ag > 0 such that
Fi.(t,x) < 77 (t)[x]*, for almost every t € [y, tx41] and all |g| > As,
which, together with the continuity of Fi(t,r) — 7F(¢)|t|* on [s, try1] X [~Ag, Ag],
leads to (3.13). Likewise, (Hg3) ensures (3.14). Let us define T : (0,+00) — R
(k=0,1,2,--- ,n) by
Tr(3) = Fi (t, §>5U’ for every t € [sg,tg+1] and ¢ # 0.

Tt follows from (Hy) that

Te(3) = (t, §> (—3%)5” + o Fy, (t7 g)f—l
_*fk(t,g) 377! +0Fk( 3)3”—1
< —oF (t ;)5"*1 +oFy (t, g);,"*l

=0.

A

This implies that ¥ is non-increasing on (0, +00). Thus, for every t € [sg, tp+1],

r

Th(1) = Filts1) < Tillel) = Fe (6

)|;|‘7 if 0< ¢l <1,

and
Th(1) = Fult1) 2 Tullel) = Fi (1 77 ) o173 e > 1

Therefore, (3.15) holds, and

Fi(t,x) > Fyle]?, if ¢ > 1,

which, together with the continuity of Fy,(t,r) — Fi[t|” on [sk, tr41] x [=1, 1], implies
(3.16). By (H,), we also obtain Fy, > 0 and Fy, > 0. O



Impulsive fractional Sturm-Liouville differential equation 1127

4. Existence results

This section presents the main conclusions, by using the least action principle and
the Mountain Pass theorem, we determined that there exist at least one and two
classical solutions to BVP (1.1).

Theorem 4.1. Suppose that (Hy) and one of the following conditions hold:
(C1) (H2) holds and X\ € (0, +00).

n

Z/:H r§(t)dt> _1).

(Co) (Hj3) holds and \ € (O, (2M2
k=0

Then problem (1.1) has at least one classical solution.

Proof. If (Cy) is satisfied, then by Remark 3.1 and (3.14), we obtain

tht1

tk+1
Z/ (4, u(t dt<2/ (1) |u(t |dt+Z/ Aydt
tht1
§M2|\u\|3z/ TR (t)dt + A4T,

which, together with (3.19), implies that
tk+1

J(u) AZ/ ))dt

by
2 +1 1
u E apM||u M7 ul|| 7k , 4.1

N =

tht1
— AM2?||ul]? Z/ t)dt — AALT.

n trt1 -1
Since A\ € (O, <2M2 Z/ TQk(t)dt) ), it follows from (4.1) that
k=0" Sk

J(u) = +o0. (4.2)

[lulla =400

Hence, J(u) admits a bounded minimizing sequence. By Theorem 2.1, Lemma 3.3
and Lemma 3.4, (1.1) possesses at least one classical solution. The case of (C7) can
be treated analogously. Indeed, (Hs) yields that

n

1 by,
T(w) = Slulfs - > (axM]Jullo + TM”’““HuHW“),
k=1

— AMH|u]|# Z/ t)dt — AAsT, (4.3)

and since p € [0,2), v € [0,1), (k=0,1,2,---,n), (4.3) leads to (4.2). The proof is
therefore complete. O
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Corollary 4.1. Suppose that the functions fr and the impulsive functions I are
bounded, there exists a classical solution for problem (1.1) for any given A € (0, +00).

Lemma 4.1. If (Hy) and (Hy) holds, then J satisfies the (PS)-condition.

Proof. Let {u,,} be a sequence in E§ such that J(u,,) is bounded and J'(u,,) — 0
as m — +oo. Now we divide the proof into two claims.

Claim 1. {u,,} is bounded in E§. In fact, it follows from (Hy) and Remark 3.1
that

T (U (831t (1) > —00g |t ()| — B 1t (1) |5 F1 (4.4)
> —a M|t — bp MY, |75+

Since o > 2, one has

0”3? (¢ = Bun (1)) + p(T) (¢ = B (T)) i (T)
-(5-1) P (¢~ B (T))? + Sp(T) (¢ - Hutm(T))
2 o B B (4.5)
> el P2 e = B (1))
> _|c|‘°<5T)<c| + BM]fula).

