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A HERMITE FINITE ELEMENT METHOD
FOR THE VIBRATION PROBLEM OF THE

RAYLEIGH-BISHOP BEAM

Yi Gong†

Abstract In this paper, a Hermite finite element method is proposed for
the Rayleigh-Bishop equation which describes the vibration problem of the
Rayleigh-Bishop beam. We first present the semi-discrete Galerkin finite el-
ement form for the Rayleigh-Bishop equation. Then by means of the cubic
Hermite element, a full-discrete finite element scheme is established. Further-
more, a numerical algorithm based on the Hermite finite element method is
proposed to solve the fourth-order Rayleigh-Bishop equation. Finally, a nu-
merical example is given to illustrate the effectiveness of the proposed method.
The Hermite finite element method is potentially applied to other vibration
problems.
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1. Introduction

During the last decade, the vibration problems of the beam have attracted con-
siderable attention since its wide presence in various fields including mechanical
engineering, bridge construction, aerospace and so on [24]. The equations for the
transverse vibration of beams usually are in the form of fourth-order partial differ-
ential equations with two boundary conditions at each end, which is difficult to find
an analytical solution [15,27]. Numerical methods provide a powerful framework for
obtaining approximate solutions to the vibration problems of the beams. There are
many valuable results [2,5,11–13,20,28] about numerical methods for the vibration
problems of the viscoelastic beams.

In particular, the finite element method has been employed successfully in the
analysis of viscoelastic beams by many researchers [3,4,6,9,16,17,21,22,25,26]. In
Reference [9], the dynamic model of Euler-Bernoulli beams is studied by using the fi-
nite element method. And an iterative solution algorithm based the two-dimensional
finite element method is proposed to obtain beam displacements. In Reference [26],
a mixed finite element method is proposed to solve three-field (displacement, strain,
stress) variational formula for beams. In Reference [3], a three-dimensional finite el-
ement method is used to study the viscoelastic panel with axial and transverse load,
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which is also applicable to viscoelastic beams. In Reference [21], an effective nu-
merical method based on nonlocal two-noded finite elements is proposed, by which
the stress-driven solution can be obtained by using only one two-noded element. In
Reference [22], an enriched hierarchical one-dimensional finite element method is
presented, which can be used to study the rheological behavior of thick arbitrarily
laminated beams. In Reference [25], a scheme for the vibration equation of the vis-
coelastic beam is developed by using the Hermite finite element. The cubic Hermite
element can guarantee the continuity of the first derivative of the interpolation func-
tion. In Reference [16], a finite element method is proposed for the static and free
vibration analyses of sandwich beams. In the above literature [3,9,16,21,22,25,26],
the influence of the rotatory inertia of the cross-section is not taken into account.
The beam model considering the rotatory inertia of the cross-section is a high-order
partial differential equation with the mixed partial derivative with respect to time
and space, i.e. the Rayleigh-Bishop model [10, 19], which belongs to the pseudohy-
perbolic equation [1, 7, 8, 14, 18]. It has been shown [23] that the Rayleigh-Bishop
model improves on estimations made by the classical Euler-Bernoulli equation. The
Rayleigh-Bishop model makes it possible to analyse longitudinal wave propagation
in beams that are relatively thick due to the inclusion of transverse effects in the
model. However, there is little work about the finite element method for the vibra-
tion problem of the Rayleigh-Bishop beam.

Motivated by the above observations, we present a Hermite finite element method
for the vibration problem of the Rayleigh-Bishop beam. This numerical method is
used to obtain the transverse displacement of the Rayleigh-Bishop beam with fixed
ends. Based on the cubic Hermite element, a full-discrete finite element scheme is
established, which can guarantee the continuity of the first derivative of the inter-
polation function. Finally, a numerical example is given to demonstrate the validity
of the scheme.

The main contributions of this work are summarised as follows:

(1) We formulate a full-discrete finite element scheme for the Rayleigh-Bishop equa-
tion.

(2) An effective numerical algorithm based on the cubic Hermite element is devel-
oped to compute the transverse displacement of the Rayleigh-Bishop beam with
fixed ends.

