
Journal of Applied Analysis and Computation Website:http://www.jaac-online.com

Volume 15, Number 2, April 2025, 1203–1215 DOI:10.11948/20240378

ASYMPTOTICS OF THE OPTIMAL VALUE OF
SAA WITH AMIS ON MINIMAX STOCHASTIC

PROGRAMS

Wenjin Zhang1,†

Abstract The minimax stochastic programming problem is approximated
in this paper using the sample average approximation with adaptive multiple
importance sampling. We discuss the asymptotics and convergence of its op-
timal value. The core is the research and utilization of martingale difference
sequences. The functional central limit theorem for martingale difference se-
quences is one of the main tools in studying the asymptotics. Finally, we apply
this result to discuss a risk averse optimization problem.
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1. Introduction

Studying the optimal values and optimal solutions of optimization problems is often
of great significance in real life, see [8, 9, 19]. In this paper, we consider a minimax
stochastic programming problem:

min
x∈X

max
y∈Y

{
f(x, y) := E[g

(
x, y, θ(ω)

)
]
}
, (1.1)

where θ : Ω → Θ ⊂ Rr is a random variable on (Ω,F , P ) and g : X × Y ×Θ → R
with X ⊂ Rm and Y ⊂ Rn.

The computation of the expectation is often complex and the true distribution is
difficult to obtain directly. A common method for solving such problems is sample
average approximation (SAA). Under the assumption that the samples are inde-
pendent and identically distributed (iid), we approximate the problem (1.1) by the
SAA method, which is specifically expressed as follows:

min
x∈X

max
y∈Y

{
1

n

n∑
i=1

g(x, y, θi)

}
, (1.2)

where θ1, ..., θn are iid samples of θ(ω). Asymptotics of the optimal values between
problems (1.1) and (1.2) have been studied by Shapiro, see [16].

In recent years, the SAA method with adaptive multiple importance sampling
(AMIS) has received extensive attention, see [2–4, 10–12, 15]. This method doesn’t
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require the samples to be iid. The goal of this paper is to study the asymptotics
between the optimal value obtained by this approximation method and the optimal
value of the problem (1.1).

To simplify notation, we use θ to represent either a random or a deterministic
vector, depending on the context. Denote F (x, y, θ) = g(x, y, θ)φ(θ), where φ(θ)
represents the probability density function of θ. Thus, we can rewrite the problem
(1.1) in the following form:

min
x∈X

max
y∈Y

{
f(x, y) =

∫
Θ

F (x, y, θ)dθ

}
. (1.3)

The following settings (i)-(iii) are used throughout this paper.
(i) {θi}∞i=1 is a sequence of random vectors on (Ω,F , P ), where θi : Ω → Rr is
F -measurable.
(ii) {Gi}∞i=1 is the natural filtration sequence corresponding to the above sequence.
That is, the information of θ1, ..., θi is contained in Gi, where G0 = {∅,Ω} and
E[θ1] = E[θ1 | G0].
(iii) For a given Gi−1 (i ∈ N), the conditional distribution of θi has a density ψi
whose support is Θi ⊂ Rr.

For a given Gi−1, we choose an appropriate density ψi and then draw a sample
θi from it. In this way, we get Gi. Repeating the above steps, we obtain the next
sample θi+1. Clearly, θi can depend on the previous samples θ1,...,θi−1. To put it
succinctly, the sampling is dynamic and adaptive.

The SAA with AMIS problem associated with the problem (1.3) is as follows:

min
x∈X

max
y∈Y

{
fn(x, y) :=

1

n

n∑
i=1

F (x, y, θi)

ψi(θi)

}
. (1.4)

It’s worth noting that if F (x, y, θ) = g(x, y, θ)φ(x, y, θ) with a probability density
function φ(x, y, θ), then (1.4) still works, which is pointed out in [6]. Obviously,

f(x, y) =

∫
Θ

F (x, y, θ)

ψ1(θ)
ψ1(θ)dθ. Thus, without loss of generality, let F : X × Y ×

Rr → R be a real valued function and X×Y×Θ contain its support, where X ⊂ Rm,
Y ⊂ Rn and Θ ⊂ Rr.

