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Abstract This manuscript deals with the well-posedness and asymptotic be-
havior of the Timoshenko system with internal dissipation of fractional deriva-
tive type. We use semigroup theory. The existence and uniqueness of the
solution are obtained by applying the Lumer-Phillips Theorem. We present
two results for the asymptotic behavior: strong stability of the C0-semigroup
associated with the system using the Arendt-Batty and Lyubich-Vũ’s general
criterion and the polynomial stability applying the Borichev-Tomilov’s theo-
rem. This results expand the understanding of the asymptotic behavior of
Timoshenko systems with fractional internal dissipation, providing clear cri-
teria for both strong and polynomial stability.
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1. Introduction

In 1921, Timoshenko [35] introduced the pioneer system of beams given by{
ρ1φtt − k(φx + ψ)x = 0,

ρ2ψtt − bψxx + k(φx + ψ) = 0,
(1.1)

where (x, t) ∈ (0, L) × (0, +∞). The functions φ = φ(x, t) is the transverse dis-
placement, and ψ = ψ(x, t) is the rotation of the neutral axis due to bending. The
coefficients are positive, being ρ1 = ρS, ρ2 = ρI, b = EI, k = κGS, where S and
I are the cross-sectional area and the second moment of the cross-sectional area,
respectively; E, G, and κ are Young’s modulus, the modulus of rigidity, and the
transverse shear factor, respectively.
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About this pioneering system, we have a wide literature; see, for instance, [1, 6,
29, 32] and references therein. It is well known that when the system (1.1) is full
damped, like {

ρ1φtt − k(φx + ψ)x + φt = 0,

ρ2ψtt − bψxx + k(φx + ψ) + ψt = 0,

the exponential stability holds, see [29]. However, when partially damped,{
ρ1φtt − k(φx + ψ)x = 0,

ρ2ψtt − bψxx + k(φx + ψ) + b(x)ψt = 0,

with b(x) ∈ C0([0, L]), 0 < b0 ≤ b(x) the exponential stability holds if and only if
the wave velocities from the system equations are the same, see [32], that is

ρ1
k

=
ρ2
b
. (1.2)

Condition (1.2) is a consequence of a second non-physical frequency spectrum
in the Timoshenko beam. The discovery of the second spectrum, which acts in
opposition to the dissipative properties of the system (1.1), is credited to Manevich
and Kolakowski [24] and Nesterenko [25]. Elishakoff [15] presented a model that
eliminates (1.2). For a historical review of Timoshenko’s theory, including essential
phases of his life and recent arguments about the Timoshenko-Ehrenfest partner-
ship, see, for instance, [16–18].

We are interested in internal damping of fractional order. In this direction, we
consider the following model:

ρ1φtt − k(φx + ψ)x + a∂α, ηt φ = 0,

ρ2ψtt − bψxx + k(φx + ψ) + c∂β, ζt ψ = 0,

φ(0, t) = φ(L, t) = 0 and ψ(0, t) = ψ(L, t) = 0,

φ(x, 0) = φ0(x) and ψ(x, 0) = ψ0(x),

φt(x, 0) = φ1(x) and ψt(x, 0) = ψ1(x),

(1.3)

where (x, t) ∈ (0, L) × (0, +∞), η, ζ ≥ 0, α, β ∈ (0, 1) and L, ρ1, ρ2, k, a, b, c
positive real constants.

For the reader’s taste, we briefly review fractional calculus. There are many
definitions for fractional derivatives [14], among which Riemann-Liouville’s and Ca-
puto’s are the most widely used. A fractional derivative with a non-singular kernel
involving exponential and trigonometric functions was proposed in [3]. The sug-
gested fractional operator includes the Caputo-Fabrizio fractional derivative as a
particular case. In this paper, the fractional derivative damping force is regarded
as a control force to study the properties of free-damped vibration of the system,
so the Caputo definition [10–12] is used here.

Let 0 < ω < 1. The Caputo fractional integral operator of order ω is defined by

Iωf(t) =
1

Γ(ω)

∫ t

0

(t− s)ω−1f(s)ds, (1.4)

where Γ is the well-known gamma function, and f ∈ L1([0, +∞)).
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The Caputo fractional derivative operator of order α is defined by

∂ωt f(t) = I1−ωf ′(t) :=
1

Γ(1− ω)

∫ t

0

(t− s)−ωf ′(s)ds, (1.5)

with f ∈W 1, 1([0, +∞)).

Besides, we note that the Caputo definition of the fractional derivative does
possess a straightforward but interesting interpretation: if the function f(t) rep-
resents the strain history within a viscoelastic material whose relaxation function
is [Γ(1 − α)tα]−1 then the material will experience at any time t total stress given
the expression ∂αt f(t). Also, it easy to show that ∂αt is a left inverse of Iα, but in
general it is not a right inverse.

∂ωt I
ωf = f, Iω∂ωt f(t) = f(t)− f(0).

For the proof of above equalities and more properties of fractional calculus see [30].

This work considers slightly different versions of (1.4) and (1.5). In [13], Choi
and MacCamy defined fractional integro-differential operators with exponential
weight. Let 0 < ω < 1, δ ≥ 0, the exponential fractional integral of order ω
and weight δ is defined by

Iω, δf(t) =
1

Γ(ω)

∫ t

0

e−δ(t−s)(t− s)ω−1f(s)ds, (1.6)

with f ∈ L1([0, +∞)).

The exponential fractional derivative operator of order ω and weight δ is defined
by

∂ω, δt f(t) =
1

Γ(1− ω)

∫ t

0

e−δ(t−s)(t− s)−αf ′(s)ds, (1.7)

with f ∈W 1, 1([0, +∞)).

Note that

∂ω, δt f(t) = I1−ω, δf ′(t). (1.8)

An essential advantage of fractional differential equations in applications is the
non-local property, making fractional calculus more attractive. In [8], the sta-
bilization of a wave equation with general internal control of the diffusive type
was analyzed with Caputo’s fractional derivative damping for a particular ker-
nel. Fractional calculus has been increasingly applied in different fields of science,
for example: applications in bioengineering [23], dynamics of particles, fields, and
media [34], Bats–Hosts–Reservoir–People transmission fractional-order COVID-19
model for simulating the potential transmission with individual response and con-
trol measures [31], electrical circuits [3], and science and engineering [27, 33, 36].
Recently, Ammari et al. [4] have given unified methods for stabilizing some frac-
tional evolution systems; they consider the stabilization for some abstract evolution
equations with fractional damping and validate the abstract results with concrete
examples. They also study the stabilization of fractional evolution systems with
memory. In general, fractional order derivative is used as boundary damping or as
delays of fractional order [21]. In both situations, the Lax-Milgran Theorem can
be applied naturally to obtain a well-posedness of the extended problem. In this



Timoshenko system with internal ... 1149

context, Benaissa-Benazzouz [6] studied the following Timoshenko’s system with
boundary dissipation

φ(0, t) = 0 and ψ(0, t) = 0,

m1φtt(L, t) + k(φx + ψ)(L, t) = −γ1∂α, ηt φ(L, t),

m2ψtt(L, t) + bψxx(L, t) = −γ2∂α, ηt ψ(L, t),

(1.9)

and provides a global solution by applying the Hille–Yosida Theorem. From a sta-
bility point of view, in (1.9), the action of two dynamic control boundary conditions
of the fractional derivative type gives the polynomial stability.

