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ORDERING GRAPHS WITH FIXED SIZE AND
GIRTH BY THEIR Aα-SPECTRAL RADIUS

Yirong Zheng1, Hongzhang Chen2,† and Long Jin3

Abstract For a graph G and real number α ∈ [0, 1], the Aα-spectral radius
of G is the largest eigenvalue of Aα(G) := αD(G) + (1−α)A(G), where A(G)
and D(G) are the adjacency matrix and the diagonal degree matrix of G,
respectively. Recently, for α ∈ [ 1

2
, 1], Chen, Li and Huang [Discrete Appl.

Math., 2023, 340, 350–362], as well as Ye, Guo and Zhang [Discrete Appl.
Math., 2024, 342, 286–294] independently identified the graph with maximum
Aα-spectral radius among all graphs in G(m, g), the class of connected graphs
on m edges with girth g. In this paper, we further determine the second to
the

(
b g
2
c+ 2

)
th largest Aα-spectral radius of graphs in G(m, g). Moreover, for

α ∈ [ 1
2
, 1], we also determine the first to the

(
b g
2
c + 3

)
th largest Aα-spectral

radius of graphs in G(m,≥ g), the class of connected graphs on m edges with
girth no less than g, which generalizes the recent result of Hu, Lou and Huang
(2022) on α = 1

2
.
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1. Introduction

All graphs considered in this paper are undirected and simple (i.e., without loops
or multiple edges). Let G = (V (G), E(G)) be a graph of order n and size m. For
v ∈ V (G), let dG(v) and NG(v) (or d(v) and N(v) for short) be the degree and the
set of neighbors of v, respectively. And let NG[v] = NG(v) ∪ {v}. The maximum
degree of G is denoted by ∆(G) (or ∆ for short). The girth of a graph G, denoted
by g, is the length of the shortest cycle in G. Let A(G) and D(G) be the adjacency
matrix and the diagonal degree matrix of a graph G, respectively. For α ∈ [0, 1],
Nikiforov [14] defined the Aα(G)-matrix of G as

Aα(G) = αD(G) + (1− α)A(G).

Clearly, A0(G) = A(G), A1(G) = D(G) and A 1
2
(G) = 1

2Q(G), where Q(G) is known

as the signless Laplacian matrix of G. Note that Aα(G) is a non-negative and real
symmetric matrix. Then the eigenvalues of Aα(G) (also called the Aα-eigenvalues
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of G) are real. The largest eigenvalue of Aα(G), denoted by ρα(G), is called the
Aα-spectral radius of G. Obviously, 2ρ 1

2
(G) is the signless Laplacian spectral radius

of G (the largest eigenvalue of Q(G)).

Cvetković et al. [5] proposed some possible directions for further investigations
on graph spectra. One of which is how to order graphs according to their spectral
invariants. Hence ordering graphs with various properties by their spectra, specially
by their spectral radius (the largest eigenvalues of various matrices associated with
graphs), becomes an attractive topic and has received a lot of attentions in recent
years (see [1, 3, 6–11,13,15] for details).

Let G(m, g) (G(m,≥ g)) be the set of connected graphs with size m and girth g
(girth at least g). Moreover, let Cg = u0u1 . . . ug−2ug−1uo be a cycle of length g,
and denote by Gi ∈ G(m, g) the graph obtained from Cg by attaching m − g − 1
pendent vertices to a vertex u0 and a pendent vertex w being adjacent to ui in Cg,
where 0 ≤ i ≤ b g2c. Clearly, G0 is the graph obtained by identifying a vertex u0

of Cg and the central vertex of K1,m−g. Let G∗ be the graph obtained from Cg by
attaching m−g−2 pendent edges and a P3, respectively, to u0, where P3 = u0w1v1.
The above mentioned three graphs are shown in Figure 1.
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Figure 1. The graphs G0, Gi and G∗.

Among all graphs in G(m, g), Chen, Wang and Zhai [4] identified the graph with
maximum signless Laplacian spectral radius. Very recently, Hu, Lou and Huang [8]
further determined the second to the (b g2c+ 2)th largest graphs according to their
signless Laplacian spectral radius. Their results can be combined into the following
theorem.

Theorem 1.1 ( [4, 8]). Among all graphs in G(m, g) with m ≥ 3g ≥ 12, the order
of the first (b g2c + 2)th largest graphs according to their signless Laplacian spectral
radius is given by:

G0, G1, G
∗, G2, G3, . . . , Gb g2 c.

Let Gig and G∗g instead of Gi (0 ≤ i ≤ b g2c) and G∗, respectively. Hu, Lou and
Huang [8] also determined the first to the (b g2c + 3)th largest graphs according to
their signless Laplacian spectral radius among all graphs in G(m,≥ g) as follows.