The rest of the paper is organized as follows. We introduce notation and pre-
liminaries in Section 2. The main result of the paper on asymptotics of the optimal
value for SAA with AMIS is shown in Section 3. In Section 4, we apply the result
to the risk averse optimization problem.

2. Notation and preliminaries

2.1. Basic notation

Throughout this paper, we adopt the following notation:
• (Ω,F , P ) represents an abstract probability space.
• E[·] denotes the expectation with respect to the probability measure P .
• ‖ · ‖ stands for the Euclidean norm of a vector.
• := represents the left-hand side equal with the right-hand side by definition.

• D−→ denotes convergence in distribution.
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• P−→ denotes convergence in probability.

• op(·) denotes a probabilistic analogue of the usual order notation o(·). That
is, if the sequences of random variables {An} and {Bn} satisfy

lim
n→∞

Prob

(∣∣∣∣AnBn
∣∣∣∣ > ε

)
= 0,

for any ε > 0, then An = op(Bn).

• C(X ,Y) stands for the space of continuous functions ϕ : X ×Y → R, equipped
with the sup-norm.

• C represents the set of convex-concave functions on C(X ,Y). That is, if ϕ ∈ C,
then ϕ(·, y) is convex for any y ∈ Y and ϕ(x, ·) is concave for x ∈ X .

• $(·) denotes a modulus of continuity. That is, $(·) is a strictly monotonic

increasing continuous function on R+, lim
x→0+

$(x) = 0 and lim sup
x→0+

x

$(x)
< +∞.

• D(A,B) is the deviation of the set A ⊂ Rι from the set B ⊂ Rι. That is,
D(A,B) = sup

x∈A
inf
x′∈B

‖x− x′‖.

2.2. Two important results

In this subsection, we introduce two significant results that serve as the cornerstones
for our main result (Theorem 3.2). One of them is the minmax Delta theorem. It
is well known that the Delta method is a useful tool in the asymptotic analysis of
stochastic problems. We apply the following theorem in the next section, which is
derived from [16].

Theorem 2.1 (Minimax Delta Theorem). Let the sets X and Y be nonempty,
convex and compact. Assume that, as n → ∞, a sequence of positive numbers
{ςn} and a random sequence {Zn} in C(X ,Y) satisfy ςn → ∞, Zn ∈ C w.p.1

and ςn(Zn − l)
D−→ Z , respectively, where Z ∈ C(X ,Y) and l ∈ C. Denote

γ := inf
x∈X

sup
y∈Y

Z (x, y) and γn := inf
x∈X

sup
y∈Y

Zn(x, y). Then

ςn[γn − γ]
D−→ inf

x∈X∗Z
sup
y∈Y∗Z

Z (x, y),

and

γn = inf
x∈X∗Z

sup
y∈Y∗Z

Zn(x, y) + op(ς
−1
n ),

where X ∗Z = arg min
x∈X

[
sup
y∈Y

Z (x, y)

]
and Y∗Z = arg max

y∈Y

[
inf
x∈X

Z (x, y)

]
.

The other key result is a functional central limit theorem for martingale differ-
ence sequences. We briefly recall the definition of martingale difference sequences
first. Assume that {Fi}∞i=0 is a set of sub-σ-fields of F with Fi−1 ⊂ Fi and
{Xi}∞i=1 is a sequence of random variables defined on (Ω,F , P ), where Xi is Fi-
measurable. {Xi,Fi} is called a martingale difference sequence if E[Xi | Fi−1] = 0
for every i ∈ N. Now, let us turn to this result, which is detailed in [20, Section 4].
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Theorem 2.2. Let {Xi,Fi}∞i=1 be a martingale difference sequence of the space
C(S), where C(S) is the space of continuous functions on the compact set S with
the sup-norm. Suppose that the following assumptions hold.
(A1) There exists a real nonnegative random sequence {Mi} on (Ω,F , P ) and a
function β : S → R\{0} such that for any s1, s2 ∈ S and all i ∈ N, w.p.1

|Yi(s1)− Yi(s2)| ≤Mi,

where Yi(s) := |β(s)Xi(s)| and sup
s∈S
|β−1(s)| <∞.