In [2], a one-dimensional Timoshenko system’s indirect boundary stability and
exact controllability are studied. The authors show that the system is strongly
stable but not uniformly stable. They proved that the energy decay rate depends on
the coefficients appearing in the system and on the order of the fractional damping.
Moreover, under the equal speed propagation condition, the optimal polynomial
energy decay rate was obtained.

Adnane et al. [1] considered the Timoshenko system with a delay in fractional
order given by{
ρ1φtt(x, t)− k(φx + ψ)(x, t) + a1∂

α, η
t (x, t− τ1) + a2ψt(x, t) = 0,

ρ2ψtt(x, t)− b(ψxx(x, t) + k(φz + ψ)(x, t) + ã1∂
β, ζ
t ψ(x, t− τ2) + ã2ψt(x, t) = 0.

(1.10)

Under a condition on the fractional delay, using a classical semigroup theory gives
the existence and uniqueness of the solution by Lumer-Phillips Theorem. From
a stability point of view, in (1.10), the two fractional time delays associated with
internal frictional dampings lead to an exponential stability result.

Our result differs from works [2, 6] in that it presents stability analysis using
fractional dampings in the domain. We appoint the differs from the work [1] by
two relevant aspects. The two fractional smoothings are not in the same order,
and stability is achieved without delays. Thus, this is the first contribution to the
literature regarding the Timoshenko beam with fractional damping on the domain.

The remainder of this paper is organized as follows. Section 2 is concerned with
reformulating the model (1.3) into an augmented system. Section 3, the existence of
a solution is given by applying the Lumer-Phillips Theorem. Section 4 presents the
strong stability of the C0-semigroup associated with the system using Arendt-Batty
and Lyubich-Vũ’s general criterion. In Section 5, the polynomial stability is proved
by applying Borichev-Tomilov’s Theorem.

2. Augmented model and preliminary results

This section concerns reformulating the model (1.3) into an augmented system. The
following proposition is fundamental to building the augmented model.

Proposition 2.1. (See [4]) Let p be the function

p(y) = |y|
2ω−1

2 , y ∈ R, 0 < ω < 1. (2.1)
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Then the relation between the Input U and the Output O if the following system
ϕt(t, y) + (|y|2 + δ)ϕ(t, y) = p(y)U(t),

ϕ(0, y) = 0,

O(t) = γ

∫
R
p(y)ϕ(t, y)dy,

(2.2)

where U ∈ C([0, +∞)), and γ =
sinωπ

π
=

1

Γ(ω)Γ(1− ω)
, is given by

O(t) = I1−ω, δU(t). (2.3)

Taking U = aφt in Proposition 2.1 and applying a expression (2.3), we obtain

γ1

∫
R
p(y)ϕ1(x, t, y)dy = a∂α, ηt φ(x, t),

where γ1 =
a sinαπ

π
=

a

Γ(α)Γ(1− α)
and p(y) = |y| 2α−1

2 .

Similahirly, applying Proposition 2.1 with U = cψt, we get

γ2

∫
R
q(y)ϕ2(x, t, y)dy = c∂β, ζt ψ(x, t),

where γ2 =
c sinβπ

π
=

c

Γ(β)Γ(1− β)
and q(y) = |y|

2β−1
2 .

Thus, the problem (1.3) is equivalent to the following augmented model

ρ1φtt(x, t)− k(φx(x, t) + ψ(x, t))x + γ1

∫
R
p(y)ϕ1(x, t, y)dy = 0,

ρ2ψtt(x, t)− bψxx(x, t) + k(φx(x, t) + ψ(x, t)) + γ2

∫
R
q(y)ϕ2(x, t, y)dy = 0,

(ϕ1)t(x, t, y) + (|y|2 + η)ϕ1(x, t, y)− p(y)φt(x, t) = 0,

(ϕ2)t(x, t, y) +
(
|y|2 + ζ

)
ϕ2(x, t, y)− q(y)ψt(x, t) = 0,

φ(0, t) = φ(L, t) = 0 and ψ(0, t) = ψ(L, t) = 0,

ϕ1(0, 0, y) = ϕ1(L, 0, y) = 0 and ϕ2(0, 0, y) = ϕ2(L, 0, y) = 0,

φ(x, 0) = φ0(x), ψ(x, 0) = ψ0(x), φt(x, 0) = φ1(x), ψt(x, 0) = ψ1(x),

ϕ1(x, 0, y) = 0, ϕ2(x, 0, y) = 0.

(2.4)

Now, consider the following technical lemmas. The Lemma 2.1 will be used for
well-posedness, the Lemma 2.3 will be used for the proof of strong stability, and
the Lemma 2.2 will be used for the proof of polynomial stability.

Lemma 2.1. If 0 < ω < 1 and δ ≥ 0, then

C(ω, δ) :=

∫
R

|y|2ω−1dy
|y|2 + δ + 1

< +∞ and D(ω, δ) :=

∫
R

|y|2ω−1dy
(|y|2 + δ + 1)2

< +∞.

Proof. Note that

C(ω, δ) :=

∫
R

|y|2ω−1dy
|y|2 + δ + 1

=
2

(1 + δ)

∫ +∞

0

|y|2ω−1dy
1 + |y|2

(1+δ)

.
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As 0 < ω < 1, by making a change of variable, we have that

0 < C(ω, δ) :=
1

(1 + δ)1−ω

∫ +∞

1

dσ

σ(σ − 1)1−ω
< +∞.

To do this, it is sufficient to show that 1
σ(σ−1)1−ω ≤

1
σ1+ω para σ sufficiently large.

Indeed ∫ +∞

1

dσ

σ(σ − 1)1−ω
≤
∫ N

1

dσ

σ(σ − 1)1−ω
+

∫ +∞

N

dσ

σ1+ω

= K + lim
t→+∞

∫ t

N

dσ

σ1+ω

= K +
1

ωN−ω
.

Let us now prove the statement. Multiplying both sides of the inequality by
σσ1+ω = σ2+ω, we have

σσ1+ω

σ(σ − 1)1−ω
≤ σ2+ω

σ1+ω
= σ.

Thus
1

σ(σ − 1)1−ω
≤ 1

σ1+ω
⇐⇒ σω

(σ − 1)1−ω
≤ 1.

Finally, taking σ sufficiently large such that σ2 > 3σ−1, has σ−1 >
σ

σ − 1
> 1. As

0 < ω < 1, we have

(
σ

σ − 1

)ω
<

σ

σ − 1
< σ − 1. Logo σω < (σ − 1)1−ω. Moreover,

note that

D(ω, δ) :=

∫
R

|y|2ω−1dy
(|y|2 + δ + 1)2

≤
∫
R

|y|2ω−1dy
|y|2 + δ + 1

= C(ω, δ) < +∞.

Lemma 2.2. If 0 < ω < 1, λ ≥ 0 and δ > 0, then

J(λ, ω, δ) :=

∫
R

|y|2ω−1dy
|y|2 + δ + λ

< +∞ and L(λ, ω, δ) :=

∫
R

|y|2ω−1dy
(|y|2 + δ + λ)2

< +∞.

Proof. Analogous to the proof of Lemma 2.1.

Lemma 2.3. Let 0 < ω < 1. If δ > 0 and λ ∈ R, or if δ = 0 and λ > 0, then

E(λ, ω, δ) :=

∫
R

|y|2ω−1dy
|y|2 + δ + λi

<∞.

