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Abstract When a boundary layer occurs close to a turning point in a class of
singularly perturbation problems with turning points, the solution manifests as
a multi-layer phenomena. This paper provides a systematic solution. It focuses
on a class of turning point problems and the aspects include constructing
formal asymptotic solutions. It also involves establishing the existence and
error estimation of the solutions, the relationship with the position of the
intermediate layer and boundary layer. In addition, the numerical verification
is conducted as well.
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1. Introduction

Differential equations are often used to describe mathematical models produced in
engineering applications such as physics, chemistry and biomathematics. After a
series of dimensionless processing of the parameters of these established differential
equations, small parameters usually appear before the highest derivative, and such
a class of problems is the singular perturbation problem.

Because of the complexity of singular perturbation problem, it is very difficult
to obtain the exact solution, so it is very important to find the uniform and effec-
tive asymptotic solution. In the singular perturbation problem, various interesting
boundary layer and inner layer phenomena will appear. Among them, for the prob-
lem where the stability does not change, the most effective approximate solution is
the boundary layer function method [38] created by Russian scholars, who use this
method to construct a consistent and effective asymptotic solution and construct
a Green function corresponding to the problem itself. Then the existence proof of
the solution is obtained by applying the fixed point theory and the remainder term
is estimated. However, when the stability condition is not satisfied, the methods
suitable for general singular perturbation problems, such as boundary layer function
method, deformed coordinate method, averaging method, multi-scale method [20],
etc., are not suitable for the turning point problems. And the turning point prob-
lem is the situation where the stability changes. When the original problem passes
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through the turn point, the properties of the problem will change to some extent.
Therefore the turning point problems have always been the most difficult problems
in singular perturbation problems.

Attention was drawn to the difficulties of such equations in a 1970 paper [30].
The solution frequently undergoes significant modifications near the turning points
[37] when studying singularly perturbed boundary value issues. It is permeated with
many physical difficulties, such as Stokes lines and surfaces in mathematics [9, 33],
shock layers in fluid and solid mechanics [21], and boundary layers in fluid mechanics
[6]. Finding the exact solution to the perturbation equation with turning points is
generally a difficult undertaking. Other perturbation techniques are warranted,
the most crucial of which is the matching asymptotic expansion technique [12, 22].
Meanwhile, the boundary layer’s position is determined by the coefficient of the
first derivative term. It is claimed that the problem contains multiple layers [23] in
a certain location if the boundary layer’s position coincides with the turning point.
To address this, it is important to build the solutions for the various layers and then
match them with the matching principle.

Trefethen [36] examine a linear differential equation from eight points of view,
showing how it sheds light on aspects of numerical analysis, asymptotics, dynamical
systems, ODE theory and so on. Nayfeh [27, 28] investigated an equation having
a high-order turning point that was linearly perturbed singularly. By applying the
Prandtl matching principle [32], the zeroth-order asymptotic solution is obtained
and fitted to the numerical solution. Based on Nayfeh’s work, Chen [8] studied a
class of singular perturbation problems with high-order turning points. The Prandtl
matching principle was also utilized to study the problems in various situations.
Fedoryuk [14] presented the main results on the asymptotic theory of ordinary
linear differential equations and systems where their is a small parameter in the
higher derivatives with turning points.

In this paper, we consider a class of nonlinear singularly perturbed boundary
value problems with higher order turning points. And the difficulties in matching
techniques are overcome and the first asymptotic solution of the original problem
is obtained. 

ε2n+1y′′ + (x− k)2n+1(y′ + ys) = εy,

y(0) = α,

y(1) = β,

(1.1)

the study of ε approaching to zero on the interval 0 ≤ x ≤ 1. Here, s and n are
integers. The two boundary conditions specified are constants and α, β ̸= 0. When
s ≥ 2, there is α > 0, 0 < βs−1 < 1

s−1 .

Remark 1.1. It is difficult to obtain the first-order or the more higher order ap-
proximation. The reasons are as follows: there will be many difficulties in the
matching process, such as singularity, secular terms, left and right endpoints cannot
match, which make it difficult for researchers to obtain the high-order asymptotic
solution.

Throughout this paper assuming that:

(H1) When s = 1, 0 < k < 1, α, β are the same sign and satisfy the inequality
|α| ≤ |βe|.
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(H2) When s ≥ 2, k = 0, α, β are further required βs−1 ≤ 1
s , α > 0, when s ≥ 2,

0 < k < 1, βs−1 ≤ 1
s , 0 < α ≤ 1.

As s changes, the original problem can be divided into two main problems, when
s = 1, the problem is a linear problem, when s ≥ 2, this problem is a nonlinear
problem. In these two problems, different situations will be generated due to the
different values of parameters k and n. When 0 ≤ k ≤ 1, x = k is a turning
point. Meanwhile, the positive or negative value of (x− k)2n+1 determines the
position of the boundary layer. Therefore, according to the location of the multi-
layer phenomena in the problem, we will discuss six situations of the two problems.

The remainder of the paper is organized as follows: Section 2 divides the orig-
inal problem into six cases and provides first-order asymptotic solutions that are
uniformly valid within specific regions. In particular, the solution of the nonlinear
case will contain two types of special functions. Consequently, it is imperative to
preprocess them before applying the matching principle. The purpose of Section 3
is to provide an estimate of the remainder and demonstrate the existence of the so-
lution [26]. The proof procedure will be split into linear and nonlinear cases, similar
to that in Section 2. The bvp4c solver in Matlab is used to generate the numerical
solutions for the many specific instances presented in Section 4. In order to further
highlight the significance of the work done in this research, we fit the asymptotic
and the numerical solutions [13]. Finally, Section 5 indicates findings and potential
directions for further study.

2. Construction and determination of asymptotic
solutions

According to the linearity and nonlinearity of the problem and the location where
the multi-layer phenomenon appears, we present some singular perturbation prob-
lems with turning point to solve and match respectively in this section.

The difficulty in solving this problem is that there is a turning point at x = k
in Eq. (1.1), where 0 ≤ k ≤ 1, and that a boundary layer(s) must be introduced to
satisfy one of the boundary conditions. The following two situations are considered
for both the linear problem with s = 1, and the nonlinear problem with integers
s ≥ 2.

2.1. Linear case

Consider the linear case first, that is s = 1, then the Eq. (1.1) becomes

ε2n+1y′′ + (x− k)2n+1(y′ + y) = εy. (2.1)

Case 1. When s = 1 and k = 0, there is

ε2n+1y′′ + x2n+1(y′ + y) = εy. (2.2)

For the singularly perturbed boundary value problem εy′′ = f(x, y, y′), y(a) =
A, y(b) = B, if there is a constant k > 0, such that fy′ ≤ −k < 0, then the
boundary layer position is in the neighborhood of the left endpoint [29, 35]. And
the left boundary condition must be abandoned in the outer solution, and the
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right stability condition is satisfied. Similarly, when the left stability condition is
satisfied, the boundary layer position appears in the neighborhood of the right end
point, and the right boundary value will be abandoned in the outer solution. Then
the boundary layer is expected to be at x = 0, and x = 0 is also a turning point.
Therefore, it is speculated that the problem will have multiple layers near x = 0.

In this situation, the independent variable of the outer layer is x. As before, to
investigate the neighborhood of the origin, we introduce the stretching transforma-
tion ξ = x−0

εv , i.e. x = εvξ, where v > 0 and undetermined. Then substitute the
stretching transformation into the Eq. (2.2), and record the inner layer solution is
yi, as the following equation is

ε2n+1−2v d
2yi

dξ2
+ (εvξ)2n+1(ε−v dy

i

dξ
+ yi) = εyi, (2.3)

after sorting it out, there is

ε2n+1−2v d
2yi

dξ2
+ ε2nvξ2n+1 dy

i

dξ
+ (ε(2n+1)vξ2n+1 − ε)yi = 0, (2.4)

as ε → 0, ε(2n+1)v is a small amount of ε2nv. Hence, the dominant part is

ε2n+1−2v d
2yi

dξ2
+ ε2nvξ2n+1 dy

i

dξ
− εyi = 0. (2.5)

It is now necessary to determine the correct balancing in the Eq. (2.5) and use the
principle of least degradation to find the distinguished limit [18].

The balance between the first term and the second term was considered in Step1,
in this situation, the third term should be the higher order, by calculating, v = 2n+1

2n+2 .
This violates the original assumption that the third term is higher order, and so
this balance is not possible. This condition is a trivial case and can be discarded.

In addition to the above balancing process, the following possibilities remain:
The balance between the first term and the third term was considered in Step2,

and the second term is higher order, which 2n+ 1− 2v = 1, that is v = n, the Eq.
(2.4) becomes

ε
d2yi

dξ2
+ ε2n

2

ξ2n+1 dy
i

dξ
− εyi + ε(2n+1)nξ2n+1yi = 0. (2.6)

In this case, the conclusions are consistent with the original assumptions, and so
this is the balancing we are looking for. This case is non-trivial and we can continue
to solve it.

Finally, the second term and the third term are matched to obtain 2nv = 1,
that is v = 1

2n and this is said to be the distinguished limit for the equation. In
order to distinguish from the previous case, recording η = x

ε
1
2n

, ξ = x
εn , the main

term of the Eq. (2.4) is

ε
2n2+n−1

n
d2yi

dη2
+ εη2n+1 dy

i

dη
− εyi + ε

2n+1
2n η2n+1yi = 0, (2.7)

this case is also non-trivial and must also be included.
Since n > 1

2n , ξ = x
εn describes a layer closer to the origin point and η = x

ε
1
2n

describes a layer between the right layer and the left layer. In the problem of
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viscous-inviscid-interaction [5], the three layers are called lower, middle, and upper
layers.

Therefore, in this case, the variable of the outer layer is x, the variable of the
boundary layer is ξ = x

εn , and the variable of the middle layer is η = x

ε
1
2n

.