(A2) 1
n

n∑
i=1

E[M2
i | Fi−1]

P−→ 0.

(A3) For any i ∈ N, there exists a constant b > 0 such that E[M2
i | Fi−1] ≤ b

w.p.1.
(A4) For some s0 ∈ S and all i ∈ N, there exists a constant k > 0 such that
|Xi(s0)| ≤ k w.p.1.

(A5) 1
n

n∑
i=1

E[X2
i (s0) | Fi−1]

P−→ c, where c is a positive constant.

(A6) There exists a real nonnegative random sequence {ςi} on (Ω,F , P ) and a

continuous distance ρ with

∫ 1

0

H
1
2 (S, ρ, r)dr < ∞ such that sup

n∈N

1

n

n∑
i=1

E[ς2i ] < ∞

and for any i ∈ N, w.p.1

|Xi(s1)−Xi(s2)| ≤ ςiρ(s1, s2). (2.1)

Then there exists a Gaussian measure µ on C(S) such that

1√
n

n∑
i=1

Xi
D−→ µ.

3. Asymptotics of the optimal value

Assumption 3.1. For any i ∈ N, Θ ⊂ Θi w.p.1.

Assumption 3.2. For any (x, y) ∈ X × Y, F (x, y, ·) is an integrable function and

f(x, y) :=

∫
Θ

F (x, y, θ)dθ <∞.

Lemma 3.1. Suppose Assumptions 3.1-3.2 hold. Let Υi(x, y) := F (x,y,θi)
ψi(θi)

− f(x, y)

and Sn(x, y) :=

n∑
i=1

Υi(x, y), n ∈ N. Then, for any given (x, y) ∈ X × Y, {Υi(x, y),

Gi} is a martingale difference sequence and {Sn(x, y),Gn} is a martingale.

This result is obvious. For a pair of fixed (x, y) ∈ X × Y and any i ∈ N, w.p.1

E[Υi(x, y) | Gi−1] =

∫
Θi

Υi(x, y)ψi(θi)dθi

=

∫
Θi

[F (x, y, θi)− f(x, y)ψi(θi)] dθi
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= 0.

By the definitions of martingale difference and martingale, Lemma 3.1 holds.
The two assumptions above are similar to those in [6]. They are viewed as basic

assumptions when applying the SAA method with AMIS.

Assumption 3.3. There exists a sequence of random measurable functions {αi :
Θi → R} such that

sup
n∈N

1

n

n∑
i=1

E[αi(θi)] <∞,

and w.p.1

lim
n→∞

1

n

n∑
i=1

(
αi(θi)− E[αi(θi)]

)
= 0.

In addition, there exists a modulus of continuity $(·) such that w.p.1∣∣∣∣F (x, y, θi)

ψi(θi)
− F (x′, y′, θi)

ψi(θi)

∣∣∣∣ ≤ αi(θi)$(‖x− x′‖+ ‖y − y′‖
)
,

for all (x, y), (x′, y′) ∈ X × Y and i ∈ N.

Assumption 3.4. For every pair (x, y) ∈ X × Y, w.p.1

lim
n→∞

1

n
Sn(x, y) = 0.

Assumption 3.5. F (x, y, θ) is a Carathéodory function, i.e., F (x, y, ·) is measur-
able for any (x, y) ∈ X × Y and F (·, ·, θ) is continuous for a.e. θ ∈ Θ.