In view of (Hy), (3.17), (4.4) and (4.5), one obtain

od ()= < J (), iy, >
tr41

(5= )l 42D [ et (1) — o Bt w0l
k=0" Sk

n

Wi (tr) n
oY /0 L@t + 3 Tt (t1) i (1)

k=1 k=1
+ Upg(gT) (¢ = Butm (T))* + p(T) (¢ = Bt (T) ) (T)
T
> (5 = 1)l = 16522l + 62 o)
a;(akmumnﬁ el

n
= D (@Ml o + b7 g 2551,
k=1
which implies that w,, is bounded in Ef.

Claim 2. {u,,} converges strongly to some u in E§. Indeed, given that the sequence
{um} is bounded in Ef, a subsequence of {un,} exists (which we will continue to
denote as {uy,} for simplicity) that weakly converges to some u in E§. Consequently,
the sequence {u,,} uniformly converges to u in C[0,T]. Therefore,

un(T) = u(T),
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n

S [t (1)) — Ti(t))) s (8) — w(t4)) — 0, (4.6)
k=1

3 / et 0 (8)) — o 1(6))] (i () — (£))dE 5 O,

k=0 "5k

as m — 4oo. Since lim J'(uy,) =0 and {u,} converges weakly to u, one gets
m——+00

< J'(up) — J' (W), 1y, —u>— 0, as m — +oo.
It then follows from (3.5) that
< J(up) — J' (W), —u >

n

= [ty — |2 — Z (e (pn () — T (u(t))] (i (1) — 1(t0))
k=1
2 (4.7)
+p(T) (un(T) —w(T))*B
_ )\Z/ k+1 [fk(t,uk(t)) — fk(t,u(t))](um(t) _ u(t))dt.

Combining with (4.6) and (4.7), we obtain
Hum(t) - u(t)Hoz — O, as m — 400,

that is, {u,,} converges strongly to ucE§. Therefore, J satisfies the (PS)-condition.
The lemma has been proved. O

Theorem 4.2. If A >0, and conditions (Hy) and (Hy) are satisfied, then problem
(1.1) admits at least two distinct classical solutions for any X € (0, A/FT), where
1 - b c?
Ae— — — .
Ve k; ( .t 1) 2570

Proof. Consider the open ball B, in Ef with center 0 and radius r, and let 0B,
and B, be its boundary and closure, respectively. Suppose {u,,} C B(l /) and
U, — uas m — +oo. According to the Mazur Theorem ( [22]), we can find a
sequence of convex combinations

= Uy, Y Ay, =1, Ly, >0(meNT)
j=1 j=1

such that v,, — u in Ef. Since B(l/M) is a closed convex set, v,, C B(l/M) and
u € B/, Then By ar) is bounded and weakly sequentially closed. By Lemma
2.7 and Lemma 3.3, J(u) admits a local minimum uy € B(1/ar)- Hence

C2

—p(T). 4.8
5°() (1)
In view of Remark 3.1, |Ju||o < 1/M implies that ||u||cc < 1. Owing to (3.15), one
has

J(ug) < J(0) =

te41

tk+1 1
Z/ (L, u(t dt<Z/ Fylu(t)|7dt<M? FT||u]|2, <57 (4.9)
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Combining this with (3.19), we obtain that, for any u € B, and r < 1/M,

n

1
J(u) > 57"2 — Z (akMr—i—

b MW“M“) — AM?rFT.
k=1

Ve + 1

Hence

1 - by -
J(u)>2M2_k§_:l<ak+w>—AFT, forany ueaB(l/M).

Since A € (0,A/FT) and by (4.8), we get
J(u) > J(0) > J(ug), forany uc B .