Theorem 1.2 ( [8]). Among all graphs in G(m,≥ g) with m ≥ 3g ≥ 12, the order
of the first (b g2c + 3)th largest graphs according to their signless Laplacian spectral
radius is given by:

G0
g, G

1
g, G

∗
g, G

2
g, G

3
g, . . . , G

b g2 c
g , G0

g+1.
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Very recently, for α ∈ [ 1
2 , 1), Chen, Li and Huang [2], as well as Ye, Guo

and Zhang [18] independently determined the following graph with maximum Aα-
spectral radius among all graphs in G(m, g), which generalizes the result of Chen,
Wang and Zhai [4] on α = 1

2 .

Theorem 1.3 ( [2, 18]). For any G ∈ G(m, g) and α ∈ [ 1
2 , 1), we have ρα(G) ≤

ρα(G0). Moreover, the equality holds if and only if G ∼= G0.

In this paper, for α ∈ [ 1
2 , 1), we further determine the second to the

(
b g2c+ 2

)
th

largest graphs in G(m, g) according to their Aα-spectral radius as follows.

Theorem 1.4. For α ∈ [ 1
2 , 1), the first b g2c+ 1 graphs in G(m, g)

∖
{G0} with m ≥

3g ≥ 12 according to their Aα-spectral radius are as follows:

G1, G
∗, G2, G3, . . . , Gb g2 c.

Remark 1.1. Combining Theorem 1.3 and Theorem 1.4, we know that among
all graphs in G(m, g), the first to

(
b g2c + 2

)
th largest graphs according to their

Aα-spectral radius for α ∈ [ 1
2 , 1) are determined, which generalizes Theorem 1.1.

Moreover, we further consider the first to the (b g2c+3)th largest graphs according
to their Aα-spectral radius among all graphs in G(m,≥ g) and extend Theorem 1.2
as follows.

Theorem 1.5. For α ∈ [ 1
2 , 1), the first b g2c+ 3 graphs in G(m,≥ g) with m ≥ 3g ≥

12 according to their Aα-spectral radius are as follows:

G0
g, G

1
g, G

∗
g, G

2
g, G

3
g, . . . , G

b g2 c
g , G0

g+1.

Clearly, Theorem 1.2 follow from Theorem 1.5 if we let α = 1
2 .

2. Preliminaries

In this section, we present some preliminary results and lemmas which are useful.

Recall that Aα(G) is a nonnegative and real symmetric matrix. Then there is a
non-negative unit eigenvector x of Aα(G) corresponding to ρα(G) such that

ρα(G) = xTAα(G)x = (2α− 1)
∑

u∈V (G)

d(u)x2
u + (1− α)

∑
uv∈E(G)

(xu + xv)
2, (2.1)

where xu is the entry of x corresponding to the vertex u. We call such eigenvector x
the Perron vector of Aα(G). In addition, if G is connected, then Aα(G) is irreducible
and thus its Perron vector is a positive unit eigenvector. Clearly, the Perron vector
of Aα(G) satisfies the eigenvalue equation Aα(G)x = ρα(G)x, that is

ρα(G)xu = αd(u)xu + (1− α)
∑

v∈N(u)

xv. (2.2)
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Consider an n× n real symmetric matrix

M =



M1,1 M1,2 · · · M1,m

M2,1 M2,2 · · · M2,m

...
...

. . .
...

Mm,1 Mm,2 · · · Mm,m


whose rows and columns are partitioned according to a partitioning X1, X2, . . . , Xm

of {1, 2, . . . , n}. The quotient matrix B of the matrix M is the m×m matrix whose
entries are the average row sums of the blocks Mi,j of M . The partition is equitable
if each block Mi,j of M has constant row (and column) sum.

Lemma 2.1 ( [19]). Let M be a square matrix with an equitable partition π and
let Mπ be the corresponding quotient matrix. Then every eigenvalue of Mπ is an
eigenvalue of M . Furthermore, if M is nonnegative and Mπ is irreducible, then the
largest eigenvalues of M and Mπ are equal.

Let Sn,3 be a graph on n vertices obtained from K1,n−7 by attaching three
pendant paths of length 2 at the center vertex of K1,n−7, and let H0 be an unicycle
graph of order n and girth 4. The graphs Sn,3 and H0 are shown in Figure 2.
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Figure 2. The graphs Sn,3 and H0.