Assumption 3.6. There is an integrable function L(θ), i.e.,

∫
Θ

L(θ)dθ <∞, and

an open set O ⊂ Rm+n with X × Y ⊂ O such that |F (x, y, θ)| ≤ L(θ) for every
(x, y) ∈ O and a.e. θ ∈ Θ.

Assumption 3.7. The sets X and Y are nonempty and compact, respectively.

Lemma 3.2. Suppose that Assumptions 3.5-3.7 hold. Then the expected value
function f(x, y) is finite valued and continuous on X × Y and the max-function
ϕ(x) := sup

y∈Y
f(x, y) is continuous on X .

Proof. According to Assumption 3.6, for every pair (x, y) ∈ X × Y,

|f(x, y)| =
∣∣∣∣∫

Θ

F (x, y, θ)dθ

∣∣∣∣ ≤ ∫
Θ

|F (x, y, θ)|dθ ≤
∫

Θ

L(θ)dθ <∞.

Therefore, f(x, y) is well defined. This shows that Assumption 3.2 is satisfied.
Furthermore, by Assumptions 3.5 and 3.7, applying the Lebesgue dominated con-
vergence theorem, we obtain

f(x, y) =

∫
Θ

lim
(x′,y′)→(x,y)

F (x′, y′, θ)dθ = lim
(x′,y′)→(x,y)

∫
Θ

F (x′, y′, θ)dθ.
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This implies that f(x, y) is continuous on X × Y.
By Assumption 3.7, for a given x ∈ X , there exists y ∈ Y such that f(x, y) =

ϕ(x). It is not difficult to deduce that ϕ(x) is continuous on X by the continuity of
f(x, y). The proof is complete.

The next theorem proves that the optimal value and optimal solutions of the
problem (1.4) converge to the optimal value and optimal solutions of the problem
(1.3), respectively. The underlying idea is to establish uniform convergence from fn
to f . To this end, we apply Theorem 3(b) in [1]. This is also exploited in [6], but
our target problem is different. For ease of presentation, let ϑ and ϑn denote the
optimal values of (1.3) and (1.4), respectively. Let Tx and Tx,n represent the sets
of optimal solutions of (1.3) and (1.4), respectively.

Theorem 3.1. Suppose that Assumptions 3.1 and 3.3-3.7 hold. Then lim
n→∞

ϑn = ϑ

and lim
n→∞

D(Tx,n, Tx) = 0 w.p.1.

Proof. In fact, ϑ = inf
x∈X

ϕ(x). It follows from Lemma 3.2 that Tx is nonempty

and contained in X . Let the sample average max-function with AMIS be ϕn(x) :=
sup
y∈Y

fn(x, y). Obviously, ϕn(x) is continuous on X . Then, ϑn = inf
x∈X

ϕn(x), and Tx,n

is nonempty and contained in X .
According to Assumptions 3.1 and 3.3-3.4, we have that fn(x, y) converges to

f(x, y) uniformly on X × Y w.p.1, see [1, Theorem 3(b)] and [6, Theorem 1]. By
Lemma 3.2, f(x, y) is finite valued and continuous on X×Y. Consequently, applying
Theorem 5.3 in [18], we complete the proof.

Assumption 3.8. The sets X and Y are convex, respectively.

The dual problem of (1.3) is as follows:

max
y∈Y

min
x∈X

f(x, y). (3.1)

Let Ty denote the set of optimal solutions of (3.1). If f ∈ C and Assumptions 3.7-3.8
hold, then there is no duality gap between (1.3) and (3.1). That is,

min
x∈X

max
y∈Y

f(x, y) = max
y∈Y

min
x∈X

f(x, y), (3.2)

and Tx × Ty forms the set of saddle points.

Assumption 3.9. F (·, ·, θ) is convex-concave on X × Y, i.e., F (·, y, θ) is convex
on X for any y ∈ Y and F (x, ·, θ) is concave on Y for any x ∈ X .

Now, we come to state the main theorem in this paper.