According to the above analysis, this paper consider a problem in which more
than one distinguished limit exist in a given boundary layer. When two distin-
guished limits exist, the resulting expansion consists of two inner expansions in
addition to the outer expansion. And the problem is a multiple-layer problem, the
multi-layer phenomenon will happen close to x = 0. Asymptotic solution of the
original problem must be constructed by the pertinent theories of the matching
asymptotic expansion approach,

yc = yo + yi + ym − (yo)m − (yi)m. (2.8)

The composite solution is yc, yo is the outer solution, yi is the inner solution, ym is
the intermediate solution, and the common solutions of the two overlapping parts
are (yo)m, (yi)m respectively. We seek their expansions in the form:

yo = yo0(x) + εyo1(x) + ε2yo2(x) + · · · , (2.9)

yi = yi0(ξ) + εnyi1(ξ) + ε2nyi2(ξ) + · · · , (2.10)

ym = ym0 (η) + ε
1
2n ym1 (η) + · · · . (2.11)

When analyzing the problem, we use the direct expansion method [15,24] to get
the first term of yo. The outer solution is solved firstly, we substitute Eq. (2.9) into
Eq. (2.2), there is

ε2n+1(
d2yo0
dx2

+ε
d2yo1
dx2

+ · · · )+x2n+1(
dyo0
dx

+ε
dyo1
dx

+yo0+εyo1+ · · · ) = ε(yo0+εyo1+ · · · ),

since the boundary layer appears near x = 0, the outer solution satisfies the right
boundary condition y(1) = β, that is

yo0(1) + εyo1(1) + ε2yo2(1) + · · · = β,

comparing the same power coefficients of ε on the left and right sides, it can be
obtained that the equations and their asymptotic solutions are as follows, the zero-
order equation and its solution are

x2n+1(
dyo0
dx

+ yo0) = 0 ⇒ yo0 = βe1−x,

the first-order equation and its solution are

x2n+1(
dyo1
dx

+ yo1) = yo0 ⇒ yo1 = −βe1−x

2n
(x−2n − 1).

Remark 2.1. The first-order solution has singular terms, but these can be elimi-
nated in the subsequent analysis and solving step. Then the final composite solution
does not have any singular part.

Subsequently, we proceed to solve the inner solution by substituting Eq. (2.10)
into Eq. (2.6), thereby obtaining

ε(
d2yi0
dξ2

+ εn
d2yi1
dξ2

+ · · · ) + ε2n
2

ξ2n+1(
dyi0
dξ

+ εn
dyi1
dξ

+ · · · )− ε(yi0 + εnyi1 + · · · )

+ε(2n+1)nξ2n+1(yi0 + εnyi1 + · · · ) = 0,
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and obtaining the zero-order equation and its inner solution are

d2yi0
dξ2

− yi0 = 0 ⇒ yi0 = a0e
−ξ + b0e

ξ,

when n = 1, the first-order equation and the inner solution are

d2yi1
dξ2

+ ξ3
dyi0
dξ

− yi1 = 0

⇒yi1 = − 1

16
a0e

−ξ(3 + 6ξ + 6ξ2 + 4ξ3 + 2ξ4) + a1e
−ξ + b1e

ξ,

when n ≥ 2, the first-order equation and the inner solution are

d2yi1
dξ2

− yi1 = 0 ⇒ yi1 = a1e
−ξ + b1e

ξ,

since ξ = x
εn > 0, the coefficients of eξ must be zero, otherwise yi will grow expo-

nentially with ξ and cannot perform subsequent matching, then it can be obtained
b0,1 = 0. a0,1 can be determined by the unused boundary value condition y(0) = α
or the subsequent matching process.

So far we have considered boundary layer phenomenon for Eq. (2.2), however,
the intermediate layer phenomenon can be equally addressed. The equation of
middle layer can be obtained by substituting Eq.(2.11) into Eq. (2.7), then there is

ε
2n2+n−1

n (
d2ym0
dη2

+ ε
1
2n

d2ym1
dη2

+ · · · ) + εη2n+1(
dym0
dη

+ ε
1
2n

dym1
dη

+ ε
1
n
dym2
dη

+ · · · )

−ε(ym0 + ε
1
2n ym1 + ε

1
n ym2 + · · · )ε 2n+1

2n η2n+1(ym0 + ε
1
2n ym1 + · · · ) = 0,

the zeroth-order intermediate equation and the solution are

η2n+1 dy
m
0

dη
− ym0 = 0 ⇒ ym0 = d0e

− 1
2nη2n ,

the first-order intermediate equation and its solution are

η2n+1 dy
m
1

dη
+ η2n+1ym0 − ym1 = 0 ⇒ ym1 = −d0ηe

− 1
2nη2n + d1e

− 1
2nη2n ,

the value of d0,1 is undetermined and will be determined by the subsequent calcu-
lation and matching process.

After finding the outer, inner and intermediate solutions, the following need to
start matching these solutions to obtain the common solutions. At first, matching
the inner solution and the outer solution, the inner solution is

yi =


− ε

16
a0e

−ξ(3 + 6ξ + 6ξ2 + 4ξ3 + 2ξ4)

+a0e
−ξ + εa1e

−ξ + · · · , n = 1,

a0e
−ξ + εna1e

−ξ + · · · , n ≥ 2,

(2.12)

the outer solution is

yo = βe1−x − ε
βe1−x

2n
(x−2n − 1) + · · · , (2.13)
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firstly, Prandtl matching principle is used for matching (only match the first item),
there is

(yo)i = lim
ε→0

βe1−x = lim
ε→0

βe1−εnξ = βe,

(yi)o = lim
ε→0

a0e
−ξ = lim

ε→0
a0e

− x
εn = 0,

since β ̸= 0, it does not satisfy the matching principle (yo)i = (yi)o.

Then Van Dyke matching principle [3,11] is used to match the first term. How-
ever, when the first term of the inner solution is expressed by the outer variable
x, it cannot be expanded according to the small ε. Therefore, the inner and outer
solutions cannot be directly matched.

Therefore, it is necessary to use ym to match with yi and yo respectively, which
is why it called the intermediate solution. Meanwhile, it produces two common
solutions (yi)m, (yo)m due to matching and confirms that the asymptotic solution
is Eq. (2.8).

Firstly, matching the inner solution with the intermediate solution. The inter-
mediate solution is

ym = d0e
− 1

2nη2n + ε
1
2n e

− 1
2nη2n (−d0η + d1) + · · · . (2.14)

Prandtl matching principle is used to obtain (yi)m = 0 = (ym)i, which can satisfy
the matching principle but cannot determine undetermined coefficients. After that
we match the outer and intermediate solutions, but for the outer solution, the
singularity appears from the second term and its singularity will be stronger and
stronger. Prandtl matching principle doesn’t apply from the second term, then we
try to use the Van Dyke matching principle. After matching, it can be obtained
d0 = βe, d1 = 0, then the intermediate solution can be determined. And the
coincident term is

[yo(2)]
m
(2) = βe− βex+ ε(

βe

2nx2n−1
− βe

2nx2n
),

but the exact composite solution can not be given, because the a0,1 in the inner so-
lution have not been determined. Although the inner solution and the intermediate
solution satisfy the matching principle (yi)m = (ym)i = 0, a0,1 still can not be deter-
mined. In general, in the matched asymptotic expansion method, the outer solution
only satisfies the outer local boundary conditions, and the inner boundary condi-
tions must be abandoned. Similarly, the inner solution only satisfies the local inner
boundary conditions in the boundary layer problems [7]. In this case, the boundary
condition y(0) = α should be determined by the inner solution, the intermediate
solution and the common solutions [31]. When x = 0, there are ξ = 0, η = 0, and
η = 0 causes ym → 0, since (yi)m = (ym)i = 0, then y(0) = α is only determined
by the inner solution, that is yi(0) = α. Therefore, when n = 1, a0 = α, a1 = 3

16α,
when n ≥ 2, a0 = α, a1 = 0.

Then all undetermined coefficients have been determined, but the composite
solution has singular terms, because the outer solution contains singularity. After
Taylor expansion in x = 0, the singular terms are exactly canceled out by the
common solution. Therefore, the final composite solution without singular terms
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can be obtained, that is

yc =



βe1−x − ε
α

16
e−

x
ε [6

x

ε
+ 6(

x

ε
)2 + 4(

x

ε
)3 + 2(

x

ε
)4]− ε

βe

2
(−x2

2
+ x− 1

2
)

+αe−
x
ε + βe1−

ε
2x2 − xβe1−

ε
2x2 − βe+ βex+ · · · , n = 1,

βe1−x − ε
βe

2n
(−1 + x) + αe−

x
εn + βe1−

ε
2nx2n − xβe1−

ε
2nx2n

−βe+ βex+ · · · , n ≥ 2.

(2.15)
Case 2. When s = 1 and k = 1, the problem is

ε2n+1y′′ + (x− 1)2n+1(y′ + ys) = εy. (2.16)

Since 0 ≤ x ≤ 1, (x− 1)2n+1 ≤ 0, it can be known from the singular perturbation
theory that the boundary layer appears near x = 1, and meanwhile x = 1 is still the
turning point. We speculate the problem will have multi-layer phenomenon near
x = 1 in this case. The inner layer variable is ξ = x−1

εn < 0, the middle layer variable
is η = x−1

ε
1
2n

< 0, and yo, yi, ym can be obtained in the same way,

the outer solution is

yo = αe−x + ε{− α

2n
e−x[(x− 1)−2n − 1]}+ · · · , (2.17)

the inner solution is

yi =

− ε

16
b0e

ξ(3− 6ξ + 6ξ2 − 4ξ3 + 2ξ4) + b0e
ξ − εb1e

ξ + · · · , n = 1,

b0e
ξ + εnb1e

ξ + · · · , n ≥ 2,
(2.18)

the intermediate solution is

ym = d0e
− 1

2nη2n + ε
1
2n e

− 1
2nη2n (−d0η + d1) + · · · , (2.19)

by the Van Dyke matching principle, there is d0 = αe−1, d1 = 0. Then substitute
the boundary value condition, when n = 1, b0 = β, b1 = − 3β

16 , when n ≥ 2,
b0 = β, b1 = 0, and the common soluion is

[yo(2)]
m
(2) = αe−1 − αe−1(x− 1) + ε(

αe−1

2n(x− 1)
2n−1 − αe−1

2n(x− 1)
2n ).