Furthermore, for j = 1, 2, we have that

Hj(x, λ, ω, δ) :=

∫
R

|y| 2ω−1
2 hj(x, y)dy

|y|2 + δ + λi
∈ L2(0, L).
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Proof. Note that E(λ, ω, δ) = F (λ, ω, δ) + λiG(λ, ω, δ), where

F (λ, ω, δ) :=

∫
R

(|y|2 + δ)|y|2ω−1dy
λ2 + (|y|2 + δ)2

and G(λ, ω, δ) :=

∫
R

|y|2ω−1dy
λ2 + (|y|2 + δ)2

.

We use that

G(λ, ω, δ) = 2

∫ 1

0

|y|2ω−1dy
λ2 + (|y|2 + δ)2

+ 2

∫ +∞

1

|y|2ω−1dy
λ2 + (|y|2 + ω)2

.

Since in both cases, (δ > 0 and λ ∈ R) or (δ = 0 and λ > 0), we obtain

|y|2ω−1

λ2 + (|y|2 + δ)2
∼ |y|

2ω−1

λ2 + δ2
as |y| → 0

and
|y|2ω−1

λ2 + (|y|2 + δ)2
∼ 1

|y|5−2ω
as |y| → +∞,

it follows that G(λ, δ) <∞. Similarly,

F (λ, ω, δ) = 2

∫ 1

0

(|y|2 + δ)|y|2ω−1dy
λ2 + (|y|2 + δ)2

+ 2

∫ +∞

1

(|y|2 + δ)|y|2ω−1dy
λ2 + (|y|2 + ω)2

,

and, if (δ > 0 and λ ∈ R) or (δ = 0 and λ > 0), we obtain

(|y|2 + δ)|y|2ω−1

λ2 + (|y|2 + δ)2
∼ (|y|2 + δ)|y|2ω−1

λ2 + δ2
for |y| → 0

and
(|y|2 + δ)|y|2ω−1

λ2 + (|y|2 + δ)2
∼ 1

|y|3−2ω
for |y| → +∞.

Thus, F (λ, ω, δ) <∞, and consequently, it follows that E(λ, ω, δ) <∞. Moreover,
from the Cauchy-Schwarz inequality and the fact that hj ∈ L2(R; L2(0, L)), it
follows that∫ L

0

|H(x, λ, ω, δ)|2 dx =

(∫
R

|y|2ω−1dy
λ2 + (|y|2 + δ)2

)∫ L

0

∫
R
|hj(x, y)|2dydx < +∞.

Theorem 2.1 (Lumer-Phillips, [26]). Let A be a linear operator with domain D(A)
dense in a Hilbert space H satisfying

(i) Re〈Au, u〉 ≤ 0; ∀u ∈ H (dissipatividade).

(ii) There exists λ > 0 such that (λI −A)(H) = H (maximalidade).

Then A is the infinitesimal generator of a contraction C0-semigroup (etA)t≥0 on H.

Theorem 2.2 (Arendt-Batty [5], Lyubich-Vũ [22]). Let A be the generator of a
C0 contraction semigroup (etA)t≥0 in a reflexive Banach space X If the following
conditions are satisfied:

(i) A has no purely imaginary eigenvalues;
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(ii) σ(A) ∩ iR is countable.

Then, (etA)t≥0 is strongly stable. That is

lim
t→∞

‖etAx‖ = 0; ∀x ∈ X.

Theorem 2.3 (Borichev-Tomilov [7]). Let (etA)t≥0 be a C0-semigroup of contrac-
tions on a Hilbert space H such that iR ⊂ ρ(A). Then (etA)t≥0 is polynomial stable,
that is, for every x ∈ D(A),

‖etAx‖ ≤ C

tω
‖x‖D(A); ∀t ≥ 0, (2.5)

for some C > 0 and for ω > 0, if and only if

lim sup
|λ|→∞

1

|λ|1/ω
∥∥(iλI − A)−1

∥∥
L(H)

<∞.

Theorem 2.4 (Gearhart-Prüss-Huang [19,20,28]). Let (etA)t≥0 be a C0-semigroup
of contractions defined on a Hilbert space H and generated by A. Then, (etA)t≥0 is
exponentially stable, that is,

‖etA‖L(H) ≤ Ce−wt

for some C > 0 and for ω > 0, if and only if

ρ(A) ⊃ iR and lim sup
|λ|→+∞

‖(iλI −A)−1‖L(H) < C, ∀ β ∈ R.

We close this section with an important functional analysis result that will be
of utmost importance in this article.

Theorem 2.5 (Fredholm alternative [9]). Let X be a Banach space. If L : X → X
is a a compact linear operator on X, then

(i) ker (I − L) is finite dimension.

(ii) (I − L) (X) is closed.

(iii) ker (I − L) = {0} ⇔ (I − L) (X) = X.

3. Energy and well-posedness of the ofaugmented
system

In this section, we use results of the semigroup theory of linear operators, see [26],
to obtain an existence theorem of solutions of system (2.4). The Lumer-Phillips
Theorem will be applied.

Proposition 3.1. The energy associated with to previous system (2.4) is given by

E(t) =
k

2
‖(φx + ψ)(t)‖2L2(0, L) +

ρ1
2
‖φt(t)‖2L2(0, L) +

ρ2
2
|ψt(t)‖2L2(0, L)

+
b

2
‖ψx(t)‖2L2(0, L) +

γ1
2

∫
R
‖ϕ1(t, y)‖2L2(0, L)dy +

γ2
2

∫
R
‖ϕ2(t, y)‖2L2(0, L)dy,
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and verifies that

d

dt
E(t) = −γ1

∫
R
(|y|2 + η)‖ϕ1(t, y)‖2L2(0, L)dy − γ2

∫
R
(|y|2 + ζ)‖ϕ2(t, y)‖2L2(0, L)dy.

(3.1)

Proof. Multiplying the first equation in (2.4) by φt, integrating over x, and using
the boundary conditions, we obtain

ρ1
2

d

dt

∫ L

0

|φt(x, t)|2dx+ k

∫ L

0

(φx(x, t) + ψ(x, t))φxt(x, t)dx

+ γ1

∫ L

0

φt(x, t)

∫
R
p(y)ϕ1(x, t, y)dydx = 0. (3.2)

Similarly, by multiplying the second equation in (2.4) by ψt, integrating over x,
and using the boundary conditions, we get

ρ2
2

d

dt

∫ L

0

|ψt|2dx+
b

2

d

dt

∫ L

0

|ψx|2dx+ k

∫ L

0

(φx + ψ)ψtdx

+ γ2

∫ L

0

ψt(x, t)

∫
R
q(y)ϕ2(x, t, y)dydx = 0. (3.3)

Now, by summing the equations (3.2) and (3.3), we have

k

2

d

dt

∫ L

0

|(φx + ψ)(x, t)|2dx+
ρ1
2

d

dt

∫ L

0

|φt(x, t)|2dx+
ρ2
2

d

dt

∫ L

0

|ψt(x, t)|2dx

+
b

2

d

dt

∫ L

0

|ψx(x, t)|2dx+ γ1

∫ L

0

φt(x, t)

∫
R
p(y)ϕ1(x, t, y)dydx

+ γ2

∫ L

0

ψt(x, t)

∫
R
q(y)ϕ2(x, t, y)dydx = 0. (3.4)

On the other hand, by multiplying the last two equations in (2.4) by γ1ϕ1(x, t, y)
and γ2ϕ2(x, t, y) respectively, and then integrating over the variable y, we get

γ1
2

d

dt

∫
R
|ϕ1(x, t, y)|2dy + γ1

∫
R

(
|y|2 + η

)
|ϕ1(x, t, y)|2dy

=γ1φt(x, t)

∫
R
p(y)ϕ1(x, t, y)dy, (3.5)

and

γ2
2

d

dt

∫
R
|ϕ2(x, t, y)|2dy + γ2

∫
R

(
|y|2 + ζ

)
|ϕ2(x, t, y)|2dy

=γ2ψt(x, t)

∫
R
q(y)ϕ2(x, t, y)dy. (3.6)

Substituting the expressions (3.5) and (3.6) into (3.4), we obtain

d

dt
E(t) = −γ1

∫
R
(|y|2 + η)‖ϕ1(t, y)‖2L2(0, L)dy − γ2

∫
R
(|y|2 + ζ)‖ϕ2(t, y)‖2L2(0, L)dy,
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which establishes (3.1).