Theorem 3.2. Let Assumptions 3.1-3.2 and 3.7-3.9 hold. Suppose that the follow-
ing statements hold.
(B1) For some (x0, y0) ∈ X × Y, there exists a constant c̃ > f2(x0, y0) such that

1

n

n∑
i=1

E

[(
F (x0, y0, θi)

ψi(θi)

)2
∣∣∣∣∣Gi−1

]
P−→ c̃,

and

sup
i∈N

sup
θi∈Θi

∣∣∣∣F (x0, y0, θi)

ψi(θi)

∣∣∣∣ <∞.
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(B2) There exists an integrable function α : Rr → R+ whose support is contained
in Θ such that for any (x1, y1), (x2, y2) ∈ X × Y, w.p.1

|F (x1, y1, θ)− F (x2, y2, θ)| ≤ α(θ)(‖x1 − x2‖+ ‖y1 − y2‖) (3.3)

with sup
n∈N

1

n

n∑
i=1

E

[(
α(θ)

ψi(θ)

)2
]
<∞.

(B3) There exists a sequence of random measurable functions {Ai : Θi → R+} and
a function V : X × Y → R+ such that for any i ∈ N, w.p.1

|F (x, y, θ)− f(x, y)ψi(θ)| ≤ V(x, y)Ai(θ),

1

n

n∑
i=1

E

[(
Ai(θi)
ψi(θi)

)2
∣∣∣∣∣Gi−1

]
P−→ 0,

and w.p.1

E

[(
Ai(θi)
ψi(θi)

)2
∣∣∣∣∣Gi−1

]
≤ b̃,

where b̃ is a positive constant and sup
(x,y)∈X×Y

V(x, y) <∞.

Then

ϑn = inf
x∈Tx

sup
y∈Ty

fn(x, y) + op(
1√
n

). (3.4)

In particular, if Tx = {x̂} and Ty = {ŷ} are singletons, then

√
n(ϑn − ϑ)

D−→ N (0, σ2(x̂, ŷ)), (3.5)

where N (0, σ2(x̂, ŷ)) denotes the normal distribution with mean 0 and variance

σ2(x̂, ŷ) = [c̃− f2(x0, y0)] V
2(x̂,ŷ)

V2(x0,y0) .

Proof. According to Lemma 3.1, {Υi(x, y),Gi} is a martingale difference sequence
for any (x, y) ∈ X × Y. First, we show that Υi fulfills the conditions in Theorem
2.2.

It is not difficult to see that f(x, y) is well defined and finite valued. Let α̃ :=∫
Θ

α(θ)dθ. Obviously, 0 < α̃ <∞. Integrating over (3.3), we have

|f(x1, y1)− f(x2, y2)| ≤ α̃(‖x1 − x2‖+ ‖y1 − y2‖) (3.6)

for any (x1, y1), (x2, y2) ∈ X × Y. Therefore, f(x, y) is Lipschitz continuous on
X ×Y. Similarly, by integration, it follows from Assumptions 3.7-3.9 that f(x, y) is
convex-concave. Thus, we have f ∈ C and F (·, ·, θ) ∈ C for any given θ ∈ Θ. Then,
fn ∈ C. From the previous analysis, we know that (3.2) holds. Further, Tx × Ty is
nonempty and forms the set of saddle points.

Let Mi = Ai(θi)
ψi(θi)

and β(x, y) = V−1(x, y). It follows from (B3) that∣∣|β(x1, y1)Υi(x1, y1)| − |β(x2, y2)Υi(x2, y2)|
∣∣ ≤Mi
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w.p.1 for any (x1, y1), (x2, y2) ∈ X × Y. Moreover, (A1)-(A3) are verified.
On the other hand, for (x0, y0) ∈ X × Y and all i ∈ N, w.p.1

E[Υ2
i (x0, y0) | Gi−1]

=

∫
Θi

Υ2
i (x0, y0)ψi(θi)dθi

=

∫
Θi

[
F (x0, y0, θi)

ψi(θi)
− f(x0, y0)

]2

ψi(θi)dθi

=

∫
Θi

[
F 2(x0, y0, θi)

ψi(θi)
− 2f(x0, y0)F (x0, y0, θi) + f2(x0, y0)ψi(θi)

]
dθi

=E

[(
F (x0, y0, θi)

ψi(θi)

)2
∣∣∣∣∣Gi−1

]
− f2(x0, y0).