Then the composite solution without singular terms is

yc =



αe−x − ε
αe−1

2
(− (x− 1)

2

2
+ x− 3

2
) + βe

x−1
ε

− ε

16
βe

x−1
ε [6

x− 1

ε
+ 6(

x− 1

ε
)2 − 4(

x− 1

ε
)3 + 2(

x− 1

ε
)4] + αe−1e

− ε
2(x−1)2

−ε(x− 1)αe−1e
− ε

2(x−1)2 − αe−1 + αe−1(x− 1) + · · · , n = 1,

αe−x − ε
αe−1

2n
(x− 2) + βe

x−1
εn + αe

−1− ε
2n(x−1)2n

−(x− 1)αe
−1− ε

2n(x−1)2n − αe−1 + αe−1(x− 1) + · · · , n ≥ 2.

(2.20)
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Remark 2.2. For the case of k < 0 and k > 1, the original problem is a gen-
eral second-order singularly perturbed nonlinear boundary value problem without
turning points. In this case, there are only boundary layer and outer layer, no in-
termediate layer, and no multilayer phenomenon appears. For k < 0, the boundary
layer appears on the left and for k > 1, the boundary layer appears on the right.
It is necessary to re-determine the extension variables and construct the asympotic
solution. In these cases, the solution is y = yo + yi − (yo)i.

Case 3. When s = 1 and 0 < k < 1, there is

ε2n+1y′′ + (x− k)2n+1(y′ + y) = εy. (2.21)

This problem is a turning point problem in a general sense. The turning point
occurs at x = k, and the outer solution of the original problem is composed of
yoL, y

o
R. The original interval [0, 1] is divided into two parts with k as the bound,

and the original problem is divided into left and right problems accordingly.

The left problem is

ε2n+1yL
′′ + (x− k)2n+1(yL

′ + yL) = εyL, (2.22)

yL(0) = α, yL(k) = δ1. (2.23)

The right problem is

ε2n+1yR
′′ + (x− k)2n+1(yR

′ + yR) = εyR, (2.24)

yR(k) = δ2, yR(1) = β, (2.25)

both of δ1,2 are unknown.

From the analysis of the above two cases, it can be seen that on the interval
[0, k), (x− k)2n+1 < 0, then the boundary layer appears near the right endpoint
x = k. On the interval (k, 1], (x− k)2n+1 > 0, then the boundary layer appears
near the left endpoint x = k. And x = k is also the turning point of the two
problems. It is assumed that there is a multi-layer phenomenon nearby x = k.

Consider the left problem firstly, the outer solution is

yoL = αe−x − ε
αe−x

2n
[(x− k)−2n − (−k)2n] + · · · , (2.26)

the inner solution is

yiL =

− ε

16
b0e

ξ(3− 6ξ + 6ξ2 − 4ξ3 + 2ξ4) + b0e
ξ − εb1e

ξ + · · · , n = 1,

b0e
ξ + εnb1e

ξ + · · · , n ≥ 2,
(2.27)

the intermediate solution is

ymL = d0e
− 1

2nη2n + ε
1
2n (−d0ηe

− 1
2nη2n + d1e

− 1
2nη2n ) + · · · , (2.28)

where b0,1, d0,1 are undetermined, and will be solved in subsequent process.

Similarly, Van Dyke matching principle is used for matching to obtain d0 =
αe−k, d1 = 0. By substituting yiL(k) = δ1, when n = 1, b0 = δ1, b1 = − 3δ1

16 , when
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n ≥ 2, b0 = δ1, b1 = 0. Thus the composite solution of the left problem without
singular terms is

ycL =



αe−x − ε
αe−k

2
[
1

2
+ (x− k)k2 − k2] + δ1e

x−k
ε − εδ1

16
e

x−k
ε

×[−6
x− k

ε
+ 6(

x− k

ε
)2 − 4(

x− k

ε
)3 + 2(

x− k

ε
)4] + αe−ke

− ε
2(x−k)2

−(x− k)αe−ke
− ε

2(x−k)2 − αe−k + (x− k)αe−k + · · · , n = 1,

αe−x − ε
αe−k

2n
(k2n(x− k)− k2n) + δ1e

x−k
εn + αe

−k− ε
2n(x−k)2n

−(x− k)αe
−k− ε

2n(x−k)2n − αe−k + αe−k(x− k) + · · · , n ≥ 2.

(2.29)
In the same way, the composite solution of the right problem without singular

terms is

ycR =



βe1−x − εβe1−k

2
((x− k)(1− k)2 − (1− k)2 +

1

2
)

+δ2e
− x−k

ε − βe1−k + (x− k)βe1−k − εδ2
16

e−
x−k
ε

×[6
x− k

ε
+ 6(

x− k

ε
)2 + 4(

x− k

ε
)3 + 2(

x− k

ε
)4] + βe1−ke

− ε
2(x−k)2

−(x− k)βe1−ke
− ε

2(x−k)2 + · · · , n = 1,

βe1−x − ε
βe1−k

2n
((x− k)(1− k)2n − (1− k)2n)

+δ2e
− x−k

εn − βe1−k + βe
1−k− ε

2n(x−k)2n

−(x− k)βe
1−k− ε

2n(x−k)2n + βe1−k(x− k) + · · · , n ≥ 2.

(2.30)
Finally, in order to determine the undetermined constants δ1,2, it can be obtained

by the smooth connection of the left and right problems at x = k, that is

yL
(+)(k) = yR

(−)(k),
dyL

(+)(k)

dx
=

dyR
(−)(k)

dx
,

then we obtain δ1 = δ2 = εn−βe1−k+αe−k

2 .

Remark 2.3. Since the first term of the boundary layer starts from O(εn). it is
speculated that it may not be shown in the figures in this case, that is when the
boundary layer term is small enough, it will not obvious.

2.2. Nonlinear case

When s ≥ 2, the original problem is a nonlinear one, and the larger of s, the stronger
of the nonlinear strength. The difficulty in solving this case is that we need to deal
with the special functions which appear in the process of solving.

Case 1. When s ≥ 2 and k = 0, there is

ε2n+1y′′ + x2n+1(y′ + ys) = εy. (2.31)
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The multi-layer phenomenon still appears near x = 0, and ξ = x
εn , η = x

ε
1
2n

.

The difference with s = 1 is the concrete form of the solution. In the same way as
before, the zeroth-order outer equation and its solution can be obtained

x2n+1(
dyo0
dx

+ (yo0)
s) = 0 ⇒ yo0 = [(s− 1)(x− 1) + β1−s]

1
1−s ,

the first-order outer equation is

x2n+1(
dyo1
dx

+ s(yo0)
s−1yo1) = yo0,

by calculation, its solution is

yo1 =[(s− 1)(x− 1) + β1−s]
s

1−s

× [
s− 1

−2n+ 1
x−2n+1 − 1− s+ β1−s

2n
x−2n +

1− s

−2n+ 1
+

1− s+ β1−s

2n
],

then the outer solution in this case is

yo =[(s− 1)(x− 1) + β1−s]
1

1−s + ε[(s− 1)(x− 1) + β1−s]
s

1−s

× [
s− 1

−2n+ 1
x−2n+1 − 1− s+ β1−s

2n
x−2n +

1− s

−2n+ 1
+

1− s+ β1−s

2n
] + · · · ,

in the same case of s = 1, the outer solution itself is singular.
The inner solution yi is the same as s = 1, that is Eq. (2.12).
The difference is the intermediate layer solution, the zeroth-order middle layer

equation and its solution are

η2n+1 dy
m
0

dη
− ym0 = 0 ⇒ ym0 = d0e

− 1
2nη2n ,

when n = 1, the first-order intermediate equation and its solution are

η3
dym1
dη

+ η3(ym0 )s − ym1 = 0

⇒ym1 = d1e
− 1

2η2

− e
− 1

2η2

(d0e
− 1

2η2 )s(2e
1

2η2 η
√
−1 + s+ e

s
2η2

√
2π(−1 + s)erf(

√
−1+s√
2η

))

2
√
−1 + s

,

when n ≥ 2,

η2n+1 dy
m
1

dη
+ η2n+1(ym0 )s − ym1 = 0

⇒ym1 = d1e
− 1

2nη2n −
2−1− 1

2n d0
se

− 1
2nη2n η(−1+s

nη2n )
1
2nΓ(− 1

2n ,
−1+s
2nη2n )

n
.

When n = 1, the intermediate solution is

ym =d0e
− 1

2η2 + ε
1
2 d1e

− 1
2η2 − ε

1
2 e

− 1
2η2

×
(d0e

− 1
2η2 )s(2e

1
2η2 η

√
−1 + s+ e

s
2η2

√
2π(−1 + s)erf(

√
−1+s√
2η

))

2
√
−1 + s

+ · · · ,

(2.32)
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when n ≥ 2, the intermediate solution is

ym =d0e
− 1

2nη2n + ε
1
2n d1e

− 1
2nη2n − ε

1
2n

×
2−1− 1

2n d0
se

− 1
2nη2n η(−1+s

nη2n )
1
2nΓ(− 1

2n ,
−1+s
2nη2n )

n
+ · · · .

(2.33)

Just like the linear case, yo cannot be matched with yi directly. The matching of
ym and yi satisfies the matching principle but cannot determine the undetermined
cofficients. Before matching yo and ym, we need to do certain processing on them.