Lemma 2.2. For α ∈ [0, 1], ρα(Sn,3) and ρα(H0) are the largest root of f(λ, n) = 0
and g(λ, n) = 0, respectively, where

f(λ, n) =λ4 − αnλ3 +
[
(3α2 + 2α− 1)n− 6α− 8α2 + 3

]
λ2

−
[
(α3 + 8α2 − 4α)n− 36α2 + 18α

]
λ

+ 2α3n+ 3α2n− 4αn+ n− 2α3 − 27α2 + 28α− 7

and

g(λ, n)

=x6 − (n+ 5)αx5 + [(7α2 + 2α− 1)n+ α2]x4

− [(15α3 + 20α2 − 10α)n− 17α3 − 40α2 + 20α]x3

+ [(10α4 + 50α3 − 13α2 − 12α+ 3)n− 8α4 − 132α3 + 18α2 + 48α− 12]x2

− [(2α5 + 28α4 + 34α3 − 48α2 + 12α)n− 44α4 − 194α3 + 216α2 − 54α]x
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+ (4α5 + 14α4 − 20α2 + 12α− 2)n− 48α4 − 48α3 + 132α2 − 72α+ 12.

Proof. We partition V (Sn,3) as V (Sn,3) =
{
u1, u2, u3

}
∪
{
w1, w2, w3

}
∪
{
u0

}
∪{

w4, . . . , wn−4

}
. Then the corresponding quotient matrix of Aα(Sn,3) is

B1 =


α 1− α 0 0

1− α 2α 1− α 0

0 3(1− α) (n− 4)α (n− 7)(1− α)

0 0 1− α α

 .

It is easy to versify that the characteristic polynomial of B1 is f(λ, n). Note that
the partition is equitable. Then Lemma 2.1 implies that ρα(Sn,3) is the largest root
of f(λ, n) = 0.

Similarly, we partition V (H0) as V (H0) =
{
v1

}
∪
{
w1

}
∪
{
w2, . . . , wn−5

}
∪{

u0

}
∪
{
u1, u3

}
∪
{
u2

}
. Then the corresponding quotient matrix of Aα(H0) is

B2 =



α 1− α 0 0 0 0

1− α 2α 0 1− α 0 0

0 0 α 1− α 0 0

0 1− α (n− 6)(1− α) (n− 3)α 2(1− α) 0

0 0 0 1− α 2α 1− α

0 0 0 0 2(1− α) 2α


.

It is easy to versify that the characteristic polynomial of B2 is g(λ, n). Note that
the partition is equitable. Then Lemma 2.1 implies that ρα(H0) is the largest root
of g(λ, n) = 0.

Lemma 2.3 ( [14]). If G is a connected graph and H is a proper subgraph of G,
then we have ρα(H) < ρα(G).

Lemma 2.4 ( [17]). For a connected graph G and u, v ∈ V (G), let W ⊆ N(v)\(N(u)
∪ {u}). Let G′ = G−

{
vw : w ∈ W

}
+
{
uw : w ∈ W

}
and x be the Perron vector

of Aα(G). If xu ≥ xv and W 6= ∅, then ρα(G′) > ρα(G) for α ∈ [0, 1).

The following lemma can be derived directly from lemma 2.3 in Ref. [12].

Lemma 2.5 ( [12]). Let G′ be a graph obtained from a connected graph G by a local
switching of edges u1v1 and u2v2 to the positions of non-edges u1v2 and v1u2. Let
x be the Perron vector of Aα(G). If (u1 − u2)(v1 − v2) ≥ 0, then ρα(G′) ≥ ρα(G)
for α ∈ [0, 1), with equality if and only if u1 = u2 and v1 = v2.

Lemma 2.6 ( [14,16]). Let G be a graph of order n with maximum degree ∆. Then

ρα(G) ≥


α(∆ + 1), for α ∈ [0,

1

2
],

α∆ + 1− α, for α ∈ [
1

2
, 1).
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Lemma 2.7 ( [14]). Let G be a graph without isolated vertices. Then for α ∈ [0, 1),
we have

ρα(G) ≤ max
u∈V (G)

{αd(u) + (1− α)m(u)} ,

where m(u) = mG(u) = 1
d(u)

∑
v∈N(u)

d(v). If α ∈ ( 1
2 , 1) and G is connected, then the

equality holds if and only if G is regular.

Lemma 2.8. For any connected graph G with size m ≥ 5 and maximum degree ∆.
If ∆ ≤ s and s ≥ 2m

3 , then for α ∈ [ 1
2 , 1), we have

ρα(G) ≤ αs+ 2(1− α).

Proof. Let z ∈ V (G) such that

αd(z) + (1− α)

∑
v∈N(z) d(v)

d(z)
= max
u∈V (G)

{
αd(u) + (1− α)

∑
v∈N(u) d(v)

d(u)

}
.