The rest of the paper is organized as follows. In Section 2, some basic definitions
and the problem description are given. In Section 3, we propose a full-discrete finite
element scheme to solve the Rayleigh-Bishop equation. In Section 4, a numerical
example is given to illustrate the effectiveness of the proposed method. In Section
5, some conclusions are summarised.

2. Preliminaries

In this section, an one-dimensional fourth-order pseudohyperbolic equation is
presented, which describes the vibration problem of a beam with fixed ends.

Consider the following vibration problem of the Rayleigh-Bishop beam [24]

EIwxxxx + ρSwtt − ρIwxxtt − Pwxx = f(x, t), x ∈ [0, l], t ∈ [0, T ], (2.1)

where w(x, t) is the transverse displacement of the beam, E is Young’s modulus, I
is the second moment of cross-sectional area, EI denotes the bending stiffness, ρ



1136 Y. Gong

is the density of the beam, S is the cross-sectional area, ρS denotes the mass per
unit length, ρI is the rotatory inertia of cross-sectional area, P is the coefficient of
tension, l is the beam length, x is the axial coordinate and f(x, t) is the smooth
function which is known.

Figure 1. Schematic of a beam with fixed ends.

We investigate the vibration problem of a beam with fixed ends, which is de-
scribed by the following homogeneous boundary conditions

w(0, t) = w(l, t) = 0, wxx(0, t) = wxx(l, t) = 0, t ∈ [0, T ], (2.2)

The initial conditions of the system (2.1) is presented as follows

w(x, 0) = ϕ(x), wt(x, 0) = ψ(x), x ∈ [0, l], (2.3)

where ϕ(x) and ψ(x) are smooth functions which are known.

Remark 2.1. The dynamical model (2.1) and the boundary conditions (2.2) are
derived by using the Hamilton’s variational principle and the Rayleigh-Bishop the-
ory [25]. The influence of rotatory inertia of the cross-section is taken into account
but the shear deformation is neglected in the analysis. Compared with the Euler-
Bernoulli beam which neglects the effect of inertia on modeling, the Rayleigh-Bishop
beam makes it possible to analyse longitudinal wave propagation in beams that are
relatively thick.

3. Finite element approximation

In this section, we first present the semi-discrete Galerkin finite element form for
the Rayleigh-Bishop equation (2.1). Then, based on the cubic Hermite element, a
full-discrete finite element scheme is established, which can guarantee the continuity
of the first derivative of the interpolation function. Finally, a numerical algorithm
based on the Hermite finite element method is proposed to solve the equation (2.1)
with the boundary conditions (2.2) and the initial conditions (2.3).

Let I = [0, l]. The definition of Sobolev space H2
0 (I) is given as follows.

Definition 3.1. The Sobolev space H2
0 (I) is defined by

H2
0 (I) =

{
w | w ∈ H2(I), w(0, t) = w(L, t) = 0, wx(0, t) = wx(L, t) = 0

}
. (3.1)

For any v(x) ∈ H2
0 (I) and the fixed t, multiply both sides of equation (2.1) by

v(x) and integrate over (0, l), we have∫ l

0

[EIwxxxx + ρSwtt − ρIwxxtt − Pwxx] v(x)dx =

∫ l

0

fv(x)dx. (3.2)
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By means of the boundary conditions (2.2) and the integration by parts, the
integrals in (3.2) can be written as∫ l

0

EIwxxxxv(x)dx = −wxxvx
∣∣l
0 +

∫ l

0

EIwxxvxx(x)dx = (EIwxx, vxx(x)),∫ l

0

ρIwxxttv(x)dx = ρIwxttv
∣∣l
0 −

∫ l

0

ρIwxttvx(x)dx = −(ρIwxtt, vx(x)),∫ l

0

Pwxxv(x)dx = Pwxv
∣∣l
0 −

∫ l

0

Pwxvx(x)dx = −(Pwx, vx(x)),

(3.3)

where (w, v) =
∫ l

0
wvdx.