By Taylor’s theorem, it can obtained that the decomposition of the outer solu-
tion, that is

[(s− 1)(x− 1) + β1−s]
1

1−s

=(β1−s − s+ 1)
1

1−s (1− x

β1−s − s+ 1
+

sx2

2(β1−s − s+ 1)
2 + · · · ),

[(s− 1)(x− 1) + β1−s]
s

1−s

=(β1−s − s+ 1)
s

1−s (1− sx

β1−s − s+ 1
+

(2s− 1)sx2

2(β1−s − s+ 1)
2 + · · · ).

Because there exists two special functions in ym, that is error function and
gamma function. Then need to understand the properties and do some processing
on them before matching.

The definition of error function [1] is erf(x) = 2√
π

∫ x

0
e−t2dt. The series expan-

sion of the error function is

erf(x) =
2√
π

∞∑
n=0

(−1)
n x2n+1

n!(2n+ 1)
.

Through Van Dyke matching principle, d0 = (β1−s − s+ 1)
1

1−s , and d1 = 0 can
be obtained. The common solution is

[yo(2)]
m
(2) =(β1−s − s+ 1)

1
1−s − x(β1−s − s+ 1)

s
1−s

− ε
(β1−s − s+ 1)

1
1−s

2x2
+ ε(β1−s − s+ 1)

s
1−s

2− s

2x
.

When n ≥ 2, by using a sequence of procedures, the special function [2] Γ(− 1
2n ,

(−1+s)ε
2nx2n ) can be written as

Γ[− 1

2n
,
(−1 + s)ε

2nx2n
] =(−2n)[(

(−1 + s)ε

2nx2n
)−

1
2n

× (− (−1 + s)ε

(2n− 1)x2n
− 1 +

(−1 + s)ε

2nx2n
+ · · · ) + Γ(1− 1

2n
)],

in this case, it can be determined by Van Dyke matching principle that the unde-
terimined coefficient d0,1 as

d0 = (β1−s − s+ 1)
1

1−s
,
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d1 = −2
1

−2n (β1−s − s+ 1)
s

1−s
(
−1 + s

n
)

1
2nΓ(1− 1

2n
),

and the common solution is

[ym(2)]
o
(2) =[yo(2)]

m
(2)

=(β1−s − s+ 1)
1

1−s − (β1−s − s+ 1)
1

1−s
x− ε(β1−s − s+ 1)

1
1−s

2nx2n

− ε(−1 + s)(β1−s − s+ 1)
s

1−s

(2n− 1)x2n−1
+

εs(β1−s − s+ 1)
s

1−s

2nx2n−1
.

Therefore, when n = 1, s ≥ 2, k = 0, the composite solution without singular
terms is

yc =[(s− 1)(x− 1) + β1−s]
1

1−s + ε(β1−s − s+ 1)
s

1−s

× [s− 1 +
β1−s − s+ 1

2
− s(1− s)

β1−s − s+ 1
− s(s− 1)x

β1−s − s+ 1

− sx

2
+

s(1− s)(2s− 1)x

2(β1−s − s+ 1)
2 − s(s− 1)

4(β1−s − s+ 1)
]

+ (β1−s − s+ 1)
1

1−s e−
ε

2x2 − ε
1
2
e−

ε
2x2 ((β1−s − s+ 1)

1
1−s e−

ε
2x2 )

s

2
√
−1 + s

× (2e
ε

2x2
x

ε
1
2

√
−1 + s+ e

sε
2x2

√
2π(−1 + s)erf(

ε
1
2

√
−1 + s√
2x

))

+ αe−
x
ε − ε

1

16
αe−

x
ε (6

x

ε
+ 6(

x

ε
)2 + 4(

x

ε
)3 + 2(

x

ε
)4)

− (β1−s − s+ 1)
1

1−s + x(β1−s − s+ 1)
s

1−s + · · · ,

when n ≥ 2, s ≥ 2, k = 0, the composite solution without singular terms is

yc =[(s− 1)(x− 1) + β1−s]
1

1−s + ε(β1−s − s+ 1)
s

1−s

× [
1− s

−2n+ 1
+

−s+ 1 + β1−s

2n
− s(1− s)x

(−s+ 1 + β1−s)(−2n+ 1)
− sx

2n
]

+ αe−
x
εn + (β1−s − s+ 1)

1
1−s e−

ε
2nx2n + x(β1−s − s+ 1)

s
1−s e−

ε
2nx2n

× (− ε

(2n− 1)x2n
− 1 +

ε

2nx2n
+ · · · )

− (β1−s − s+ 1)
1

1−s + x(β1−s − s+ 1)
s

1−s + · · · .

Remark 2.4. The error function is one of the special incomplete gamma functions,

we have Γ(− 1
2 ,

−1+s
2η2 ) = (−2)[Γ( 12 ,

−1+s
2η2 ) − (−1+s

2η2 )−
1
2 e

−−1+s

2η2 ] when n = 1. The

gamma function and the error function have the expressions of Γ( 12 ,
−1+s
2η2 ) =

√
π(1−

erf(
√

−1+s
2η2 )). Therefore, the intermediate solution when n = 1 can be included in

the case of n ≥ 2, and because the gamma function has special value Γ( 12 ) =
√
π,

then through verification, the matching principle is satisfied.

In order to enhance the understanding of the related propeties of these two
kinds of special functions, and to facilitate the subsequent proof of the existence
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of solutions, the solution and matching of other cases are still analyzed in terms of
n = 1 and n ≥ 2.

Case 2. When s ≥ 2 and k = 1, there is

ε2n+1y′′ + (x− 1)2n+1(y′ + ys) = εy. (2.34)

In this case, using the same analysis to get the outer solution is

yo =[(s− 1)x+ α1−s]
1

1−s + ε[(s− 1)x+ α1−s]
s

1−s

× [
s− 1

−2n+ 1
(x− 1)

−2n+1
+

(s− 1) + α1−s

−2n
(x− 1)

−2n

− 1− s

−2n+ 1
+

(s− 1) + α1−s

2n
] + · · · ,

the inner solution is the same as s = 1, k = 1, the intermediate solution is the same
as s ≥ 2, k = 0, where ξ = x−1

εn ≤ 0, η = x−1

ε
1
2n

≤ 0. By using Van Dyke matching

principle, it can be obtained when n = 1, d0 = (α1−s + s− 1)
1

1−s , d1 = 0, the
common solution is

[yo(2)]
m
(2) =(α1−s + s− 1)

1
1−s − (x− 1)(α1−s + s− 1)

s
1−s

− ε(α1−s + s− 1)
1

1−s

2(x− 1)
2 + ε(α1−s + s− 1)

s
1−s

2− s

2(x− 1)
,

when n ≥ 2, there is d0 = (α1−s + s− 1)
1

1−s , d1 = −2
1

−2n (α1−s + s− 1)
s

1−s

× (−1+s
n )

1
2nΓ(1− 1

2n ), and the common solution is

[ym(2)]
o
(2) =[yo(2)]

m
(2)

=(α1−s + s− 1)
1

1−s − (α1−s + s− 1)
s

1−s (x− 1)− ε(α1−s + s− 1)
1

1−s

2n(x− 1)
2n

− ε(−1 + s)(α1−s + s− 1)
s

1−s

(2n− 1)(x− 1)
2n−1 +

εs(α1−s + s− 1)
s

1−s

2n(x− 1)
2n−1 .

Therefore, when n = 1, s ≥ 2, k = 1, the composite solution without singular
terms is

yc =[(s− 1)x+ α1−s]
1

1−s + ε(α1−s + s− 1)
s

1−s

× [−(s− 1) +
α1−s + s− 1

2
+

s(s− 1)

α1−s + s− 1
+

s(s− 1)x

α1−s + s− 1

−s(x− 1)

2
− s(s− 1)(2s− 1)(x− 1)

2(α1−s + s− 1)
2 − s(2s− 1)

4(α1−s + s− 1)
]

− ε
β

16
e

x−1
ε (−6

x− 1

ε
+ 6(

x− 1

ε
)2 − 4(

x− 1

ε
)3 + 2(

x− 1

ε
)4)

+ βe
x−1
ε + (α1−s + s− 1)

1
1−s e

− ε
2(x−1)2
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− ε
1
2
e
− ε

2(x−1)2 ((α1−s + s− 1)
1

1−s e
− ε

2(x−1)2 )
s

2
√
−1 + s

× (e
ε

2(x−1)2
(x− 1)2

√
−1 + s

ε
1
2

+ e
sε

2(x−1)2
√
2π(−1 + s)erf(

ε
1
2

√
−1 + s√

2(x− 1)
))

− (α1−s + s− 1)
1

1−s + (x− 1)(α1−s + s− 1)
s

1−s + · · · ,

when n ≥ 2, s ≥ 2, k = 1, the composite solution without singular terms is

yc =[(s− 1)x+ α1−s]
1

1−s + ε(α1−s + s− 1)
s

1−s

× [− 1− s

−2n+ 1
+

s− 1 + α1−s

2n
+

s(1− s)(x− 1)

(s− 1 + α1−s)(−2n+ 1)
− s(x− 1)

2n
]

+ βe
x−1
εn + (α1−s + s− 1)

1
1−s e

− ε
2n(x−1)2n

+ (x− 1)(α1−s + s− 1)
s

1−s e
− ε

2n(x−1)2n

× (− ε

(2n− 1)(x− 1)
2n − 1 +

ε

2n(x− 1)
2n + · · · )

− (α1−s + s− 1)
1

1−s + (x− 1)(α1−s + s− 1)
s

1−s + · · · .