If d(z) = 1, then by Lemma 2.7, ρα(G) ≤ αd(z)+(1−α)
∑
v∈N(z) d(v)

d(z) ≤ α+(1−α)∆ ≤

α+(1−α)s. If d(z) = 2, then by Lemma 2.7, ρα(G) ≤ αd(z)+(1−α)
∑
v∈N(z) d(v)

d(z) ≤
2α+ (1− α)∆ ≤ 2α+ (1− α)s. Next, we only need to consider d(z) ≥ 3. Then by
Lemma 2.7, we have

ρα(G) ≤ αd(z) + (1− α)

∑
v∈N(z) d(v)

d(z)

≤ αd(z) + (1− α)
2m− d(z)

d(z)

= αd(z) + (1− α)
2m

d(z)
− 1 + α.

Let f(x) = αx + 2m(1−α)
x . Clearly, f(x) ≥ fmin = f

(√
2m(1−α)

α

)
for x > 0. Note

that 3 ≤ x ≤ ∆ ≤ s,
√

2m(1−α)
α ≤

√
2m < 2m

3 and

f

(
2m

3

)
− f(3) =

2m

3
(2α− 1) + 3(1− 2α) ≥ 1

3
(2α− 1) ≥ 0.

Then for any s ≥ 2m
3 , we have

ρα(G) ≤ f(d(z))− 1 + α ≤ αs+ (1− α)
2m

s
− 1 + α ≤ αs+ 2(1− α).

On the other hand, note that max{2α+ (1−α)s, α+ (1−α)s} ≤ αs+ 2(1−α).
Thus, ρα(G) ≤ αs+ 2(1− α), as desired.

Note that if m = g, then G(m, g) = Cg. If m = g+1, then G(m, g) = C+
g , where

C+
g is a graph obtained from Cg by attaching a pendant edge at some vertex of Cg.

In what follows, we consider m ≥ g + 2 and the corresponding |G(m, g)| ≥ 2. For
g ≥ 3 and m ≥ g + 2, let H(m, g) be the set of graphs in G(m, g) with maximum
degree ∆ = m− g + 1. Hu, Lou and Huang [8] obtained the following result.

Lemma 2.9 ( [8]). H(m, g) = {G1, G2, . . . , Gb g2 c, G
∗}, where g ≥ 4 and m ≥ g+2.
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By simple observation, we see that G0 is the unique graph among G(m,≥ g)
with maximum degree ∆(G0) = m − g + 2. Then from Lemma 2.8, we have the
following result.

Corollary 2.1. Let G ∈ G(m,≥ g) with m ≥ 3g − 3. Then α ∈ [ 1
2 , 1), we have

ρα(G) ≤ ρα(G0), with equality holds if and only if G ∼= G0.

Proof. For any graph G ∈ G(m,≥ g)
∖
{G0}, we have ∆(G) ≤ m − g + 1. Note

that m − g + 1 ≥ 2m
3 since m ≥ 3g − 3. Then by Lemma 2.8, we have ρα(G) ≤

α(m−g+1)+2(1−α) = α(m−g−1)+2. On the other hand, since ∆(G0) = m−g+2
and K1,∆(G0) is a proper subgraph of G0, then by Lemmas 2.3 and 2.6, we have

ρα(G0) > α(m− g + 2) + 1− α = α(m− g + 1) + 1 ≥ α(m− g − 1) + 2 ≥ ρα(G),

as desired.
By Lemma 2.8, we can compare the Aα-spectral radius of graphs with distinct

girths and maximum degrees, respectively.

Corollary 2.2. Let G and H respectively be graph with the maximum Aα-spectral
radius in G(m, g) and G(m, g′). If g < g′ and m ≥ 3g′ − 3, then ρα(G) > ρα(H).

Proof. Since m ≥ 3g′ − 3 and g′ > g, we have m ≥ 3g − 3. Then Corollary 2.1
implies that ∆(G) = m − g + 2 and ∆(H) = m − g′ + 2. Note that ∆(H) =
m − g′ + 2 ≥ 2m

3 since m ≥ 3g′ − 6. Then by Lemma 2.8, we have ρα(H) ≤
α(m−g′+2)+2(1−α) = α(m−g′)+2. On the other hand, since ∆(G) = m−g+2
and K1,∆(G) is a proper subgraph of G, then by Lemmas 2.3 and 2.6, we have

ρα(G) > α(m− g + 2) + 1− α ≥ α(m− g′ + 2) + 1 ≥ α(m− g′) + 2 ≥ ρα(H),

as desired.

Corollary 2.3. Let G and H be graphs with size m ≥ 5 and maximum degree ∆(G)
and ∆(H), respectively. If ∆(G) > ∆(H) ≥ 2m

3 , then ρα(G) > ρα(H).