To achieve the goal, consider the phase space

H = [H1
0 (0, L)]2 × [L2(0, L)]2 × [L2(R; L2(0, L))]2,

equipped with the following inner product

〈U, Ũ〉H = k〈φx + ψ, φ̃x + ψ̃〉L2(0, L) + b〈ψ, ψ̃〉H1
0 (0, L)

+ ρ1〈u, ũ〉L2(0, L)

+ ρ2〈v, ṽ〉L2(0, L) + γ1〈ϕ1, ϕ̃1〉L2(R;L2(0, L)) + γ2〈ϕ2, ϕ̃2〉L2(R;L2(0, L)),

where U = (φ, ψ, u, v, ϕ1, ϕ2)T and Ũ = (φ̃, ψ̃, ũ, ṽ, ϕ̃1, ϕ̃2)T .

Note that, by setting u = φt and v = ψt in the matrix U = (φ, ψ, u, v, ϕ1, ϕ2)
T

,
the system (2.4) is equivalent to the following Cauchy problemUt = AU, t > 0,

U(0) = U0,
(3.7)

where U0 = (φ0, ψ0, φ1, ψ1, 0, 0)
T

and A : D(A) ⊂ H → H is the linear operator
defined by

AU =



u

v

1

ρ1

[
k(φx + ψ)x − γ1

∫
R
p(y)ϕ1(y)dy

]

1

ρ2

[
bψxx − k(φx + ψ)− γ2

∫
R
q(y)ϕ2(y)dy

]

−(|y|2 + η)ϕ1(y) + p(y)u

−(|y|2 + ζ)ϕ2(y) + q(y)v



. (3.8)

The domain D(A) is definide by

D(A) =

(φ, ψ, u, v, ϕ1, ϕ2)T ∈ V

∣∣∣∣∣∣∣∣∣
|y|ϕ1, |y|ϕ2 ∈ L2(R; L2(0, L)),

−(|y|2 + η)ϕ1 + p(y)u ∈ L2(R; L2(0, L)),

−(|y|2 + ζ)ϕ2 + q(y)v ∈ L2(R; L2(0, L)).


where V = [H1

0 (0, L)∩H2(0, L)]2× [H1
0 (0, L)]2× [L2(R; L2(0, L))]2 is dense in H.
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Theorem 3.1. If U0 ∈ H, then the Cauchy problem (3.7) exists and admits a
unique weak solution

U ∈ C0 ([0, +∞); H) ,

given by U(t) = etAU0. If U0 ∈ D(A), then the obtained solution is a strong solution
with the following regularity

U ∈ C0 ([0, +∞); D (A)) ∩ C1 ([0, +∞); H) .

Proof. Consider U = (φ, ψ, u, v, ϕ1, ϕ2)T ∈ D (A). Employing integration by
parts, using boundary conditions, and exploiting properties of complex conjugation,
we have

〈AU, U〉H

= k

∫ L

0

(ux + v)(x)(φx + ψ)(x)dx+ b

∫ L

0

vx(x)ψx(x)dx

+k

∫ L

0

(φx + ψ)x(x)u(x)dx− γ1
∫ L

0

∫
R
p(y)ϕ1(x, y)u(x)dydx

+b

∫ L

0

ψxx(x)v(x)dx− k
∫ L

0

(φx + ψ)(x)v(x)dx

−γ2
∫ L

0

∫
R
q(y)ϕ2(x, y)v(x)dydx− γ1

∫ L

0

∫
R
(|y|2 + η)|ϕ1(x, y)|2dydx

+γ1

∫ L

0

∫
R
p(y)u(x)ϕ1(x, y)dydx− γ2

∫ L

0

∫
R

(|y|2 + ζ)|ϕ2(x, y)|2dydx

+γ2

∫ L

0

∫
R
q(y)v(x)ϕ2(x, y)dydx

= k

∫ L

0

(ux + v)(x)(φx + ψ)(x)dx+ b

∫ L

0

vx(x)ψx(x)dx

−k
∫ L

0

(φx + ψ)(x)ux(x)dx− b
∫ L

0

ψx(x)vx(x)dx

−k
∫ L

0

(φx + ψ)(x)v(x)− γ2
∫
R
(|y|2 + ζ)‖ϕ2(y)‖2L2(0, L)dy

+γ1

∫ L

0

∫
R
p(y)

[
u(x)ϕ1(x, y)− u(x)ϕ1(x, y)

]
dydx

+γ2

∫ L

0

∫
R
q(y)

[
v(x)ϕ2(x, y)− v(x)ϕ2(x, y)

]
dydx

−γ1
∫
R

(|y|2 + η)‖ϕ1(y)‖2L2(0, L)dy

= 2ik

∫ L

0

Im
[
(ux + v)(x)(φx + ψ)(x)

]
dx+ 2ib

∫ L

0

Im
[
vx(x)ψx(x)

]
dx

+2iγ1

∫ L

0

∫
R
p(y)Im [u(x)ϕ1(x, y)] dydx

+2iγ2

∫ L

0

∫
R
q(y)Im [v(x)ϕ2(x, y)] dydx
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−γ1
∫
R

(|y|2 + η)‖ϕ1(y)‖2L2(0, L)dy − γ2
∫
R

(|y|2 + ζ)‖ϕ2(y)‖2L2(0, L)dy.

Therefore

Re〈AU, U〉H =− γ1
∫
R

(|y|2+η)‖ϕ1(y)‖2L2(0, L)dy − γ2
∫
R

(|y|2+ζ)‖ϕ2(y)‖2L2(0, L)dy

≤ 0. (3.9)

Hence, the linear operator A defined in (3.8) is a dissipative operator.
As A is a dissipative linear operator with D(A) dense in H, to use the Lumer-

Phillips Theorem, it is sufficient to show that (I − A)U = W . Thus, given W =
(f1, f2, g1, g2, h1, h2)T ∈ H, we want to show that there is some vector U =
(φ, ψ, u, v, ϕ1, ϕ2)T ∈ D(A) such that (I − A)U = W . This is,

φ− u = f1,

ψ − v = f2,

ρ1u− k (φx + ψ)x + γ1

∫
R
p(y)ϕ1(y)dy = ρ1g1,

ρ2v − bψxx + k(φx + ψ) + γ2

∫
R
q(y)ϕ2(y)dy = ρ2g2,

ϕ1(y) + (|y|2 + η)ϕ1(y)− p(y)u = h1(y), ∀ y ∈ R,
ϕ2(y) + (|y|2 + ζ)ϕ2(y)− q(y)v = h2(y), ∀ y ∈ R.