Case 3. When s ≥ 2 and 0 < k < 1, the problem is

ε2n+1y′′ + (x− k)2n+1(y′ + ys) = εy. (2.35)

In the same case of s = 1, the problem is similarly divided into left and right
problems, which have yL(k) = δ1, yR(k) = δ2, and undetermined. The left problem
is studied onl [0, k), where ξ = x−k

εn < 0, η = x−k

ε
1
2n

< 0. This paper studies the right

problem on (k, 1], where ξ = x−k
εn > 0, η = x−k

ε
1
2n

> 0, and the steps are the same as

k = 0, 1, when s ≥ 2, n = 1, the left composite solution is

ycL =[(s− 1)x+ α1−s]
1

1−s + ε[(s− 1)k + α1−s]
s

1−s [−(1− s)(−k)−1

+
k(s− 1) + α1−s

2(−k)
2 +

s(s− 1)

k(s− 1) + α1−s
+

s(x− k)(1− s)(−k)
−1

k(s− 1) + α1−s

− s(x− k)

2
(−k)−2] + [(s− 1)k + α1−s]

1
1−s e

− ε
2(x−k)2 + δ1e

x−k
ε

− ε
δ1
16

e
x−k
ε (−6

x− k

ε
+ 6(

x− k

ε
)2 − 4(

x− k

ε
)3 + 2(

x− k

ε
)4)

− ε
1
2
e
− ε

2(x−k)2 ([(s− 1)k + α1−s]
1

1−s e
− ε

2(x−k)2 )
s

2
√
−1 + s

× (2e
ε

2(x−k)2
x− k

ε
1
2

√
−1 + s+ e

sε
2(x−k)2

√
2π(−1 + s)erf(

ε
1
2

√
−1 + s√

2(x− k)
))

− [(s− 1)k + α1−s]
1

1−s + (x− k)[(s− 1)k + α1−s]
s

1−s + · · · ,

the right composite solution is

ycR =[(s− 1)(x− 1) + β1−s]
1

1−s + [(s− 1)(k − 1) + β1−s]
s

1−s
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× [
s− 1

1− k
+

(s− 1)(k − 1) + β1−s

2(1− k)
2 +

s(s− 1)

(s− 1)(k − 1) + β1−s

− s(s− 1)(1− k)
−1

(x− k)

(s− 1)(k − 1) + β1−s
− s(x− k)(1− k)

−2

2
] + δ2e

− x−k
ε

− ε
δ2
16

e−
x−k
ε (6

x− k

ε
+ 6(

x− k

ε
)2 + 4(

x− k

ε
)3 + 2(

x− k

ε
)4)

+ [(s− 1)(k − 1) + β1−s]
1

1−s e
− ε

2(x−k)2

− ε
1
2
e
− ε

2(x−k)2 ([(s− 1)(k − 1) + β1−s]
1

1−s e
− ε

2(x−k)2 )
s

2
√
−1 + s

× (2e
ε

2(x−k)2
x− k

ε
1
2

√
−1 + s+ e

sε
2(x−k)2

√
2π(−1 + s)erf(

ε
1
2

√
−1 + s√

2(x− k)
))

− [(s− 1)(k − 1) + β1−s]
1

1−s + (x− k)[(s− 1)(k − 1) + β1−s]
s

1−s + · · · ,

when s ≥ 2, n ≥ 2, the left composite solution is

ycL =[(s− 1)x+ α1−s]
1

1−s + ε(α1−s + (s− 1)k)
s

1−s

× [− 1− s

−2n+ 1
(−k)−2n+1 +

k(s− 1) + α1−s

2n
(−k)−2n

+
s(1− s)(x− k)

((s− 1)k + α1−s)(−2n+ 1)
(−k)−2n+1 − s(x− k)

2n
(−k)−2n] + δ1e

x−k
εn

+ (α1−s + (s− 1)k)
1

1−s e
− ε

2n(x−k)2n + (x− k)(α1−s + (s− 1)k)
s

1−s

× e
− ε

2n(x−k)2n (− ε

(2n− 1)(x− k)
2n − 1 +

ε

2n(x− k)
2n + · · · )

− (α1−s + (s− 1)k)
1

1−s + (x− k)(α1−s + (s− 1)k)
s

1−s + · · · ,

the right composite solution is

ycR =[(s− 1)(x− 1) + β1−s]
1

1−s + ε((s− 1)(k − 1) + β1−s)
s

1−s

× [
1− s

−2n+ 1
(1− k)−2n+1 +

(s− 1)(k − 1) + β1−s

2n
(1− k)−2n

− s(1− s)(x− k)

[(s− 1)(k − 1) + β1−s](−2n+ 1)
(1− k)−2n+1 − s(x− k)

2n
(1− k)−2n]

+ δ2e
− x−k

εn + ((s− 1)(k − 1) + β1−s)
1

1−s e
− ε

2n(x−k)2n

+ (x− k)((s− 1)(k − 1) + β1−s)
s

1−s e
− ε

2n(x−k)2n

× (− ε

(2n− 1)(x− k)
2n − 1 +

ε

2n(x− k)
2n + · · · )

− ((s− 1)(k − 1) + β1−s)
1

1−s + (x− k)((s− 1)(k − 1) + β1−s)
s

1−s + · · · .

By the smooth continuity of the left and right solutions at x = k, the undeter-
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mined coefficients δ1, δ2 can be determined as

δ1 = δ2 = εn
[(s− 1)k + α1−s]

s
1−s

2
− εn

[(s− 1)(k − 1) + β1−s]
s

1−s

2
,

it can be found that the boundary layer term still starts from O(εn), then we guess
when ε is small enough, the boundary layer will not be obvious.

Remark 2.5. Under certain assumptions a result similar to this holds if the Dirich-
let boundary conditions for y are replaced by Robin boundary conditions.

3. Existence of a solution and estimation of the re-
mainder

In this section, this paper will present and prove the theorem of existence for so-
lutions to the problems addressed in this paper, Specifically, the proof of existence
and estimation of remainders are conducted simultaneously using the variable-
controlling approach. We set n = 1 in order to address both linear and nonlinear
prpblems that arise with the change of s, as discussed in section 2. Therefore, when
proving the existence of the solutions, it is necessary to consider both linear and
nonlinear cases.

In this section, Nagumo theorem is needed to prove the existence of the solution
and to estimate the remainder term. For this purpose, the generalized nagumo
theorem is first introduced [16,17,26].

For general questionsLy ≡ y′′ − F (y′, y, t), 0 < t < 1,

y(0) = y0, y(1) = y1,

where F is defined in the following region Ḡ, where

Ḡ = {(t, y, y′)|0 < t < 1, A < y < B, −∞ < y′ < ∞},

suppose there are quadratic continuously differentiable functions y(t), ȳ(t) satisfy

a). y ≤ ȳ,

b). Ly ≥ 0, Lȳ ≤ 0,

c). y(0) ≤ y0 ≤ ȳ(0), y(1) ≤ y1 ≤ ȳ(1),

and the function F has continuous partial derivatives with respect to y and y′ in
the region and satisfies the inequality |F (y′, y, t)| < φ(|y′|) , where φ is a positive
continuous function satisfying the integral condition

∫∞
0

udu
φ(u) = ∞. There exists a

solution y(t) that satisfies y(t) ≤ y(t) ≤ ȳ(t).

If y, ȳ belong to C2 only in the segment of [a, b], then the above results may
also be obtained. That is there exists a partition {ti} of [a, b], which a = t0 < t1 <
t2 < · · · < tn = b such that on every subinterval, y, ȳ are second-order continuously
differentiable (at the partition points ti−1 and ti , the derivative refers to the right
derivative and the left derivative respectively). It has an additional condition that
for every t in [a, b], y′(t−) ≤ y′(t+), ȳ′(t−) ≥ ȳ′(t+).
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For the problem studied in this paper, there are F = εy−(x−k)3(y′+ys)
ε3 , and yo =

α, y1 = β. Since a differentiable function is also continuous, and the continuity of the
closed interval is bounded, so y is bounded. The absolute value inequality is |a±b| ≤
|a|+ |b|, so that there exists M > 0, we can take M = 1

ε3 , which has |F (x, y, y′)| ≤
M(1 + |y′|), and it satisfies the Nagumo condition

∫∞
0

udu
1+|u| =

∫∞
0

udu
1+u =∞. Then

we can construct the upper and lower solutions to prove a), b), c).

3.1. Linear case

Theorem 3.1. With Nagumo condition and (H1) hold, there exists a sufficiently
small positive parameter ε0 such that for every 0 < ε ≤ ε0, the BVP (2.1) has a
solution y(x, ε) with the multiple layer property at x = k, and as ε approaches 0,
the inequality |y(x, ε)− Y0(x, ε)| ≤ cε holds on [0, 1], where

Y0(x, ε) =


βe1−x + αe−ξ + βe

1− 1
2nη2n − xβe

1− 1
2nη2n − βe+ xβe, k = 0,

αe−x + βeξ + αe
−1− 1

2nη2n − (x− 1)αe
−1− 1

2nη2n

−αe−1 + (x− 1)αe−1, k = 1.

When 0 < k < 1,

Y0(x, ε) =



αe−x + αe
−k− 1

2nη2n − (x− k)αe
−k− 1

2nη2n

−αe−k + (x− k)αe−k, 0 ≤ x < k,

βe1−x + βe
1−k− 1

2nη2n − (x− k)βe
1−k− 1

2nη2n

−βe1−k + (x− k)βe1−k, k < x ≤ 1,

where ξ = x−k
εn , η = x−k

ε
1
2n

.

Proof. Just proving that for n = 1, when k = 0, βe
1−k− 1

2η2 − (x−k)βe
1−k− 1

2η2 −
βe1−k + (x − k)βe1−k in Eq. (2.15) will change its positive or negative with the
change of β. This term is less than zero when β > 0, and greater than zero when

β < 0. Similarly, when k = 1, αe
−k− 1

2η2 − (x−k)αe
−k− 1

2η2 −αe−k +(x−k)αe−k is
less than zero when α > 0, and greater than zero when α < 0. Therefore, ȳ, y can
be constructed according to the positive and negative of α, β, when β > 0, k = 0,

ȳ = βe1−x + αe−ξ + γε,

y = βe1−x + αe−ξ + βe
1− 1

2η2 − xβe
1− 1

2η2 − βe+ xβe− γε,

when β < 0, k = 0,

ȳ = βe1−x + αe−ξ + βe
1− 1

2η2 − xβe
1− 1

2η2 − βe+ xβe+ γε,

y = βe1−x + αe−ξ − γε.