Based on (2.3), the weak formulation of (2.1) is presented as{
(EIwxx, vxx) + (ρSwtt, v) + (ρIwxtt, vx) + (Pwx, vx) = (f(x, t), v), ∀v ∈ H2

0 ,

w(x, 0) = ϕ(x), wt(x, 0) = ψ(x), x ∈ [0, l].

(3.4)
Given a positive integer M . Let Ih : 0 = x0 < x1 < · · · < xM = l be an

uniform partition of the interval [0, l] with the step-size h = l/M , where xi = ih,
i = 0, 1, 2, · · · ,M . Let Vh be a subspace of H2

0 (I) constituted by piecewise cubic
Hermite type polynomials on Ih. Based on the above partition, the semi-discrete
Galerkin finite element approximation of (3.4) can be defined: find wh ∈ Vh such
that

(EIwh,xx, vh,xx) + (ρSwh,tt, vh) + (ρIwh,xtt, vh,x) + (Pwh,x, vh,x)

= (f(x, t), vh), ∀vh ∈ Vh.
(3.5)

We first discuss the Hermite interpolation problem in the reference interval [0, 1].
Then, the interpolation problem in any interval [xi, xi+1] can be solved by the
coordinate transformation. The cubic basis functions in the reference interval [0, 1]
are presented as {

α0(x̂) = (2x̂+ 1)(1− x̂)
2
,

β0(x̂) = x̂(1− x̂)
2
,{

α1(x̂) = (3− 2x̂)x̂2,

β1(x̂) = (x̂− 1)x̂2.

(3.6)

Based on (3.6), basis functions in the interval [xi, xi+1] can be obtained by using
the coordinate transformation x̂ = x−xn

h and are presented as follows
αi(x) = (2

x− xn
h

+ 1)(1− x− xn
h

)
2

,

βi(x) =
x− xn
h

(1− x− xn
h

)
2

,
αi+1(x) = (3− 2

x− xn
h

)(
x− xn
h

)
2

,

βi+1(x) = (
x− xn
h

− 1)(
x− xn
h

)
2

,

(3.7)

where αi(x) and βi(x) are equal to zero outside the interval [xi−1, xi+1].
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Because wh ∈ Vh in the semi-discrete finite element approximation (3.4), it is
clear that wh can be written as

wh =

M∑
i=0

[wiαi(x) + w
′

iβi(x)], (3.8)

where wi = wh (xi, t), w
′
i = w′h (xi, t).

We now present the main result in this paper.

Theorem 3.1. Let W = (w1, · · · , wM−1, w
′
0, · · · , w′M )

T
. Let F be the load vec-

tor, where F = [(f, α1), · · · , (f, αM−1), (f, β0), · · · , (f, βM )]
T

. The vector W is the
solution of the matrix differential equation

A
d2W

dt2
+BW = F, (3.9)

where matrices A and B are known sparse matrices.

Proof. It is clear that αj(x) ∈ Vh and βj(x) ∈ Vh. Set vh = αj(x). By substitut-
ing (3.8) into the semi-discrete finite element form (3.5), we obtain

M∑
i

[
d2wi
dt2

(ρSαi, αj) +
d2w

′

i

dt2
(ρSβi, αj) +

d2wi
dt2

(ρIα
′

i, α
′

j) +
d2w

′

i

dt2
(ρIβ

′

i , α
′

j)

+ wi(EIα
′′

i , α
′′

j ) + w
′

i(EIβ
′′

i , α
′′

j ) + wi(Pα
′

i, α
′

j) + w
′

i(Pβ
′

i , α
′

j)]

=(f, αj), j = 0, 1, 2, · · · ,M.
(3.10)

Set vh = βj(x). By substituting (3.8) into (3.5), we then obtain

M∑
i

[
d2wi
dt2

(ρSαi, βj) +
d2w

′

i

dt2
(ρSβi, βj) +

d2wi
dt2

(ρIα
′

i, β
′

j) +
d2w

′

i

dt2
(ρIβ

′

i , β
′

j)