(3.10)

From the first two equations in (3.10), we get

u = φ− f1 and v = ψ − f2. (3.11)

On the other hand, from the last two equations in (3.10), we obtain

ϕ1(y) =
h1(y)

|y|2 + η + 1
− p(y)f1
|y|2 + η + 1

+
p(y)φ

|y|2 + η + 1
, (3.12)

ϕ2(y) =
h2(y)

|y|2 + ζ + 1
− q(y)f2
|y|2 + ζ + 1

+
q(y)φ

|y|2 + ζ + 1
. (3.13)

Applying Lemma 2.1 to the expressions above, we get

γ1

∫
R
p(y)ϕ1(y)dy = γ1

[∫
R

p(y)h1(y)dy

|y|2 + η + 1
+ C(α, η)(φ− f1)

]
(3.14)

and

γ2

∫
R
q(y)ϕ2(y)dy = γ2

[∫
R

q(y)h2(y)dy

|y|2 + ζ + 1
+ C(β, ζ)(ψ − f2)

]
. (3.15)

Finally, applying expressions (3.11), (3.14), and (3.15) to the third and fourth equa-
tions of the system (3.10), we have

ρ1φ− ρ1f1 − k (φx + ψ)x + γ1C(α, η)(φ− f1) + γ1

∫
R

p(y)h1(y)dy

|y|2 + η + 1
= ρ1g1

and

ρ2ψ − ρ2f2 − bψxx + k(φx + ψ) + γ2C(β, ζ)(ψ − f2) + γ2

∫
R

q(y)h2(y)dy

|y|2 + ζ + 1
= ρ2g2.
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Then

ρ1φ− k(φx + ψ)x + γ1C(α, η)φ = ρ1(f1 + g1) + γ1C(α, η)f1 − γ1
∫
R

p(y)h1(y)dy

|y|2 + η + 1
(3.16)

and

ρ2ψ−bψxx+k(φx+ψ)+γ2C(β, ζ)ψ = ρ2(f2+g2)+γ2C(β, ζ)f2−γ2
∫
R

q(y)h2(y)dy

|y|2 + ζ + 1
.

(3.17)
Multiplying equations (3.16) and (3.17) by φ̃ ∈ H1

0 (0, L) and ψ̃ ∈ H1
0 (0, L) respec-

tively, integrating over x and applying integration by parts, we obtain the following
equivalent system

C1

∫ L

0

φφ̃dx+ k

∫ L

0

(φx + ψ) φ̃xdx =

∫ L

0

F1φ̃dx− γ1
∫ L

0

φ̃

∫
R

p(y)h1(y)dydx

|y|2 + η + 1
,

C2

∫ L

0

ψψ̃dx+

∫ L

0

bψxψ̃xdx+ k

∫ L

0

(φx + ψ)ψ̃dx

=

∫ L

0

F2ψ̃dx− γ2
∫ L

0

ψ̃

∫
R

q(y)h2(y)dydx

|y|2 + ζ + 1
,

(3.18)

where C1 = ρ1 +γ1C(α, η), C2 = ρ2 +γ2C(β, ζ), F1 = ρ1(f1 + g1) +γ1C(α, η) and
F2 = ρ2(f2 + g2) + γ2C(β, ζ).

Note that the system (3.18) is equivalent to the problem of finding a vector

(φ, ψ) ∈
[
H1

0 (0, L)
]2

such that

B((φ, ψ), (φ̃, ψ̃)) = L(φ̃, ψ̃), (3.19)

where B : [H1
0 (0, L)]2 × [H1

0 (0, L)]2 −→ R is the bilinear form defined by

B((φ, ψ), (φ̃, ψ̃))

=C1

∫ L

0

φφ̃dx+ k

∫ L

0

(φx + ψ)(φ̃x + ψ̃)dx+ C2

∫ L

0

ψψ̃dx+ b

∫ L

0

ψxψ̃xdx,

and L : [H1
0 (0, L)]2 −→ R is the linear form defined by

L(φ̃, ψ̃) =

∫ L

0

F1φ̃dx+

∫ L

0

F2ψ̃dx

− γ1
∫ L

0

φ̃

∫
R

p(y)h1(y)dydx

|y|2 + η + 1
− γ2

∫ L

0

ψ̃

∫
R

q(y)h2(y)dydx

|y|2 + ζ + 1
.

It is easy to observe that B is a continuous and coercive bilinear form. On the other
hand,∣∣∣∣∣γ1

∫ L

0

φ̃

∫
R

p(y)h1(y)dydx

|y|2 + η + 1

∣∣∣∣∣ ≤ Lγ1√D(α, η)‖φ̃‖H1
0 (0, L)

‖h1‖L2(R;L2(0, L))

and ∣∣∣∣∣γ2
∫ L

0

ψ̃

∫
R

q(y)h2(y)dydx

|y|2 + ζ + 1

∣∣∣∣∣ ≤ Lγ2√D(β, ζ)‖ψ̃‖H1
0 (0, L)

‖h2‖L2(R;L2(0, L)).
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It follows that L is a bounded linear functional. Then, from Lax-Milgram theorem,
we deduce the existence of a unique solution (φ, ψ) ∈ H0

1 (0, L) ×H1
0 (0, L) to the

variational problem (3.18). By elliptic regularity, it follows that φ, ψ ∈ H1
0 (0, L) ∩

H2(0, L). Now, define u and v from (3.11), then we have u, v ∈ H1(0, L). Finally, as
h1, h2 ∈ L2(R; L2(0, L)), defining ϕ1(y) and ϕ2(y) using the respective expressions
given in (3.12), (3.13) and (3.14), it is evident that |y|ϕ1 ∈ L2(R; L2(0, L)), |y|ϕ2 ∈
L2(R; L2(0, L)), −

(
|y|2 + η

)
ϕ1 + p(y)u ∈ L2(R; L2(0, L)) and −

(
|y|2 + ζ

)
ϕ2 +

q(y)v ∈ L2(R; L2(0, L)).

4. Strong stability

In this section, we will use the Arendt-Batty Theorem (Theorem 2.2) to prove that
the semigroup associated with our problem is strongly stable. In other words, our
solution decays to zero pointwise as t tends to infinity.

Proposition 4.1. If λ ∈ R, then λiI − A is injective.

Proof. Let λ ∈ R such that λi is an eigenvalue of the operator A, and let
U = (φ, ψ, u, v, ϕ1, ϕ2) ∈ D(A) be the associated eigenvector. Then AU = λiU .
Equivalently 

u = λiφ,

v = λiψ,

k(φx + ψ)x − γ1
∫
R
p(y)ϕ1(y)dy = iλρ1u,

bψxx − k(φx + ψ)− γ2
∫
R
q(y)ϕ2(y)dy = iλρ2v,

(|y|2 + η + λi)ϕ1(y) = p(y)u, ∀ y ∈ R,
(|y|2 + ζ + λi)ϕ2(y) = q(y)v, ∀ y ∈ R.

(4.1)

Note that

0 =Re〈λiU, U〉H

=− γ1
∫
R

(|y|2 + η)‖ϕ1(y)‖2L2(0, L)dy − γ2
∫
R

(|y|2 + ζ)‖ϕ2(y)‖2L2(0, L)dy.

Therefore

ϕ1(x, y) = 0 and ϕ2(x, y) = 0 a. e. in (x, y) ∈ (0, L)× R. (4.2)

Applying (4.2) to the last two equations of the system (4.1), we obtain

u(x) = 0 and v(x) = 0 a. e. in x ∈ (0, L). (4.3)

Now, applying (4.3) to the first two equations of the system (4.1), we have

λiφ(x) = 0 and λiψ(x) = 0 a. e. in x ∈ (0, L). (4.4)

If λ 6= 0, then φ = 0 and ψ = 0 almost everywhere on (0, L). Otherwise, from third
and fourth equations of the system (4.1), along with the boundary conditions of the
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problem, we obtain the following system
kφxx(x, t) + kψ(x, t)x = 0, 0 < x < L, t > 0,

bψxx(x, t)− kφx(x, t)− kψ(x, t) = 0, 0 < x < L, t > 0,

φt(x, t) = ψt(x, t) = 0, 0 < x < L, t > 0,

φ(0, t) = φ(L, t) = 0 and ψ(0, t) = ψ(L, t) = 0, t > 0.