It is obvious that y ≤ ȳ, and after inspection, y(0) < α < ȳ(0), y(1) < β < ȳ(1).
As long as 0 < γ < |β|, there is Lȳ ≤ 0 and Ly ≥ 0.

Similarly, when α > 0, k = 1,

ȳ = αe−x + βeξ + γε,
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y = αe−x + βeξ + αe
−1− 1

2η2 − (x− 1)αe
−1− 1

2η2 − αe−1 + (x− 1)αe−1 − γε,

when α < 0, k = 1,

ȳ = αe−x + βeξ + αe
−1− 1

2η2 − (x− 1)αe
−1− 1

2η2 − αe−1 + (x− 1)αe−1 + γε,

y = αe−x + βeξ − γε,

when k ∈ (0, 1), since the boundary layer has a small parameter ε from the first
term, it can be verified that the boundary layer term is very small. Therefore, when
α, β are greater than zero, ȳ, y are respectively as follows

ȳ =

αe−x + γε, 0 ≤ x < k,

βe1−x + γε, k < x ≤ 1,

y =



αe−x + αe
−k− 1

2η2 − (x− k)αe
−k− 1

2η2

−αe−k + (x− k)αe−k − γε, 0 ≤ x < k,

βe1−x + βe
1−k− 1

2η2 − (x− k)βe
1−k− 1

2η2

−βe1−k + (x− k)βe1−k − γε, k < x ≤ 1,

when α, β are less than zero, ȳ, y are respectively as follows

ȳ =



αe−x + αe
−k− 1

2η2 − (x− k)αe
−k− 1

2η2

−αe−k + (x− k)αe−k + γε, 0 ≤ x < k,

βe1−x + βe
1−k− 1

2η2 − (x− k)βe
1−k− 1

2η2

−βe1−k + (x− k)βe1−k + γε, k < x ≤ 1,

y =

αe−x − γε, 0 ≤ x < k,

βe1−x − γε, k < x ≤ 1,

since the upper and lower solutions are not smooth in this case, it is necessary to
satisfy the relationship between the left and right derivatives at x = k. As long

as (H1) is satisfied, there is
dy

dx (k
−) ≤ dy

dx (k
+) and dȳ

dx (k
−) ≥ dȳ

dx (k
+). And after

inspection, when 0 < |−βe1−k+αe−k

2 | < γ < |β|
(1−k)3

, condirions a), b), c) are satisfied.

Then according to the comparison principle, there exists a solution y(x, ε) of Eq.
(2.1) and satisfying y(x, ε) ≤ y(x, ε) ≤ ȳ(x, ε), where 0 ≤ x ≤ 1, 0 < ε ≪ 1.
Meanwhile, it satisfies |y(x, ε)− Y0(x, ε)| ≤ cε.

Remark 3.1. When α, β are different signs, they can be divided into two cases of
α > 0, β < 0 and α < 0, β > 0. In these cases, no matter how to construct the
upper and lower solutions, the relationship between the left and right derivatives at
the point x = k is not satisfied. Therefore, the proof can only be carried out when
the boundary values are the same sign and satisfiy the above additional conditions.



676 X. Wang & N. Wang

3.2. Nonlinear case

Theorem 3.2. With Nagumo condition and (H2) hold, there exists a sufficiently
small positive parameter ε0 such that for every 0 < ε ≤ ε0, the BVP (1.1) has a
solution y(x, ε) with the multiple layer property at x = k, and as ε approaches 0,
the inequality |y(x, ε)− Ȳ0(x, ε)| ≤ cε holds on [0, 1], where

Ȳ0(x, ε) =



[β1−s + (s− 1)(x− 1)]
1

1−s + αe−ξ + (β1−s − s+ 1)
1

1−s e
− 1

2nη2n

−(β1−s − s+ 1)
1

1−s − x(β1−s − s+ 1)
s

1−s e
− s

2nη2n

+x(β1−s − s+ 1)
s

1−s , k = 0,

[(s− 1)x+ α1−s]
1

1−s + βeξ + (α1−s + s− 1)
1

1−s e
− 1

2nη2n

−(α1−s + s− 1)
1

1−s − (x− 1)(α1−s + s− 1)
s

1−s e
− s

2nη2n

+(x− 1)(α1−s + s− 1)
s

1−s , k = 1,

when 0 < k < 1,

Ȳ0(x, ε) =



[(s− 1)x+ α1−s]
1

1−s + ((s− 1)k + α1−s)
1

1−s e
− 1

2nη2n

−((s− 1)k + α1−s)
1

1−s − (x− k)((s− 1)k + α1−s)
s

1−s e
− s

2nη2n

+(x− k)((s− 1)k + α1−s)
s

1−s , 0 ≤ x < k,

[β1−s + (s− 1)(x− 1)]
1

1−s + ((s− 1)(k − 1) + β1−s)
1

1−s e
− 1

2nη2n

−((s− 1)(k − 1) + β1−s)
1

1−s

−(x− k)((s− 1)(k − 1) + β1−s)
s

1−s e
− s

2nη2n

+(x− k)((s− 1)(k − 1) + β1−s)
s

1−s , k < x ≤ 1,

where ξ = x−k
εn , η = x−k

ε
1
2n

.

Proof. It also be proved when n = 1, and then n ≥ 2 can in the same way to prove.
For the nonlinear problem, it satisfies 0 < βs−1 < 1

s−1 and α > 0. When k = 0,

as long as the condition (H2) is satisfied, this term of (β1−s − s+ 1)
1

1−s e
− 1

2η2 −
x(β1−s − s+ 1)

s
1−s e

− s
2η2 − (β1−s − s+ 1)

1
1−s + x(β1−s − s+ 1)

s
1−s is always less

than zero. Then the upper and lower solutions can be constructas as follows,

ȳ =[β1−s + (s− 1)(x− 1)]
1

1−s + αe−ξ + γε,

y =[β1−s + (s− 1)(x− 1)]
1

1−s + (β1−s − s+ 1)
1

1−s e
− 1

2η2

− x(β1−s − s+ 1)
s

1−s e
− s

2η2 − (β1−s − s+ 1)
1

1−s

+ x(β1−s − s+ 1)
s

1−s + αe−ξ − γε,

after inspection, there is y ≤ ȳ, y(0) < α < ȳ(0), y(1) < β < ȳ(1). As long as

0 < γ ≤ β2−s

s , there is Lȳ ≤ 0 and Ly ≥ 0.
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When k = 1, the (α1−s + s− 1)
1

1−s e
− 1

2η2 − (x − 1)(α1−s + s− 1)
s

1−s e
− s

2η2 −
(α1−s + s− 1)

1
1−s +(x−1)(α1−s + s− 1)

s
1−s is always less than zero and the upper

and lower solutions in this case are as follows,

ȳ =[(s− 1)x+ α1−s]
1

1−s + βeξ + γε,

y =[(s− 1)x+ α1−s]
1

1−s + (α1−s + s− 1)
1

1−s e
− 1

2η2

− (α1−s + s− 1)
1

1−s + (x− 1)(α1−s + s− 1)
s

1−s

− (x− 1)(α1−s + s− 1)
s

1−s e
− s

2η2 + βeξ − γε.

Remark 3.2. In the case of s ≥ 2, since it satisfies β1−s ≥ s and α > 0, the main
term of Ly is (x− k)3y′.

In the same way of above cases, when k ∈ (0, 1), there are upper and lower
solutions as follows

ȳ =

 [(s− 1)x+ α1−s]
1

1−s + γε, 0 ≤ x < k,

[β1−s + (s− 1)(x− 1)]
1

1−s + γε, k < x ≤ 1,

y =



[(s− 1)x+ α1−s]
1

1−s + ((s− 1)k + α1−s)
1

1−s e
− 1

2η2

−(x− k)((s− 1)k + α1−s)
s

1−s e
− s

2η2

−((s− 1)k + α1−s)
1

1−s + (x− k)((s− 1)k + α1−s)
s

1−s − γε, 0 ≤ x < k,

[β1−s + (s− 1)(x− 1)]
1

1−s + ((s− 1)(k − 1) + β1−s)
1

1−s e
− 1

2η2

−(x− k)((s− 1)(k − 1) + β1−s)
s

1−s e
− s

2η2 − ((s− 1)(k − 1) + β1−s)
1

1−s

+(x− k)((s− 1)(k − 1) + β1−s)
s

1−s − γε, k < x ≤ 1.

If (H2) is satisfied, and when 0 < [(s−1)(k−1)+β1−s]
s

1−s −[(s−1)k+α1−s]
s

1−s

2 ≤ γ ≤ β2−s

s ,
then there exists a solution y(x, ε) to the problem. And according to the comparison
principle, it satisfies y(x, ε) ≤ y(x, ε) ≤ ȳ(x, ε) when 0 ≤ x ≤ 1, 0 < ε ≪ 1.

Meanwhile, it satisfies |y(x, ε)− Ȳ0(x, ε)| ≤ cε.

4. Numerical examples

Bvp4c is a finite difference code that implements the three-stage Lobatto IIIa for-
mula [25,34]. This is a collocation formula and the collocation polynomial provides
a C1-continuous solution that is fourth order accurate uniformly in [a, b]. Mesh
selection and error control are based on the residual of the continuous solution.