+ wi(EIα
′′

i , β
′′

j ) + w
′

i(EIβ
′′

i , β
′′

j ) + wi(Pα
′

i, β
′

j) + w
′

i(Pβ
′

i , β
′

j)]

=(f, βj), j = 0, 1, 2, · · · ,M.
(3.11)

Let W = (w1, · · · , wM−1, w
′
0, · · · , w′M )

T
. According to the boundary conditions

(2.2), it is clear that w0 = 0 and wM = 0. Let F = [(f, α1), · · · , (f, αM−1), (f, β0),
· · · , (f, βM )]T be the load vector. According to (3.10) and (3.11), we have

A
d2W

dt2
+BW = F, (3.12)

where

A =

A11 A12

A21 A22


2M×2M

, B =

B11 B12

B21 B22


2M×2M

, (3.13)

where

A11 =


ρS(α1, α1) + ρI(α

′

1, α
′

1) · · · ρS(αM−1, α1) + ρI(α
′

M−1, α
′

1)

...
. . .

...

ρS(α1, αM−1) + ρI(α
′

1, α
′

M−1) · · · ρS(αM−1, αM−1) + ρI(α
′

M−1, α
′

M−1)


(M−1)×(M−1)

,

(3.14)
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A12 =


ρS(β1, α1) + ρI(β

′

1, α
′

1) · · · ρS(βM , α1) + ρI(β
′

M , α
′

1)

...
. . .

...

ρS(β1, αM−1) + ρI(β
′

1, α
′

M−1) · · · ρS(βM , αM−1) + ρI(β
′

M , α
′

M−1)


(M−1)×(M+1)

,

A21 =


ρS(α1, β0) + ρI(α

′

1, β
′

0) · · · ρS(αM−1, β0) + ρI(α
′

M−1, β
′

0)

...
. . .

...

ρS(α1, βM−1) + ρI(α
′

1, β
′

M ) · · · ρS(αM−1, βM ) + ρI(α
′

M−1, β
′

M )


(M+1)×(M−1)

,

A22 =


ρS(β0, β0) + ρI(β

′

0, β
′

0) · · · ρS(βM , β0) + ρI(β
′

M , β
′

0)

...
. . .

...

ρS(β0, βM ) + ρI(β
′

0, β
′

M ) · · · ρS(βM , βM ) + ρI(β
′

M , β
′

M )


(M+1)×(M+1)

,

B11 =


EI(α

′′

1 , α
′′

1 ) + P (α
′

1, α
′

1) · · · EI(α
′′

M−1, α
′′

1 ) + P (α
′

M−1, α
′

1)

...
. . .

...

EI(α
′′

1 , α
′′

M−1) + P (α
′

1, α
′

M−1) · · · EI(α
′′

M−1, α
′′

M−1) + P (α
′

M−1, α
′

M−1)


(M−1)×(M−1)

,

(3.15)

B12 =


EI(β

′′

1 , α
′′

1 ) + P (β
′

1, α
′

1) · · · EI(β
′′

M , α
′′

1 ) + P (β
′

M , α
′

1)

...
. . .

...

EI(β
′′

1 , α
′′

M−1) + P (β
′

1, α
′

M−1) · · · EI(β
′′

M , α
′′

M−1) + P (β
′

M , α
′

M−1)


(M−1)×(M+1)

,

B21 =


EI(α

′′

1 , β
′′

0 ) + P (α
′

1, β
′

0) · · · EI(α
′′

M−1, β
′′

0 ) + P (α
′

M−1, β
′

0)

...
. . .

...

EI(α
′′

1 , β
′′

M−1) + P (α
′

1, β
′

M ) · · · EI(α
′′

M−1, β
′′

M ) + P (α
′

M−1, β
′

M )


(M+1)×(M−1)

,

B22 =


EI(β

′′

0 , β
′′

0 ) + P (β
′

0, β
′

0) · · · EI(β
′′

M , β
′′

0 ) + P (β
′

M , β
′

0)

...
. . .

...