Together with (B1), it is not hard to verify that

1

n

n∑
i=1

E[Υ2
i (x0, y0) | Fi−1]

P−→ c,

where c = c̃− f2(x0, y0). Furthermore, w.p.1

|Υi(x0, y0)| ≤
∣∣∣∣F (x0, y0, θi)

ψi(θi)

∣∣∣∣+ |f(x0, y0)|.

Then, applying (B1) again, it is clear that (A4) and (A5) are satisfied.
According to (3.3) and (3.6), we have

|Υi(x1, y1)−Υi(x2, y2)|

=

∣∣∣∣F (x1, y1, θi)

ψi(θi)
− f(x1, y1)− F (x2, y2, θi)

ψi(θi)
+ f(x2, y2)

∣∣∣∣
≤
∣∣∣∣F (x1, y1, θi)

ψi(θi)
− F (x2, y2, θi)

ψi(θi)

∣∣∣∣+ |f(x1, y1)− f(x2, y2)|

≤
(
α(θi)

ψi(θi)
+ α̃

)
(‖x1 − x2‖+ ‖y1 − y2‖) w.p.1.

Let ςi = α(θi)
ψi(θi)

+ α̃. Obviously, ςi > 0. Hence (2.1) is satisfied. Moreover, we get

sup
n∈N

1

n

n∑
i=1

E
[
ς2i
]
≤ sup
n∈N

2

n

n∑
i=1

E

[(
α(θ)

ψi(θ)

)2
]

+ 2α̃2 <∞.

This implies that (A6) is verified.
From the above discussion, Υi satisfies the conditions in Theorem 2.2. Then,

applying Theorem 2.2, there exists a Gaussian measure Y on C(X ,Y) such that for
any (x, y) ∈ X × Y,

1√
n

n∑
i=1

Υi(x, y) =
√
n
(
fn(x, y)− f(x, y)

) D−→ Y (x, y) as n→∞.
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Obviously,
√
n → ∞ and

√
n(fn − f)

D−→ Y as n → ∞, respectively. Thus, using
Theorem 2.1, we have

ϑn = inf
x∈Tx

sup
y∈Ty

fn(x, y) + op(
1√
n

)

and

√
n(ϑn − ϑ)

D−→ inf
x∈Tx

sup
y∈Ty

Y (x, y). (3.7)

By the properties of martingale difference sequences, we have that Y (x, y) follows

a normal distribution with mean 0 and variance σ2(x, y) = cV2(x,y)
V2(x0,y0) , see Remark

3.1 for details. Hence, (3.4) is proved.
Finally, if Tx = {x̂} and Ty = {ŷ} are singletons, then (3.5) follows from (3.7).

Thus, the proof is complete.

Remark 3.1. For any (x, y) ∈ X × Y, by the definition of martingale difference
sequences, we have E[Υi(x, y) | Gi−1] = 0. Then, we obtain

E

[
1√
n

n∑
i=1

Υi(x, y)

]
=

1√
n

n∑
i=1

E [E[Υi(x, y) | Gi−1]] = 0.

Moreover, for any i, j ∈ N and i > j, we get

E[Υi(x, y)Υj(x, y)] = E [E[Υi(x, y)Υj(x, y) | Gj ]] = E [Υj(x, y)E[Υi(x, y) | Gj ]] .

Since E[Υi(x, y) | Gj ] = E[E[Υi(x, y) | Gi−1] | Gj ] = 0, we get

E[Υi(x, y)Υj(x, y)] = 0.