The integral interval is divided into subintervals by the allocation method using
the point grid. By solving the global group of linear algebraic equations obtained
from the configuration conditions and the boundary conditions on all subintervals,
the solver arrives at the numerical solution. Next, the solver calculates the numerical
solution error for every subinterval. The solver modifies the grid and performs the
computation again if the result does not satisfy the tolerance requirements. The
original grid and a preliminary approximation of the solution at the grid points
must be supplied [4, 10].
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In this section, this paper present several examples whose solutions disaplay
some of the behavior outlined above.

4.1. Example 1 
ε3y′′ + (x− k)3(y′ + y) = εy,

y(0) = α,

y(1) = β.
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Figure 1. The analysis figure of multilayer phenomenon when k = 0, ε = 0.01.

When k = 0, the multilayer phenomenon occurs near x = 0 with boundary
values set as α = 1 and β = 1. Accordingly, ε is taken as 0.01. The numerical
solution (green), the inner solution (red), the intermediate solution (yellow) and
the outer solution (magenta) are depicted respectively in Figure 1. It is observed
that while both the boundary layer and the turning point appear near x = 0, they
consistently approach x = 0, making it impossible for the multi-layer phenomenon
to occur at the point of x = 0.

The intersection of the red line and the yellow line p∗ can be roughly regarded
as the dividing point between the inner layer and the intermediate layer, and the
intersection of the yellow line and the magenta line q∗ can be roughly regarded as
the dividing point between the outer layer and the intermediate layer. Particularly,
the connection between the outer solution and the intermediate solution is quite
different from the numerical solution is that there is no matching terms included.
However, based on the aforementioned analysis, our focus lies on the points under
the interval because the multilayer phenomenon could not occur at a certain point.

Remark 4.1. The multilayer phenomenon could not occur at a certain point but
in a narrow interval. As we analyzed in Figure 1, we can further study the points
under the interval such as p∗ and q∗.

Since the asymptotic solution obtains its zeroth, first and higher approximations,
we can further study the points under the interval in Remark 4.1. We suppose that
if the dividing point between the inner and intermediate layers is p∗ in a certain
range of k, then p∗ = p0 + εnp1 + · · · , where p0 is the point that the multilayer



Singularly perturbed boundary value problem 679

0 0.2 0.4 0.6 0.8 1

x

-0.5

0

0.5

1

1.5

2

2.5

s
o

lu
ti
o

n
 y

numerical solution

first-order asymptotic solution

zero-order asymptotic solution

boundary layer

intermediate layer

Figure 2. Comparison of asymptotic and the numerical solutions when k = 0, ε = 0.01.

phenomenon occurs we studied in the previous analysis and solution process, but
compared with p∗, p0 is still a little rough, so the point where the dividing point
occurs will be more accurate due to the appearance of p∗. Similarly, if the dividing
point between the outer and intermediate layers is q∗ in a certain range of k, then
q∗ = q0+ε

1
2n q1+· · · , where q0 is the point that the multilayer phenomenon occurs we

studied in the previous analysis and solution process. In this way we can completely
determine the specific point where the multi-layer phenomenon occurs.
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Figure 3. Comparison of asymptotic and the numerical solutions when k = 0, ε = 0.001.

As shown in Figure 2, we can clearly distinguish the boundary layer, the interme-
diate layer and the outer layer, and fitting degree between the first-order asymptotic
solution and the numerical solution is better than the fitting degree between the
zeroth-order asymptotic solution and the numerical solution. We adjust ε from 0.01
to 0.001 in Figure 3 to find the asymptotic solution and numerical solution have
better approximate effect. Meanwhile, as ε gets smaller, the boundary layer and
the intermediate layer get thinner.

When k = 1, the multilayer phenomenon occurs near x = 1 with boundary
values set as α = 2 and β = 1. Accordingly, ε is taken as 0.01 and 0.001. We can
see clear multilayer phenomena in Figure 4 and Figure 5. And it is observed that
the approximation degree of the first-order asymptotic solution is better than the
zeroth-order asymptotic solution with the numerical solution.

Now we consider 0 < k < 1, we select k = 0.25. According to the analysis and
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Figure 4. Comparison of asymptotic and the numerical solutions when k = 1, ε = 0.01.
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Figure 5. Comparison of asymptotic and the numerical solutions when k = 1, ε = 0.001.
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Figure 6. Comparison of asymptotic and the numerical solutions when k = 0.25, ε = 0.001.

solving process, the multi-layer phenomenon will occur near x = 0.25. As shown in
Figure 6, if the figure is divided into left and right areas according to x = 0.25, then
the left outer layer, left intermediate layer, left inner layer and right inner layer,
right intermediate layer, right outer layer should appear successively in the figure.
It is obvious that four layers can be clearly seen in Figure 6. We focus our attention
on the vicnity of x = 0.25 and observe there is a narrow interval approaching zero.
This is just as we suspected in Remark 2.3. Since ε = 0.001 in this case, the inner
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Figure 7. Comparison plot with and without boundary layer terms when k = 0.25, ε = 0.001.

solution starts at O(ε), which is small enough compared to the other solutions. In
order to further verify Remark 2.3, we draw numerical solution, the first asymptotic
solution and the first asymptotic solution without inner terms respectively in Figure
7 and find their fitting degree is quite good. That is when ε is small enough, the
boundary layer phenomenon is not obvious. Therefore, there is the left outer layer,
left intermediate layer, right intermediate layer, and right outer layer in Figure 6.
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Figure 8. Comparison of asymptotic and the numerical solutions when k = 0.5, ε = 0.001.

When k = 0.5, as shown in Figure 8, the multi-layer phenomenon occurs near
x = 0.5 and the fitting degree is well. According to the above analysis, we mark the
left and right intermediate layer and the left and right boundary layer in Figure 8.

4.2. Example 2 
ε3y′′ + (x− k)3(y′ + y2) = εy,

y(0) = α,

y(1) = β.

This is a nonlinear problem, where we consider the values of k to be 0, 1, and
0.5 respectively. For k = 0, the initial boundary values are chosen as α = 1 and
β = 0.5, when k = 1, both α and β are set to be equal to 0.5. And for k = 0.5,



682 X. Wang & N. Wang

the values of α and β are selected as 1 and 0.5 respectively. As shown in Figure 9,
Figure 10 and Figure 11, it can also be shown that when the problem is nonlinear,
the degree of fitting between the asymptotic solution and the numerical solution
is quite well. Then it is sufficient to show that the formal asymptotic solution
constructed previously has a good asymptotic state.
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Figure 9. Comparison of asymptotic and the numerical solutions when nonlinear and k = 0, ε = 0.01.
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Figure 10. Comparison of asymptotic and the numerical solutions when nonlinear and k = 1, ε = 0.01.

Moreover, when the turning point is inside the interval, according to the previous
conjecture and the linear problem in Example 1. We also make the fitting figure
with and without boundary layer terms. As shown in Figure 12, when 0 < k < 1,
it can be proven that the boundary layer is not obvious if ε is small enough.

No matter from the section 2 or the above figures, we can find that with the
change of k, the problem will produce multi-layer phenomenon in a certain region.
In addition, as ε becomes smaller, the boundary layer and the intermediate layer
also become narrower.

5. Conclusions and open problems

This study obtains the first order asymptotic solution that is uniformly valid in the
appropriate interval by splitting the singularly perturbed problems with turning
points into linear and nonlinear categories. We then provide numerical examples
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Figure 11. Comparison of asymptotic and the numerical solutions when nonlinear and k = 0.5, ε =
0.001.

0 0.2 0.4 0.6 0.8 1

x

0

0.2

0.4

0.6

0.8

1

1.2

s
o

lu
ti
o

n
 y

numerical solution

left first-order asymptotic solution

right first-order asymptotic solution

left first-order asymptotic solution without boundary layer terms

right first-order asymptotic solution without boundary layer terms

Figure 12. Comparison plot with and without boundary layer terms when nonlinear and k = 0.5, ε =
0.001.

and the existence proof of the solution. It embodies singular perturbation theories
in their entirety.

By utilizing this method, we can proceed with solving the higher order asymp-
totic solution and provide further evidence for its existence. Upon obtaining the
second-order asymptotic solution of the linear problem, it can be observed that an
intensification of the singularity as the order increases. While it cannot be com-
pletely eliminated, the singularity can be somewhat diminished. This paper may
explore different techniques in the future to eliminate its singularity. There might
also be additional types of special functions and a more intricate calculation proce-
dure for the nonlinear problem.

The aforementioned research on this issue are all quantitative in nature. This
paper can do more qualitative research on this issue to better reflect the integrity
and usefulness of perturbation theory and method system. Obviously, this issue is
considered and resolved in a particular finite area [0, 1]. In the future, we wish to
extend the interval and observe the solution phenomenon in order to investigate
the global stability of the solution [19] for the boundary value problem with inter-
mediate layer and boundary layer. We can expand the limited area and observe
the phenomenon of its solution in a broader area, or even investigate the infinite
interval. Qualitative analysis in future research will make the study of this problem
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more valuable.
In addition, in the future research, it can be mainly considered from two aspects:

on the one hand, to improve the degree of nonlinearity of the problem. For example,
we can study the problem

ε3y′′ + (x− k)3[yy′ + ys] = εy2,

y(0) = α, y(1) = β.

On the other hand, to improve the order of the original problem. For example, we
can study the problem

ε2n+1y′′′ + (x− k)2n+1[y′ + ys] = εy,

y(0) = A1, y(1) = B, y′(x∗) = A2.

Where x∗ is the position where the turning point occurs, and its value changes with
the value of k.

Appendices

A. Supplement to the linear case

Since the special functions only appear in the nonlinear case, then it is easy to
continue to solve the high-order asymptotic solutions of the linear case. And the
singularity of the outer solution appears from the second term, we guess that the
singularity will become stronger and stronger. Then there is a question that can
the singularity of the problem be eliminated by matching at this point? It can be
considered when k = 0 first.