EI(β
′′

0 , β
′′

M ) + P (β
′

0, β
′

M ) · · · EI(β
′′

M , β
′′

M ) + P (β
′

M , β
′

M )


(M+1)×(M+1)

.

When |i− j| > 1, xi and xj are not neighboring mesh nodes. Hence in the
interval [xi, xi+1], αj and βj are equal to 0. It is clear that most of the elements
aij in matrix A are equal to 0. Hence the stiffness matrix A is the sparse matrix.
Similarly, the matrix B is also the sparse matrix. The proof is completed.

Remark 3.1. Once the vector W is obtained, the numerical solutions at all the

mesh nodes and the finite element solution wh =
M∑
i=0

[wiαi(x) + w
′

iβi(x)] are ob-

tained. Therefore, the numerical solutions of the weak formulation (3.4) can be
obtained by solving the matrix differential equation (3.9).

Remark 3.2. Compared with traditional finite element method, the Hermite finite
element method can guarantee the continuity of the first derivative of the interpola-
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tion function. And the Hermite finite element method has a better approximation
for the derivatives of solution within each element. Therefore, Hermite elements
can provide higher accuracy with fewer elements than standard Lagrange elements.

Given a positive integer N . Let 0 = t0 < t1 < · · · < tN = T be an uniform
partition of the interval [0, T ] with the step-size τ = T/N , where T > 0 is a constant
and tn = nτ , n = 0, 1, 2, · · · , N . By applying the central difference scheme to

discretize d2W
dt2 , the full-discrete finite element form of problem (3.4) can be defined:

find wnh ∈ Vh such that

(EIwn+1
h,xx, vh,xx) + (ρS

wn+1
h − 2wnh + wn−1

h

τ2
, vh)

+ (ρI
wn+1
h,x − 2wnh,x + wn−1

h,x

τ2
, vh,x) + (Pwn+1

h,x , vh,x)

=(fn+1(x, t), vh), ∀vh ∈ Vh.

(3.16)

The numerical algorithm based on the Hermite finite element method is devel-
oped to solve the fourth-order Rayleigh-Bishop equation (2.1).

Algorithm 1 A numerical algorithm for the Rayleigh-Bishop equation

1: Initialization: Given constants T > 0 and l > 0. Given positive integers N
and M . Initialize matrices A = 02M×2M , B = 02M×2M and the load vector
F = 02M

2: Compute matrices A11,A12,A21 and A22 in (3.14) and assemble them into matrix
A. Compute matrices B11,B12,B21 and B22 in (3.15) and assemble them into
matrix B. Compute the inner products (f, αi) and (f, βj) and assemble them
into the load vector F , where i = 1, · · · ,M − 1 and j = 0, · · · ,M .

3: Let Wn+1 = (wn+1
1 , · · · , wn+1

M−1, w
′n+1
0 , · · · , w

′n+1
M )

T
. By means of the iterative

method, Wn+1 is obtained by solving the following algebraic equation

(A+Bτ2)Wn+1 = τ2Fn+1 + 2AWn −AWn−1.

The coefficient wn+1
i is the numerical solution of node xi at time tn+1.

4: Calculate the numerical solution wnh by substituting wni and w
′n
i into the fol-

lowing equation

wnh =

M∑
i=0

[wni αi(x) + w
′n
i βi(x)].

Remark 3.3. The numerical algorithm based on the Hermite finite element method
provides piecewise functions defined on the whole problem domain as numerical
solutions, not just the numerical solutions at mesh nodes.

4. Numerical examples

In this section, we give one example to demonstrate the effectiveness of the
proposed method. The exact solution of this example is given. We apply Algorithm
1 proposed above to calculate the numerical solution of the example.
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Example 4.1. Let the variables E, I,P , ρ, S, l and P in problem (2.1) be equal
to 1. Consider the following initial-boundary value problem:

wxxxx + wtt − wxxtt − wxx = 0, x ∈ (0, 1), t ∈ (0, 1],

w(x, 0) = sin(πx), wt(x, 0) = 0, x ∈ [0, 1],

w(0, t) = w(1, t) = 0, wxx(0, t) = wxx(1, t) = 0, t ∈ [0, 1].