(4.5)

Applying the operator method to the system (4.5), we obtain that φ ≡ 0 and ψ ≡ 0.
Therefore, in any case, ker(λiI − A) = {0}.

Corollary 4.1. If λ ∈ R, then λi is not an eigenvalue of A.

Proposition 4.2. If η = 0 or ζ = 0 then the operator A is not invertible and
consequently 0 ∈ σ(A).

Proof. If η = 0, let W0 = (sin(πx/L), 0, 0, 0, 0, 0) ∈ H, and assume there exists

U = (φ, ψ, u, v, ϕ1 ϕ2) ∈ D(A) such that AU = W0.

In this case, ϕ1(y) = |y| 2α−5
2 sin(πx/L), and however ϕ1 /∈ L2(R; L2(0, L)) for

0 < α < 1.
The case where ζ = 0 is similar. Just choose a vector U ∈ D(A) such that

AU = W1, where W1 = (0, sin(πx/L), 0, 0, 0, 0).

Proposition 4.3. (a) If η = 0 or ζ = 0, then λiI − A is surjective, for any
λ 6= 0.

(b) If η, ζ > 0 and λ ∈ R, then λiI − A is surjective.

Proof. Given W = (f1, f2, g1, g2, h1, h2)T ∈ H, we aim to show that there exists
a vector U = (φ, ψ, u, v, ϕ1, ϕ2)T ∈ D(A) such that (λiI − A)U = W . That is,

λiφ− u = f1,

λiψ − v = f2,

iλρ1u− k (φx + ψ)x + γ1

∫
R
p(y)ϕ1(y)dy = ρ1g1,

iλρ2v − bψxx + k (φx + ψ) + γ2

∫
R
q(y)ϕ2(y)dy = ρ2g2,

(λi+ |y|2 + η)ϕ1(y)− p(y)u = h1(y); ∀ y ∈ R,
(λi+ |y|2 + ζ)ϕ2(y)− q(y)v = h2(y); ∀ y ∈ R.

(4.6)

From (4.6), we get

u = λiφ− f1 and v = λiψ − f2, (4.7)

ϕ1(y) =
h1(y)

|y|2 + η + λi
− p(y)f1
|y|2 + η + λi

+
λip(y)φ

|y|2 + η + λi
, (4.8)

ϕ2(y) =
h2(y)

|y|2 + ζ + λi
− q(y)f2
|y|2 + ζ + λi

+
λiq(y)ψ

|y|2 + ζ + λi
. (4.9)

Applying Lemma 2.3 to the expressions (4.8) and (4.9), it follows that

γ1

∫
R
p(y)ϕ1(y)dy = γ1

[∫
R

p(y)h1(y)dy

|y|2 + η + λi
+ E(λ, α, η)(λiφ− f1)

]
(4.10)
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and

γ2

∫
R
q(y)ϕ2(y)dy = γ2

[∫
R

q(y)h2(y)dy

|y|2 + ζ + λi
+ E(λ, β, ζ)(λiψ − f2)

]
. (4.11)

Thus, applying expressions (4.7), (4.10) and (4.11) in (4.6)3,4 respectively, we have

− λ2ρ1φ− iλρ1f1 − k (φx + ψ)x + γ1E(λ, α, η)(λiφ− f1)

+ γ1

∫
R

p(y)h1(y)dy

|y|2 + η + λi
= ρ1g1.

and

− λ2ρ2ψ − iλρ2f2 − bψxx + k (φx + ψ) + γ2E(λ, β, ζ)(λiψ − f2)

+ γ2

∫
R

q(y)h2(y)dy

|y|2 + ζ + λi
= ρ2g2.

Then

− λ2ρ1φ− k(φx + ψ)x + γ1λiE(λ, α, η)φ

=ρ1(iλf1 + g1) + γ1E(λ, α, η)f1 − γ1
∫
R

p(y)h1(y)dy

|y|2 + η + λi
(4.12)

and

− λ2ρ2ψ − bψxx + k(φx + ψ) + γ2λiE(λ, β, ζ)ψ

=ρ2(iλf2 + g2) + γ2E(λ, β, ζ)f2 − γ2
∫
R

q(y)h2(y)dy

|y|2 + ζ + λi
. (4.13)

If λ = 0, by hypothesis, we have η, ζ > 0. In that case, we have

− k(φx + ψ)x = ρ1g1 + γ1E(0, α, η)f1 − γ1H1(x, 0, α, η), (4.14)

− bψxx + k(φx + ψ) = ρ2g2 + γ2E(0, β, ζ)f2 − γ2H2(x, 0, β, ζ). (4.15)

Multiplying equations (4.14) and (4.15) by φ̃ ∈ H1
0 (0, L) and ψ̃ ∈ H1

0 (0, L)
respectively, and proceeding in a manner similar to the approach used in the proof

of Theorem 3.1, we get the problem of finding a vector (φ, ψ) ∈
[
H1

0 (0, L)
]2

such
that

B((φ, ψ), (φ̃, ψ̃)) = L(φ̃, ψ̃), (4.16)

where B : [H1
0 (0, L)]2 × [H1

0 (0, L)]2 −→ R is the bilinear form defined by

B((φ, ψ), (φ̃, ψ̃)) = k

∫ L

0

(φx + ψ)(φ̃x + ψ̃)dx+ b

∫ L

0

ψxψ̃xdx (4.17)

and L : [H1
0 (0, L)]2 −→ R is the linear form defined by

L(φ̃, ψ̃) =

∫ L

0

Fφ̃dx+

∫ L

0

Gψ̃dx, (4.18)

where F = ρ1g1 +γ1E(0, α, η)f1−γ1H1(x, 0, α, η) and G = ρ2g2 +γ2E(0, β, ζ)f2−
γ2H2(x, 0, β, ζ).
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Now, it suffices to utilize the Lax-Milgram Theorem.
Finally, suppose that λ 6= 0. Define the linear unbounded operator

M : [H1
0 (0, L)]2 →

(
[H1

0 (0, L)]2
)∗

given by

M

 φ

ψ

 =

 k(φx + ψ)x − I1(λ, α, η)φ

bψxx − k(φx + ψ)− I2(λ, β, ζ)ψ

 ,

where Ij(λ, ω, δ) = γjλiE(λ, ω, δ) (j = 1, 2).
From Lax-Milgram Theorem, it follows that it is an isomorphism. Thus, we

have that the system (4.12)-(4.13) is equivalent to−λ2
ρ1

ρ2

M−1 − I
 φ

ψ

 =M−1
 F̃

G̃

 , (4.19)

F̃ = [ρ1λi+γ1E(λ, α, η)]f1+ρ1g1−γ1H1(x, λ, α, η) and G̃ = [ρ2λi+γ2E(λ, β, ζ)]f2+
ρ2g2 − γ2H2(x, λ, β, ζ).