Therefore,

Var[Υj(x, y)] = E[Υ2
j (x, y)], ∀j ∈ N,

and

Var[Υi(x, y) + Υj(x, y)] = E[Υ2
i (x, y)] + E[Υ2

j (x, y)], ∀i, j ∈ N and i 6= j.

Thus, Var

[
1√
n

n∑
i=1

Υi(x, y)

]
= 1

n

n∑
i=1

Var[Υi(x, y)] =
1

n

n∑
i=1

E[Υ2
i (x, y)]. It follows

from the proof of Theorem 4.1 in [20], we have

σ2(x, y) = lim
n→∞

1

n

n∑
i=1

E[Υ2
i (x, y)] =

(
c̃− f2(x0, y0)

)(β(x0, y0)

β(x, y)

)2

,

where β is a nonzero real-valued function on X × Y. Since β(x, y) = V−1(x, y) in

Theorem 3.2, we get σ2(x, y) = [c̃− f2(x0, y0)] V
2(x,y)

V2(x0,y0) > 0 for any (x, y) ∈ X ×Y.

Notice that Y is a Gaussian measure on C(X ,Y). Obviously, E[Y (x, y)] = 0 and
Var[Y (x, y)] = σ2(x, y). Then, Y (x, y) ∼ N (0, σ2(x, y)).
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4. An application to the risk averse optimization

In recent years, the risk averse optimization has been extensively studied, see [5, 7,
13, 14, 16, 17]. A comprehensive review can be found in reference [18, Chapter 6].
The specific problem we focus on here is stated as follows:

min
x∈X

ργ(G(x, θ)), (4.1)

where G : X × Θ → R with X ⊂ Rm, θ : Ω → Θ ⊂ Rr is a random vector on
(Ω,F , P ), and ργ(·) is the absolute semideviation risk measure with the weight
constant γ ∈ [0, 1], that is, ργ(Z) := E{Z + γ[Z − E(Z)]+}.

Essentially, such problems are minimax problems, see [13,18] for details. To be
specific, the equivalent form of (4.1) is

min
(x,t)∈X×R

max
λ∈[0,1]

E
{
h
(
t, λ,G(x, θ)

)}
, (4.2)

where h
(
t, λ,G(x, θ)

)
:= G(x, θ) + γλ[G(x, θ)− t]+ + γ(1− λ)[t−G(x, θ)]+.

Let X be nonempty, convex and compact. Assume that G(·, θ) is convex for a.e.
θ ∈ Θ and E[G(x, θ)] < ∞ for every x ∈ X . Under such assumptions, (4.2) is a
convex-concave minimax problem. Furthermore, if we assume that X ? is the set of
optimal solutions for the problem (4.1), then the set of optimal solutions for the
problem (4.2) is T = {(x∗, t∗) : x∗ ∈ X ?, t∗ = E[G(x∗, θ)]}. Accordingly, the set of
optimal solutions for its dual problem is Td = [ν∗, ν∗∗], where ν∗ = Prob{G(x∗, θ) <
E[G(x∗, θ)]} and ν∗∗ = Prob{G(x∗, θ) ≤ E[G(x∗, θ)]} with x∗ ∈ X ?. The analysis
of this part is detailed in [13,16].

If we use φ(θ) to represent the probability density function of θ, it is not difficult
to see that H(x, t, λ, θ) := h

(
t, λ,G(x, θ)

)
· φ(θ) satisfies Assumption 3.9, that is,

F (·, ·, λ, θ) is convex on X ×R for any λ ∈ [0, 1] and F (x, t, ·, θ) is concave on [0, 1]
for any (x, t) ∈ X × R. According to the previous analysis, t∗ is related to x∗. Then,
we have

min
(x,t)∈X×R

max
λ∈[0,1]

E
{
h
(
t, λ,G(x, θ)

)}
= min

(x,t)∈X×R
max
λ∈[0,1]