(4.1)

The exact solution is w(x, t) = sin(πx) cos(πt).

Figure 2. The exact solution with h = 0.01 and τ = 0.0001.

(a) (b)

Figure 3. The numerical solution and the error of the fully discrete scheme with h = 1
102

and τ = 1
104

.

The exact solution to the problem (4.1) is shown in Figure 2. To demonstrate
the effectiveness of the proposed numerical method, we use Algorithm 1 to solve
the problem (4.1). The numerical solution of the problem (4.1) is shown in Figure
3(a). Let e(x, t) be the error between the exact solutions and numerical solutions.
The error e(x, t) of the fully discrete scheme with h = 1

102 and τ = 1
104 is shown in

Figure 3(b). In Table 1, We present the L2-error at different time steps and space
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steps. The results show that the space convergence order of the proposed scheme is
higher than the convergence order in time.

Table 1. Example 4.1: Errors of numerical solutions.

h τ L2-error

0.1 0.01 6.7371e-04

0.1 0.001 2.6447e-05

0.1 0.0001 2.0000e-05

0.01 0.1 0.0486

0.01 0.01 5.9182e-04

0.01 0.001 6.1075e-06

0.01 0.0001 6.9603e-08

Remark 4.1. When h = 0.1 and τ = 0.01, the L2-error is 6.7371e − 04. When
h = 0.01 and τ = 0.1, the L2-error is 0.0486. It is clear that the space convergence
order of the proposed scheme is higher than the convergence order in time.

Example 4.2. Let the bending stiffness EI = 1.00N ·m2, the rotatory inertia of
cross-sectional area ρI = 4.00kg ·m, the mass per unit length ρS = 4.00kg/m, the
coefficient of tension P = 1.00N and l = 1.00m in problem (2.1). Consider the
following initial-boundary value problem:

wxxxx + 4wtt − 4wxxtt − wxx = 0, x ∈ (0, 1), t ∈ (0, 1],

w(x, 0) = sin(2πx), wt(x, 0) = 0, x ∈ [0, 1],

w(0, t) = w(1, t) = 0, wxx(0, t) = wxx(1, t) = 0, t ∈ [0, 1].

(4.2)

The exact solution is w(x, t) = sin(2πx) cos(πt).

We present the exact solution for problem (4.2) in Figure 4. To assess the
effectiveness of our proposed numerical method, we employ Algorithm 1 to solve
the problem (4.2). The resulting numerical solution is visualized in Figure 5(a).
Figure 5(b) illustrates the error e(x, t) of the fully discrete scheme for a specific
case with h = 1

102 and τ = 1
104 . A more detail information of the error is provided

in Table 2 which presents the L2-error at different time steps and space steps. The
results show that the space convergence order of the proposed scheme is higher than
the convergence order in time.

5. Conclusion

In this paper, we present a Hermite finite element method for the vibration prob-
lem of the Rayleigh-Bishop beam. Based on the Galerkin variational method, the
semi-discrete finite element form for the Rayleigh-Bishop equation is established.
Then by means of the cubic Hermite element, a full-discrete finite element scheme
is presented, which can guarantee the continuity of the first derivative of the inter-
polation function. Then, a numerical algorithm , Algorithm 1, is developed to solve
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Figure 4. The exact solution with h = 0.01 and τ = 0.0001.

(a) (b)

Figure 5. The numerical solution and the error of the fully discrete scheme with h = 1
102

and τ = 1
104

.

Table 2. Example 4.2: Errors of numerical solutions.

h τ L2-error

0.1 0.01 1.0000e-03

0.1 0.001 3.0313e-04

0.1 0.0001 2.7943e-04

0.01 0.1 0.0506

0.01 0.01 5.9403e-04

0.01 0.001 6.3647e-06

0.01 0.0001 1.1125e-07

the fourth-order Rayleigh-Bishop equation. Finally, the effectiveness of Algorithm
1 is verified by a numerical example. The proposed method is potentially applied
to other vibration problems.
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