Since the operator M−1 is isomorphism and I is a compact operator from
[H1

0 (0, L)]2 to
(
[H1

0 (0, L)]2
)∗

. Then M−1 is compact operator from [H1
0 (0, L)]2

to [H1
0 (0, L)]2. Consequently, by Fredholm alternative (Theorem 2.5), proving the

existence of (φ, ψ) ∈ [H1
0 (0, L)]2 solution of (4.19) reduces to proving

ker

−λ2
ρ1

ρ2

M−1 − I
 =


 0

0

 .

Indeed, if (φ̃, ψ̃)T ∈ ker

−λ2
ρ1

ρ2

M−1 − I
, then

−λ2
ρ1

ρ2

 I −M
 φ̃

ψ̃

 =

0

0

 .

That is, {
(I1(λ, α, η)− ρ1λ2)φ̃− k(φ̃x + ψ̃)x = 0,

(I2(λ, β, ζ)− ρ2λ2)ψ̃ − bψ̃xx + k(φ̃x + ψ̃) = 0.
(4.20)

Multiplying (4.20), by φ̃ and ψ̃ respectively, integrating by parts and using

the boundary conditions, it follows that (φ̃, ψ̃)T = (0, 0). So, it follows that from
Fredholm alternative (Theorem 2.5) there is a unique solution (φ, ψ) ∈ [H1

0 (0, L)]2

for (4.19). By elliptic regularity, it follows that φ, ψ ∈ H1
0 (0, L) ∩H2(0, L). Now

just take u, v, as given in (4.7) and ϕ1(y), ϕ2(y) as given in (4.8)-(4.9). Evidently,
U = (φ, ψ, u, v, ϕ1, ϕ2) ∈ D(A) and (λiI − A)U = W .
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Corollary 4.2.

(a) If η = 0 or ζ = 0, then iλ /∈ σ(A), for any λ 6= 0,

(b) If η, ζ > 0 and λ ∈ R, then iλ /∈ σ(A).

Theorem 4.1. The C0 contraction semigroup (etA)t≥0 is strongly stable in H, that
is,

lim
t→+∞

∥∥etAU0

∥∥
H = 0, ∀U0 ∈ H.

Proof. From the Corollary 4.1, it follows that the operator A does not have purely
imaginary eigenvalues. However, if η = 0 or ζ = 0, Proposition 4.2 and item (a) of
the Corollary 4.2, imply that σ(A) ∩ iR = {0}. In the case of η, ζ > 0, using item
(b) of the corollary 4.2, we conclude that σ(A) ∩ iR = ∅. Therefore, in both cases,
we can apply Arendt and Batty’s Theorem, leading to the desired result.

5. Polynomial stability

In this section, we show the main result of the manuscript. Initially note that,
as shown in Proposition 4.2, for η = 0 or ζ = 0, we have 0 ∈ σ(A), and thus,
iR 6⊂ %(A). Therefore, according to the Gearhart-Prüss-Huang Theorem, it follows
that the semigroup {S(t)}t≥0 generated by the operator A is not exponentially
stable, and therefore, the solution U(t) = S(t)U0 the of problem (3.7) does not
decay exponentially. On the other hand, taking η, ζ > 0, the item (b) of the
Corollary 4.2 we guarantee that iR ⊂ %(A). For this case we will use the result
below to prove that the system decays polynomially.

Theorem 5.1. For U0 ∈ D(A) and η, ζ > 0, the C0-semigroup S(t) = eAt is
polynomially stable if

||etAU0|| ≤
C

tω
‖U0‖D(A), t > 0 and ω > 0.

Proof. The resolvent equation (iλI − A)U = W , for U = (φ, ψ, u, v, ϕn, ϕ2) ∈
D(A), W = (f1, f2, g1, g2, h1, h2) ∈ H e λ ∈ R, is equivalent to

iλφ− u = f1,

iλψ − v = f2,

iλρ1u− k(φx + ψ)x + γ1

∫
R
p(y)ϕ1(y)dy = ρ1g1,

iλρ2v − bψxx + k(φx + ψ) + γ2

∫
R
q(y)ϕ2(y)dy = ρ2g2,

(iλ+ |y|2 + η)ϕ1(y)− p(y)u = h1(y), ∀ y ∈ R,
(iλ+ |y|2 + ζ)ϕ2(y)− q(y)v = h2(y), ∀ y ∈ R.

(5.1)

Taking the inner product of (iλI−A)U with U inH, we obtain iλ‖U‖2H−〈AU,U〉H =
〈W,U〉. Then, from the Cauchy-Schwarz inequality, it follows that

Re(−〈AU,U〉H) ≤ |〈W,U〉| ≤ ‖U‖H‖W‖H. (5.2)

By using (3.9) we get

γ1

∫
R
(|y|2+η)‖ϕ1(t, y)‖2L2(0, L)dy+γ2

∫
R

(|y|2+ζ)‖ϕ2(t, y)‖2L2(0, L)dy ≤ ‖U‖H‖W‖H.

(5.3)
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On the other hand, from the fifth equation of the system (5.1), it follows that

p(y)|u(x)| ≤ (|λ|+ |y|2 + η)|ϕ1(x, y)|+ |h1(x, y)|.

Multiplying the last equation by
(
|λ|+ |y|2 + η

)−1
p(y), we get(

|λ|+ |y|2 + η
)−1

[p(y)]2|u(x)| ≤ p(y)|ϕ1(x, y)|+
(
|λ|+ |y|2 + η

)−1
p(y)|h1(x, y)|.

Integrating into the variable y and applying the Cauchy-Schwarz inequality, we have

J(|λ|, α, η)|u(x)| ≤ J(0, α, η)

(∫
R

(|y|2 + η)|ϕ1(x, y)|2dy
)1/2

+ L(|λ|, α, η)

(∫
R
|h1(x, y)|2dy

)1/2

, (5.4)

where

J(|λ|, α, η) =

∫
R

|y|2α−1dy
|y|2 + η + |λ|

,

J(0, α, η) =

∫
R

|y|2α−1dy
|y|2 + η

,

L(|λ|, α, η) =

∫
R

|y|2α−1dy
(|y|2 + η + |λ|)2

,

are constants given by Lemma 2.2.
Applying Young’s inequality in (5.4), we have

[J(|λ|, α, η)]2|u(x)|2 ≤2[J(0, α, η)]2
(∫

R
(|y|2 + η)|ϕ1(x, y)|2dy

)
+ 2[L(|λ|, α, η)]2

(∫
R
|h1(x, y)|2dy

)
. (5.5)

Note that

[J(|λ|, α, η)]2 =

(∫
R

|y|2α−1dy
|y|2 + η + |λ|

)2

= C0(η + |λ|)2α−2 ≤ C|λ|2α−2, (5.6)

[L(|λ|, α, η)]2 =

∫
R

|y|2α−1dy
(y2 + η + |λ|)2

= C1(η + |λ|)α−2 ≤ C|λ|2α−2, ∀|λ| > 1, (5.7)

where C is a constant.
Using (5.6) and (5.7) in (5.5) we obtain

C|λ|2α−2|u(x)|2 ≤ C
(∫

R
(|y|2 + η)|ϕ1(x, y)|2dy

)
+ C|λ|2α−2

(∫
R
|h1(x, y)|2dy

)
,

that is,

|u(x)|2 ≤ C|λ|2−2α
(∫

R
(y2 + η)|ϕ1(x, y)|2dy

)
+ C

(∫
R
|h1(x, y)|2dy

)
.
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Integrating the expression above over the variable x ∈ (0, L), we have∫ L

0

|u(x)|2dx ≤ C|λ|2−2α
∫ L

0

∫
R

(y2 + η)|ϕ1(x, y)|2dydx+ C

∫ L

0

∫
R
|h1(x, y)|2dydx.