It can be obtianed that the quadratic equation of the outer solution and its
solution are

x2n+1(
dyo2
dx

+ yo2) = yo1 ⇒ yo2 =
βe1−x(x−4n − 2x−2n + 1)

8n2
,

the singularity is definitely stronger.
When n = 1, the quadratic equation of the inner solution is

d2yi2
dξ2

+ ξ3
dyi1
dξ

− yi2 + ξ3yi0 = 0,

and its solution is

yi2 =
e−ξ (840a0 − 840a1 + 1680a0ξ − 1680a1ξ)

4480

+
e−ξ(1680a0ξ

2 − 1680a1ξ
2 + 1120a0ξ

3 − 1120a1ξ
3)

4480

+
(560a0ξ

4 − 560a1ξ
4 + 42a0ξ

5 + 70a0ξ
6 + 60a0ξ

7 + 35a0ξ
8)e−ξ

4480

+a2e
−ξ + b2e

ξ,

when n ≥ 2, the quadratic equation of the inner solution and its solution are

d2yi2
dξ2

− yi2 = 0 ⇒ yi2 = a2e
−ξ + b2e

ξ,
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where b2 = 0.
The solution of the intermediate layer produces different solution according to

the value of n from the quadratic term, the quadratic equation of the intermediate
solution is 

d2ym0
dη2

+ η3
dym2
dη

+ η3ym1 − ym2 = 0, n = 1,

η2n+1 dy
m
2

dη
+ η2n+1ym1 − ym2 = 0, n ≥ 2,

the corresponding intermediate solution is

ym2 =


e
− 1

2η2 (
d0
8η8

− d0
2η6

− d1η +
d0η

2

2
) + d2e

− 1
2η2 , n = 1,

e
− 1

2nη2n (−d1η +
d0
2
η2), n ≥ 2.

When n = 1, through Van Dyke matching principle, there is d2 = βe
2 , and the

common solution is

[yo(3)]
m
(3) =[ym(3)]

o
(3)

=βe− βex+
βex2

2
− εβe

2x2
+

εβe

2
+

εβe

2x

− εβe

4
+

βeε2

8x4
− βeε2

4x2
− βeε2

8x3
+

βeε2

16x2
,

when n ≥ 2, d2 = 0, and the common solution is

[yo(3)]
m
(3) =[ym(3)]

o
(3)

=βe− βex+
βex2

2
− βe

2n
(

ε

x2n
− εx

x2n
+

εx2

2x2n
)

+
βe

8n2
(
ε2

x4n
− ε2x

x4n
+

ε2x2

2x4n
),

however, it can be found that the singularity can not be completely eliminated, it
only can be reduced at this point.

In the same way, when k = 1, we can also solve and match it, the second order

outer solution is yo2 = αe−x((x−1)−4n−2(x−1)−2n+1)
8n2 , and when n = 1, d2 = αe−1

2 ,
when n ≥ 2, d2 = 0. And when n = 1, the common solution is

[yo(3)]
m
(3) =[ym(3)]

o
(3)

=αe−1 − αe−1(x− 1) +
αe−1(x− 1)

2

2

− αe−1

2
(

ε

(x− 1)
2 − ε− ε

x− 1
+

ε

2
)

+
αe−1

8
(

ε2

(x− 1)
4 − 2ε2

(x− 1)
2 − ε2

(x− 1)
3 +

ε2

2(x− 1)
2 ),

when n ≥ 2, the common solution is

[yo(3)]
m
(3) =[ym(3)]

o
(3)
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=αe−1 − αe−1(x− 1) +
αe−1(x− 1)

2

2

− αe−1

2n
(

ε

(x− 1)
2n − ε(x− 1)

(x− 1)
2n +

ε(x− 1)
2

2(x− 1)
2n )

+
αe−1

8n2
(

ε2

(x− 1)
4n − ε2(x− 1)

(x− 1)
4n +

ε2(x− 1)
2

2(x− 1)
4n ).

These higher order solutions can continue be solved in this way, it can be ob-
tianed the outer solution, the inner solution and the intermediate solution and
matching them. Although the singularity can not be completely eliminated at this
point, it can be reduced to some extent.

As the order increases, the singularity of the problem becomes stronger. It can
reduce the singularity to a certain extent by using Van Dyke matching principle,
and when s = 1, k = 0, n = 1, the final composite solution is

yc =αe−
x
ε − ε

α

16
e−

x
ε [6

x

ε
+ 6(

x

ε
)2 + 4(

x

ε
)3 + 2(

x

ε
)4] + ε2yi2 + βe1−x

− βeε

2
(x− x2

2
) +

ε2βe

4x
+ βe1−

ε
2x2 − xβe1−

ε
2x2

+ εe−
ε

2x2 (
ε4βe

8x8
− ε3βe

2x6
+

βex2

2ε
) +

εβe

2
e−

ε
2x2 − βe+ βex− βex2

2
+ · · · ,

the singularity is not strong, and we can try to eliminate its singularity in other
methods. In real life, the solutions of many physical models are also singular, which
just reflects the authenticity of this model.

Take k = 0 as an example to solve its third-order asymptotic solution, and
obtain the solutions, when n = 1,

yo =βe1−x − ε
βe1−x

2
(
1

x2
− 1) + ε2

βe1−x

8
(
1

x4
− 2

x2
+ 1)

− ε3
βe1−x

8
(

1

6x6
− 1

2x4
− 7

2x2
− 23

6
) + · · · ,

ym=d0e
− 1

2η2 + ε
1
2 (−d0ηe

− 1
2η2 + d1e

− 1
2η2 )

+ ε[e
− 1

2η2 (
d0
8η8

− d0
2η6

− d1η +
d0η

2

2
) + d2e

− 1
2η2 ]

+ ε
3
2 e

− 1
2η2 (

d1
8η8

− d0
8η7

− d1
2η6

+
d0

10η5
− d2η +

d1η
2

2
− d0η

3

6
+ d3) + · · · ,

when n ≥ 2,

yo =βe1−x − ε
βe1−x

2n
(

1

x2n
− 1) + ε2

βe1−x

8n2
(

1

x4n
− 2

x2n
+ 1)

+ ε3
βe1−xx−6n(−1 + x2n)

3

48n3
+ · · · ,

ym=d0e
− 1

2nη2n + ε
1
2n (−d0ηe

− 1
2nη2n + d1e

− 1
2nη2n )

+ ε
1
n [e

− 1
2nη2n (−d1η +

d0η
2

2
) + d2e

− 1
2nη2n ]

+ ε
3
2n [e

− 1
2nη2n (−d2η +

d1η
2

2
− d0η

3

6
) + d3e

− 1
2nη2n ] + · · · ,
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there is d3 = 0 by using the Van Dyke matching principle, and the common solution
is

[yo(4)]
m
(4) = [ym(4)]

o
(4) =



(βe− βex+
βex2

2
− βex3

6
+

βeε

2
− βexε

2
)

×(1− ε

2x2
+

ε2

8x4
− ε3

48x6
), n = 1,

(βe− βex+
βex2

2
− βex3

6
)

×(1− ε

2nx2n
+

ε2

8n2x4n
− ε3

48n3x6n
), n ≥ 2,

then when n = 1, we obtain the composite solution is

yc =αe−
x
ε − ε

α

16
e−

x
ε [6

x

ε
+ 6(

x

ε
)2 + 4(

x

ε
)3 + 2(

x

ε
)4] + ε2yi2 + ε3yi3

+ βe1−x − βeε

2
(
x

6
− x2

2
) +

βeε2

8
(
3

4
− 11x

12
) +

ε3βe

8
(− 7

2x2
− 1

4x2
) + βe1−

ε
2x2

− xβe1−
ε

2x2 + εe−
ε

2x2 (
ε4βe

8x8
− ε3βe

2x6
+

βex2

2ε
) +

εβe

2
e−

ε
2x2

+ ε
3
2 e−

ε
2x2 (−ε

7
2 βe

8x7
+

ε
5
2 βe

10x5
− xβe

2ε
1
2

− βex3

6ε
3
2

)− βe+ βex− βex2

2
+

βex3

6
+· · · .

From the above analysis, it can be found that the singularity of the solution is
greatly reduced from x−6 to x−2 but it still has singularity. In order to eliminate
the singularity, when n = 1, we can obtain the common solution in the process of
solving the third-order asymptotic solution and matching as follows

[yo(3)]
m
(4) =[ym(4)]

o
(3)

=βe− βex+
βex2

2
− βex3

6

− βe

2
(
ε

x2
− ε− ε

x
+ εx+

ε

2
− εx

6
)

+
βe

8
(
ε2

x4
− 2ε2

x2
− ε2

x3
+

2ε2

x
+

ε2

2x2
− ε2

6x
),

then the composite solution is

yc(3,4) =yo(3) + ym(4) + yi(4) − [yo(3)]
m
(4) − [yi(4)]

m
(4)

=αe−
x
ε − ε

α

16
e−

x
ε [6

x

ε
+ 6(

x

ε
)2 + 4(

x

ε
)3 + 2(

x

ε
)4] + ε2yi2 + ε3yi3

+ βe1−x − βeε

2
(
x

6
− x2

2
) +

ε2βe

8
(−x+

x2

2
) + βe1−

ε
2x2 − xβe1−

ε
2x2

+ εe−
ε

2x2 (
ε4βe

8x8
− ε3βe

2x6
+

βex2

2ε
) +

εβe

2
e−

ε
2x2 + ε

3
2 e−

ε
2x2

× (−ε
7
2 βe

8x7
+

ε
5
2 βe

10x5
− xβe

2ε
1
2

− βex3

6ε
3
2

)− βe+ βex− βex2

2
+

βex3

6
+ · · · .

In this way, the singularity in the outer solution can be eliminated completely.
This method can be used to solve other cases, because of the limitation of length,
no more tautology here. But further efforts are needed to try to solve more complex
situations.
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