Proof. Since K1,∆(G) is a proper subgraph of G, then by Lemmas 2.3 and 2.6, we

have ρα(G) > α∆(G) + 1−α ≥ α∆(H) + 1. On the other hand, since ∆(H) ≥ 2m
3 ,

then by Lemma 2.6, we have ρα(H) ≤ α∆(H) + 2(1 − α) ≤ α∆(H) + 1 < ρα(G),
as desired.

3. Proofs of Theroems 1.4 and 1.5

Before giving the proofs of Theorems 1.4 and 1.5, we need some necessary lemmas.

Lemma 3.1. Let Gi ∈ H(m, g) be the graph as shown in Figure 1, where 1 ≤ i ≤
b g2c. Then

ρα(G1) > ρα(G2) > · · · > ρα(Gb g2 c).

Proof. For any 2 ≤ i ≤ b g2c, let x be the Perron vector of ρα(Gi). It suffices to
show ρα(Gi) < ρα(Gi−1). To prove our result, first we give the following claim.

Claim 1. If there exists 1 ≤ j ≤ i−1 such that xui−j < xui+j−1
and xui−j−1

≥ xui+j ,
then ρα(Gi) < ρα(Gi−1).
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Proof. Let

G′ = Gi − {ui−j−1ui−j , ui+j−1, ui+j}+ {ui−j−1ui+j−1, ui−jui+j},

where Gi and G′ are shown in Figure 3. Clearly, G′ ∼= Gi−1. Note that xui−j <
xui+j−1

and xui−j−1
≥ xui+j . Then by Lemma 2.5, we have ρα(Gi) < ρα(G′) =

ρα(Gi−1).
We start to prove by firstly assuming xui−1

≥ xui . Now we construct

G′′ = Gi − {wui}+ {wui−1}

from Gi, where G′′ is shown in Figure 3. Clearly, G′′ ∼= Gi−1. By Lemma 2.4, we
have ρα(Gi) < ρα(G′′) = ρα(Gi−1). Otherwise xui−1

< xui , if xui−2
≥ xui+1

then
from Claim 1 we get ρα(Gi) < ρα(Gi−1) by taking j = 1. Otherwise xui−2

< xui+1
,

if xui−3 ≥ xui+2 then from Claim 1 we get ρα(Gi) < ρα(Gi−1) by taking j = 2.
Repeating i steps we come to the assumption xu0 < xu2i−1 for j = i. Note that
NGi(u0) = {u1, ug−1, w1, . . . , wm−g−1}. Let

G′′′ = Gi − {u0ws|1 ≤ s ≤ m− g − 1}+ {u2i−1wt|1 ≤ t ≤ m− g − 1}.

Clearly, G′′′ ∼= Gi−1. By Lemma 2.4, we have ρα(Gi) < ρα(G′′′) = ρα(Gi−1), as
desired.
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Figure 3. The graphs Gi, G
′ and G′′, where the edge with “X” represents it is deleted.

Lemma 3.2. Let Gi ∈ H(m, g) be graphs as shown in Figure 1, where 1 ≤ i ≤ b g2c.
If m ≥ g + 3 and 1

2 ≤ α < 1, then

α(m− g) + 1 < ρα(Gi) ≤ α(m− g) + 1 +
2(1− α)

m− g + 1
< α(m− g) + 2− α.

Proof. Since ∆(Gi) = m − g + 1 and K1,∆(Gi) is a proper subgraph of Gi, then
by Lemmas 2.3 and 2.6, we have ρα(Gi) > ρα(K1,∆(Gi)) = α(m− g + 1) + 1− α =
α(m− g) + 1. On the other hand, let z ∈ V (Gi) such that

αd(z) + (1− α)

∑
v∈NGi (z)

d(v)

d(z)
= max
u∈V (Gi)

{
αd(u) + (1− α)

∑
v∈NGi (u) d(v)

d(u)

}
.

If z = u0, then by Lemma 2.7, we have

ρα(Gi) ≤ α(m− g + 1) + (1− α)
m− g + 3

m− g + 1
= α(m− g) + 1 +

2(1− α)

m− g + 1
:= f(α).



Ordering graphs with fixed size and girth 699

If z = ui, then by Lemma 2.7 and Wolfram Mathematica, we have

ρα(Gi) ≤ αd(ui) + (1− α)
d(w) + d(ui−1) + d(u0)

d(ui)
< α(m− g) + 1 +

2(1− α)

m− g + 1
.

If d(z) = 1, then by Lemma 2.7, we have

ρα(Gi) ≤ αd(z) + (1− α)d(u0) = α+ (1− α)(m− g + 1) := g(α).