Now using the inequality (5.3), we have∫ L

0

|u(x)|2dx ≤ C|λ|2−2α‖U‖H‖W‖H + C‖W‖2H. (5.8)

In an entirely analogous way, we have∫ L

0

|v(x)|2dx ≤ C|λ|2−2β‖U‖H‖W‖H + C‖W‖2H. (5.9)

Multiplying the third equation in (5.1) by φ and integrating in x ∈ (0, L), we have

iλρ1

∫ L

0

uφdx− k
∫ L

0

φxxφdx− k
∫ L

0

ψxφ+ γ1

∫ L

0

φ

∫
R
p(y)ϕ1(y)dydx

=ρ1

∫ L

0

g1φdx.

On the other hand, from the first equation it follows in (5.1) that−iλφ = f1 + u.
Then

− k
∫ L

0

φxxφdx− k
∫ L

0

ψxφ

=ρ1

∫ L

0

|u|2dx− γ1
∫ L

0

φ

∫
R
p(y)ϕ1(y)dydx+ ρ1

∫ L

0

uf1dx+ ρ1

∫ L

0

g1φdx.

Integrating by parts and using boundary conditions we have

k

∫ L

0

|φx|2dx+ k

∫ L

0

ψφxdx

=ρ1

∫ L

0

|u|2dx− γ1
∫ L

0

φ

∫
R
p(y)ϕ1(y)dydx+ ρ1

∫ L

0

uf1dx+ ρ1

∫ L

0

g1φdx.

(5.10)

Similarly, multiplying the fourth equation in (5.1) by ψ, using the second equation
in (5.1), integrating by parts in x ∈ (0, L) and using the boundary conditions, we
obtain

b

∫ L

0

|ψx|2dx+ k

∫ L

0

φxψdx+ k

∫ L

0

|ψ|2dx

=ρ2

∫ L

0

|v|2dx− γ2
∫ L

0

ψ

∫
R
q(y)ϕ2(y)dydx+ ρ2

∫ L

0

vf2dx+ ρ2

∫ L

0

g2ψdx.

(5.11)

As |φx + ψ|2 = |φx|2 + φxψ + ψφx + |ψ|2, adding (5.10) and (5.11), we obtain

k

∫ L

0

|φx + ψ|2dx+ b

∫ L

0

|ψx|2dx
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≤ρ1
∫ L

0

|u|2dx+ ρ2

∫ L

0

|v|2dx

− γ1

∣∣∣∣∣
∫ L

0

φ

∫
R
p(y)ϕ1(y)dydx

∣∣∣∣∣− γ2
∣∣∣∣∣
∫ L

0

ψ

∫
R
q(y)ϕ2(y)dydx

∣∣∣∣∣
+ ρ1

∫ L

0

|uf1 + g1φ|dx+ ρ2

∫ L

0

|vf2 + g2ψ|dx. (5.12)

From the Cauchy-Schwarz, Young, and Poincaré inequalities, we obtain∣∣∣∣∣
∫ L

0

φ

∫
R
p(y)ϕ1(y)dydx

∣∣∣∣∣
≤‖φ‖L2(0,L)

(∫
R

[p(y)]2dy

y2 + η

)1/2
(∫ L

0

∫
R

(y2 + η)|ϕ1(y)|2dydx

)1/2

≤1

2

(∫
R

[p(y)]2dy

y2 + η

)
‖φ‖L2(0,L) +

1

2

∫ L

0

∫
R

(y2 + η)|ϕ1(y)|2dydx

≤C2

2

(∫
R

[p(y)]2dy

y2 + η

)
‖φx‖L2(0,L) +

1

2

∫ L

0

∫
R

(y2 + η)|ϕ1(y)|2dydx. (5.13)

In a similar way we obtain the following estimate∣∣∣∣∣
∫ L

0

ψ

∫
R
q(y)ϕ2(y)dydx

∣∣∣∣∣
≤C2

2

(∫
R

[q(y)]2dy

y2 + ζ

)
‖ψx‖L2(0,L) +

1

2

∫ L

0

∫
R
(y2 + ζ)|ϕ2(y)|2dydx. (5.14)

Using the estimates (5.13) and (5.14) in (5.12), we have

k

∫ L

0

|φx + ψ|2dx+ b

∫ L

0

|ψx|2dx

≤ρ1
∫ L

0

|u|2dx+ ρ2

∫ L

0

|v|2dx

+
γ1Cp

2

(∫
R

[p(y)]2dy

y2 + η

)
‖φx‖L2(0,L) +

γ1
2

∫ L

0

∫
R

(y2 + η)|ϕ1(y)|2dydx

γ2Cp
2

(∫
R

[q(y)]2dy

y2 + ζ

)
‖ψx‖L2(0,L) +

γ2
2

∫ L

0

∫
R

(y2 + ζ)|ϕ2(y)|2dydx

+ ρ1

∫ L

0

|uf1 + g1φ|dx+ ρ2

∫ L

0

|vf2 + g2ψ|dx. (5.15)

From (5.3), (5.8), (5.9) and (5.15), follow that

k

∫ L

0

|φx + ψ|2dx+ b

∫ L

0

|ψx|2dx

≤C|λ|2−2α‖U‖H‖W‖H + C|λ|2−2β‖U‖H‖W‖H + C‖U‖H‖W‖H + C‖W‖2H,
(5.16)
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where C is a constant.
Since

‖U‖2H =k‖φx + ψ‖2L2(0,L) + b‖ψ|2H1
0 (0,L)

+ ρ1‖u‖2L2(0,L) + ρ2‖v‖2L2(0,L)

+ γ1‖ϕ1‖2L2(R;L2(0,L)) + γ2‖ϕ2‖2L2(R;L2(0,L)),

from (5.3), (5.8), (5.9) and (5.16), follows that

‖U‖2H ≤ C
(
|λ|4−2min{α,β} + 1

)
‖U‖H‖W‖H + C‖W‖2H. (5.17)

Applying the Young’s inequality for λ 6= 0, we have

‖U‖2H ≤ C|λ‖8−4min{α,β}‖W‖2H.

That is, ‖U‖H ≤ C|λ|4−2min{α,β}‖W‖H; ∀ U ∈ D(A). But this is equivalent to

‖(iλI − A)−1W‖H
‖W‖H

≤ C|λ|4−2min{α,β}.

Therefore
1

|λ|4−2min{α,β} ‖(iλI − A)−1‖L(H) ≤ C.

Finally, taking 1/ω = 4 − 2 min{α, β} > 0 and letting |λ| → ∞ rom Theorem 2.3,

it follows that ||etAU0‖H ≤
C

t
1

4−2min{α,β}
=
C

tω
.

6. Conclusions

This work investigates the well-posedness, strong stability, and polynomial stability
of a Timoshenko system with fractional derivative internal dissipation. Our study
differs from the existing literature by considering fractional damping applied directly
to the domain without delays or the need for equal acceleration speed conditions,
as in previous works.

Our results expand the understanding of the asymptotic behavior of Timoshenko
systems with fractional internal dissipation, providing clear criteria for strong and
polynomial stability. These results are important for the specialized audience in
complex dynamical systems, where fractional dissipation is essential for modeling
viscoelastic materials.

A natural continuation of the research developed in this paper is the study of the
stability conditions of the Timoshenko beam system with only fractional internal
damping. In this context, this work will open new fronts of investigation, encour-
aging the exploration of other models of dissipative systems and their applications
in engineering and applied sciences.
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