Therefore, infucop, J(u) > J(up), and J(u) admits a local minimum 1y € By /).
Fix £ > 0, and let u € EJ be such that ||u||, = 1. Then, from (3.16)-(3.18), we have

Loy be 3 putigei) . #(7)
J(&u) < 552 + kzl <akM§+ mMW +ley +1> + T(c2 +,82M2§2)

tht1

- )\[5" Z/ F|u|"dt] + AA5T.
k=0" 5k

Given that o > 2 and v, € [0,1), it is established that J(u) — —oo as & — +o0.
Consequently, there exists a u; > 0 with [[u1|[o > 1/M such that infyeop,, ,,,, J (1) >
J(u1). By applying Theorem 2.2 and Lemma 4.1, it can be inferred that there exists
a ug € ES such that J'(uz) = 0 and J(uz) > max{J(up), J(u1)}. Therefore, uy and
uy are two distinct solutions of problem (1.1). In view of Lemma 3.4, uy and uy are
also the classical solutions of (1.1). The proof is complete. O

5. Example

Example 5.1. Let « = 0.75, T = = 1, n = 3. Consider the following mixed
boundary value problem of fractional Sturm-Liouville equation with impulsive ef-
fects:

DE((16 + 20)5D0u(t)) + (14 262)u(t) =M (£, u(t)), t € (sk, trga], k=0,1,2,3,
—AGEDFH((16 4 2t,)§ D ults))) =In(u(ty)), k=1,2,3,

(DFH((16 + 26)TDu(t) =D H((16 + 2t5)§ Deu(t))), t € (tr, 5], k =1,2,3,
DETH(16 + 255) S DR u(sy ) =D (16 + 25%)§ Du(s))), k = 1,2,3,

u(0) = 0, w(1) + T D5 (16 + 20§ DFu(D) s = .

(5.1)
From Remark 3.1, we deduce that M = W\{fﬂl)‘ Due to Theorem 4.1 and Theorem
4.2, the following results are obtained:

e Let fi(t,u) = Jul/? (k=10,1,2,3) and I;(r) = 3t¥/%, ap = by = 3, 3 = 1

k=1,2,3). It follows that (H;) and (H>) are satisfied with y = 3. Therefore
( p=73 ;

for any constant ¢ > 0, problem (5.1) has at least one solution for each A\ €
(0, +00).
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o Let fi(t,u) = Ju (k = 0,1,2,3) and Ii(r) = $1'/% ap = by = §, 7 =
(k = 1,2,3). It follows that (H;) and (H3) are satisfied with 75(t) =
Therefore, for any constant ¢ > 0, problem (5.1) has at least one solution for
each \ € (0,161'%(3/4)).

o Let fk?(tau) = %ug (k = 0517273)a Ilc(?) = ix1/27 ap = by = %a Y& = %

(k=1,2,3) and ¢ = 1. Tt follows that A = O°C/0=9 5 o () and (Hj)
are satisfied with ¢ = 4. Therefore, problem (5.1) has at least two distinct
solutions for each A € (0,32I'?(3/4) — 18).

Lot I

6. Conclusion

In recent years, the variational methods and critical point theorems have been
widely applied in the qualitative analysis of fractional (impulsive) differential equa-
tions with Dirichlet and Sturm-Liouville boundary conditions. This study explores
a class of non-homogeneous mixed BVPs of fractional differential equations with
parameters and impulsive disturbances. For the first time, we established the vari-
ational structure of the fractional mixed BVP in the fractional derivative space Ef,
and used the variational method and critical point theorems to prove the existence
and multiplicity of solutions to the proposed problem (1.1). The results of this
study effectively extended the application range of the variational methods in the
fractional BVPs, which has important theoretical significance. Based on this study,
we can discuss a series of problems, the most direct extension is to extend the results
of this study to the quasi-linear operator situation, coupling situation, and BVPs of
fractional differential equations with non-local terms, such as Kirchhoff-type frac-
tional BVPs, etc.
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