Now let ϕ(α) = f(α)− g(α) = (2α− 1)(m− g) + 2(1−α)
m−g+1 . Then we have

ϕ′(α) = 2(m− g)− 2

m− g + 1
= 2

(
m− g − 1

m− g + 1

)
> 0.

Thus ϕ(α) is a monotonically increasing function on α ≥ 1
2 . Hence, ϕ(α) ≥ ϕ

(
1
2

)
=

1
m−g+1 > 0. It follows that

ρα(Gi) ≤ g(α) < f(α) = α(m− g) + 1 +
2(1− α)

m− g + 1
.

If z ∈ V (G)\{u0, ui} is not a pendent vertex, then d(z) = 2 and by Lemma 2.7,
we have

ρα(Gi) ≤ 2α+ (1− α)
d(u0) + d(ui)

2
= 2α+ (1− α)

m− g + 4

2
:= φ(α).

Now let ψ(α) = f(α)− φ(α), it follows that

ψ(α) = f(α)− φ(α)

= α(m− g − 1) + (1− α)
m− g + 3

m− g + 1
− (1− α)

m− g + 4

2

=
1

2

(
(3α− 1)(m− g) +

4(1− α)

m− g + 1
− 2

)
.

Then we have

ψ′(α) =
1

2

(
3(m− g)− 4

m− g + 1

)
=

3(m− g)(m− g + 1)− 4

2(m− g + 1)
> 0.

Thus ψ(α) is a monotonically increasing function on α ≥ 1
2 . Hence

ψ(α) ≥ ψ
(

1

2

)
=
m− g

4
+

1

m− g + 1
− 1 ≥ 0.

It follows that

ρα(Gi) ≤ ψ(α) ≤ f(α) = α(m− g) + 1 +
2(1− α)

m− g + 1
,

as desired. This completes the proof of Lemma 3.2.

Lemma 3.3. For 1 ≤ i ≤ b g2c and m ≥ g+ 4, let x be the Perron vector of ρα(Gi).
Then for 1

2 ≤ α < 1, we have xu0
= max
u∈V (Gi)

xu.
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Proof. By Lemma 3.2, we have ρα(Gi) > α(m− g) + 1 ≥ 3. On the other hand,
let xu∗ = max

u∈V (Gi)
xu. We then assert that dGi(u

∗) ≥ 4. Suppose to the contrary

that dGi(u
∗) ≤ 3. Then, by (2.2), we have

ρα(Gi)xu∗ = αdGi(u
∗)xu∗ + (1− α)

∑
u∈NGi (u∗)

xu

≤ αdGi(u∗)xu∗ + (1− α)dGi(u
∗)xu∗

≤ 3xu∗ ,

which implies that ρα(Gi) ≤ 3. However, recall that ρα(Gi) > 3, a contradiction.
Thus, dGi(u

∗) ≥ 4. It follows that u∗ = u0, as desired.

Lemma 3.4. If g ≥ 4, 1
2 ≤ α < 1 and m ≥ g+7, then ρα(G1) > ρα(G∗) > ρα(G2).

Proof. We first prove ρα(G1) > ρα(G∗). Let x be the Perron vector of Aα(G∗).
The vertices w1 and v1 of G∗ are shown in Fig. 1. By (2.2), we have

ρα(G∗)xv1 = αxv1 + (1− α)xw1
, ρα(G∗)xw1

= 2αxw1
+ (1− α)(xv1 + xu0

),

ρα(G∗)xu0
= α(m− g + 1)xu0

+
(1− α)2(m− g − 2)

ρα(G∗)− α
xu0

+ (1− α)(+xw1
+ xu1

+ xug−1
).

Note that xu1
= xug−1

due to the symmetry of G∗. From the above equalities, we
have 

xw1 =
(1− α)(ρα(G∗)− α)

(ρα(G∗)− 2α)(ρα(G∗)− α)− (1− α)2
xu0 ,

xu1
=

1

2

(
ρα(G∗)− α(m− g + 1)

1− α
− (1− α)(m− g − 2)

ρα(G∗)− α

− (ρα(G∗)− α)(1− α)

(ρα(G∗)− 2α)(ρα(G∗)− α)− (1− α)2

)
xu0

.

Let

f(x)

=
1

2

(
x− α(m− g + 1)

1− α
− (1− α)(m− g − 2)

x− α

)
− 3(x− α)(1− α)

2 (x− 2α) (x− α)− (1− α)2

=
(x2 − 3αx+ α2 − 1 + 2α)((x− α(m− g + 1))(x− α)− (1− α)2(m− g − 2))

2 (x2 − 3αx+ α2 − 1 + 2α) (x− α)(1− α)

− 3(x− α)2(1− α)2

2 (x2 − 3αx+ α2 − 1 + 2α) (x− α)(1− α)
.