∫
Θ

H(x, t, λ, θ)dθ

= min
x∈X

max
λ∈[0,1]

∫
Θ

H(x,E[G(x, θ)], λ, θ)dθ. (4.3)

Denote F̂ (x, λ, θ) := H(x,E[G(x, θ)], λ, θ) and f̂(x, λ) =

∫
Θ

F̂ (x, λ, θ)dθ. The

information above implies that Assumptions 3.2 and 3.7-3.9 hold. Let θi, Gi, ψi and
Θi be defined as in the introduction, where i ∈ N. Let Assumption 3.1 hold. Then,
the SAA with AMIS problem associated with problem (4.3) is as follows:

min
x∈X

max
λ∈[0,1]

{
1

n

n∑
i=1

F̂ (x, λ, θi)

ψi(θi)

}
. (4.4)

Proposition 4.1. Let X be nonempty, convex and compact. Suppose that G(·, θ)
is convex for a.e. θ ∈ Θ and E[G(x, θ)] <∞ for every x ∈ X . Let Assumption 3.1
and the following conditions (B′1)-(B′3) be satisfied.

(B′1) For some (x0, λ0) ∈ X × [0, 1], there exist constants ĉ > f̂2(x0, λ0) such that

1

n

n∑
i=1

E

[(
F̂ (x0, λ0, θi)

ψi(θi)

)2
∣∣∣∣∣Gi−1

]
P−→ ĉ,
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and

sup
i∈N

sup
θi∈Θi

∣∣∣∣ F̂ (x0, λ0, θi)

ψi(θi)

∣∣∣∣ <∞.
(B′2) There exists an integrable function α : Rr → R+ whose support is contained
in Θ such that for any (x1, λ1), (x2, λ2) ∈ X × [0, 1], w.p.1

|F̂ (x1, λ1, θ)− F̂ (x2, λ2, θ)| ≤ α(θ)(‖x1 − x2‖+ ‖λ1 − λ2‖),

with sup
n∈N

1

n

n∑
i=1

E

[(
α(θ)

ψi(θ)

)2
]
<∞.

(B′3) There exists a sequence of random measurable functions {Ai : Θi → R+}
and a function V : X × [0, 1]→ R+ such that for any i ∈ N, w.p.1

|F̂ (x, λ, θ)− f̂(x, λ)ψi(θ)| ≤ V(x, λ)Ai(θ),

1

n

n∑
i=1

E

[(
Ai(θi)
ψi(θi)

)2
∣∣∣∣∣Gi−1

]
P−→ 0,

and w.p.1

E

[(
Ai(θi)
ψi(θi)

)2
∣∣∣∣∣Gi−1

]
≤ b̂,

where b̂ is a positive constant and sup
(x,λ)∈X×[0,1]

V(x, λ) <∞.

Then

ϑ̂n = inf
x∈X?

sup
λ∈Td

{
1

n

n∑
i=1

F̂ (x, λ, θi)

ψi(θi)

}
+ op(

1√
n

)

= inf
(x,t)∈T

sup
λ∈Td

{
1

n

n∑
i=1

H(x, t, λ, θi)

ψi(θi)

}
+ op(

1√
n

).

In particular, suppose that X ? = {x∗} is a singleton and ν∗ = ν∗∗, that is,
Prob{G(x∗, θ) = E[G(x∗, θ)]} = 0. Then

√
n(ϑ̂n − ϑ̂)

D−→ N (0, σ2(x∗, ν∗)),

where ϑ̂ and ϑ̂n denote the optimal values of (4.2) and (4.4), respectively, and

σ2(x∗, ν∗) = [ĉ− f̂2(x0, y0)]V
2(x∗,ν∗)
V2(x0,y0) .

Proof. It is easy to verify the proposition. By the above analysis, Assumptions 3.2
and 3.7-3.9 are satisfied. According to conditions (B′1)-(B′3), it is straightforward
to apply Theorem 3.2. Thus, the proof is complete.
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