Then xu1
−xw1

= f(ρα(G∗))xu0
. On the other hand, by Wolfram Mathematica,

we have

f(x,m− g + 5)

=x4 − (m− g + 5)αx3 + ((3m− 3g + 7)α2 + 2(m− g + 2)α−m+ g − 2)x2

+ α(4m− (m− g + 5)α2 − 4(2m− 2g + 1)α− 4g + 2)x+ (m− g + 5)
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(2α3 + 3α2 − 4α) +m− g − 2α3 − 27α2 + 28α− 2

=(x2 − 3αx+ α2 − 1 + 2α)((x− α(m− g + 1))(x− α)− (1− α)2(m− g − 2))

− 3(x− α)2(1− α)2,

where f(x,m− g + 5) is defined in Lemma 2.2. Then

f(x) =
f(x,m− g + 5)

2(x2 − 3αx+ α2 − 1 + 2α)(x− α)(1− α)
. (3.1)

If g ≥ 5, then Sm−g+5,3 is a proper subgraph of G∗, where Sm−g+5,3 is shown in
Figure 2. Therefore, ρα(G∗) > ρα(Sm−g+5,3). Note that ∆(G∗) = m − g + 1 and
K1,∆(G∗) is a proper subgraph of G∗. By Lemma 2.6, we have ρα(G∗) > α(m−g)+1.
It is easy to versify that x2 − 3αx + α2 − 1 + 2α > 0 for x > 7α + 1. Thus
f(ρα(G∗)) > 0, which implies that xu1 > xw1 . If g = 4, then G∗ ∼= H0, where H0 is
shown in Fig.2. Thus, (3.1) becomes

f(x) =
1

2(x2 − 3αx+ α2 − 1 + 2α)(x− α)(1− α)
· g(x,m) + 2(α− 1)4(x− α)x

x2 − 4αx+ 2(α2 + 2α− 1)
,

where g(x,m) is defined by Lemma 2.2. Clearly, g(ρα(G∗),m) = 0. On the other
hand, we have x2 − 3αx + α2 − 1 + 2α > 0 and x2 − 4αx + 2(α2 + 2α − 1) > 0
for x > 7α + 1. Recall that ρα(G∗) > 7α + 1. Thus f(ρα(G∗)) > 0, it follows that
xu1 > xw1 . Let G′ = G∗ − {w1v1}+ {u1v1}. Clearly, G′ ∼= G1. By Lemma 2.4, we
have ρα(G∗) < ρα(G′) = ρα(G1).

Next we will prove ρα(G∗) > ρα(G2). Let y be the Perron vector of Aα(G2). By
Lemma 3.3, we have yu0

= max
u∈V (G2)

yu. Let u ∈ V (G2) with dG2
(u) = 2, by (2.2),

we have

ρα(G2)yu = 2αyu + (1− α)
∑

v∈NG2
(u)

yv ≤ 2αyu + 2(1− α)yu0
.

It follows that yu ≤ 2(1−α)
ρα(G2)−2αyu0

. Using (2.2) again, we have

ρα(G2)yw = αyw + (1− α)yu2
, ρα(G2)yu2

= 3αyu2
+ (1− α)(yw + yu1

+ yu3
).

Then

ρα(G2)(yu2 − yw) = (4α− 1)yu2 + (1− 2α)yw + (1− α)(yu1 + yu3).

Thus

ρα(G2)(ρα(G2)− 1)

ρα(G2)− α
yu2

=
(4α− 1)(ρα(G2)− α) + (1− 2α)(1− α)

ρα(G2)− α
yu2

+ (1− α)(yu1
+ yu3

),

which implies that

yu2 ≤
ρα(G2)− α

ρ2
α(G2)− 4αρα(G2) + 2α(α+ 1)− 1

· 4(1− α)2

ρα(G2)− 2α
yu0

. (3.2)

Now let f1(x) = 4(1−α)2(x−a)2, g1(x) = (1−α)(x−2α)(x2−4αx+2α(α+1)−1),
h(x) = g1(x)− f1(x) and x > 7α+ 1. Then we have

h(x) = (1− a)
[
x3 − 2(α+ 2)x2 + (2α(α+ 5)− 1)x+ 2α(1− 4α)

]
:= (1− α)ζ(x).
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It follows that

ζ ′(x) = 3x2 − 4(α+ 2)x+ 2α(α+ 5)− 1

> 3(7α+ 1)2 − 4(α+ 2)(7α+ 1) + 2α(α+ 5)− 1

= 121α2 − 8α− 6

> 0.

Thus ζ(x) is a monotonically increasing function on x > 7α + 1. Hence, h(x) =
(1− α)ζ(x) > (1− α)ζ(7α+ 1) = (1− α)(259α3 − 13α2 − 32α− 4) > 0. It follows
that g1(x) > f1(x) and

x− α
x2 − 4αx+ 2α(α+ 1)− 1

· 4(1− α)2

x− 2α
<

1− α
x− α

.

Note that ρα(G2) > 7α + 1 and yv = 1−α
ρα(G2)−αyu0

for any v ∈ {w1, . . . , wm−g−1},
then by (3.2), we have

yu2 ≤
ρα(G2)− α

ρ2
α(G2)− 4αρα(G2) + 2α(α+ 1)− 1

· 4(1− α)2

ρα(G2)− 2α
yu0

<
1− α

ρα(G2)− α
yu0

= yw1 .

Hence, yu2 < yw1 . Let G′′ = G2 − {wu2} + {w1w}. Clearly, G′′ ∼= G∗. By
Lemma 2.4, we have ρα(G2) < ρα(G′′) = ρα(G∗).

Now we can give the proof of Theorem 1.4.

Proof of Theorem 1.4. Notice that g ≥ 4 and m ≥ g + 7 since m ≥ 3g ≥ 12.
Then by Lemmas 3.1 and 3.4, we have

ρα(G1) > ρα(G∗) > ρα(G2) > · · · > ρα(Gb g2 c).

Set Gm−g(m, g) = G(m, g)
∖

({G0} ∪ H(m, g)). Note that G0 is a unique graph
with maximum degree m − g + 2 among G(m, g). By Lemma 2.9, H(m, g) =
{G1, G2, . . . , Gb g2 c, G

∗} is the set of graphs in G(m, g) with maximum degree m −
g + 1. Then for any G′ ∈ Gm−g(m, g), we have ∆(G′) ≤ m − g. On the other
hand, we have ∆(Gb g2 c) = m − g + 1 > m − g ≥ ∆(G′) ≥ 2m

3 since m ≥ 3g. By

Corollary 2.3, we obtain ρα(Gb g2 c) > ρα(G′). Thus, the second to the

(
b g2c+ 2

)
th

largest graphs in G(m, g)
∖
{G0} by their Aα-spectral radius is given by

ρα(G1) > ρα(G∗) > ρα(G2) > · · · > ρα(Gb g2 c).

This completes the proof of Theorem 1.4.
Moreover, we further consider the first to the (b g2c+3)th largest graphs according

to their Aα-spectral radius among all graphs in G(m,≥ g). For 0 ≤ i ≤ b g2c, we
use Gig and G∗g instead of Gi and G∗ to distinguish the girth of the graphs in the
following proof. Now, we give the proof of Theorem 1.5.

Proof of Theorem 1.5. Denote by M and N are the sets of all graphs in
G(m,≥ g) with maximum degree at least m − g + 1 and at most m − g, re-
spectively. It follows that G(m,≥ g) = M ∪ N . It is easy to check that M =
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{G0
g, G

1
g, G

∗
g, G

2
g, . . . , G

b g2 c
g , G0

g+1}, where the maximum degree of G1
g, G

∗
g, G

2
g, . . .,

G
b g2 c
g and G0

g+1 is m − g + 1 and ∆(G0
g) = m − g + 2. For any G ∈ M , note that

∆(G) ≥ m− g + 1 and K1,(G) is a proper subgraph of G. By Lemma 2.6, we have

ρα(G) > α(m − g) + 1. For any G′ ∈ N , since ∆(G′) ≤ m − g and m − g ≥ 2m
3 ,

then by Lemma 2.8, we have

ρα(G′) ≤ α(m− g) + 2(1− α).

Since α(m− g) + 2(1− α) ≤ α(m− g) + 1, each Aα-spectral radius of the graph in
M is more than that of the graph in N . By Theorem 1.4, to complete the proof it

remains to show ρα(G
b g2 c
g ) > ρα(G0

g+1).

Let x be the Perron vector of ρα(G0
g+1). Note that

ρα(G0
g+1) > α(m− g) + 1 = 8α+ 1

since m ≥ 3g ≥ 12. If g is even, by the symmetry of G0
g+1, then xub g

2
c

= xub g
2
c+1

(see Figure 4). If g is odd, by the symmetry of G0
g+1, then xub g

2
c

= xub g
2
c+2

(see

Figure 4). By (2.2), we have

ρα(G0
g+1)xub g

2
c+1

= 2αxub g
2
c+1

+ (1− α)(xub g
2
c

+ xub g
2
c+2

)

= 2αxub g
2
c+1

+ 2(1− α)xub g
2
c
,

which implies that

xub g
2
c

=
ρα(G0

g+1)− 2α

2(1− α)
xub g

2
c+1

>
6α+ 1

2(1− α)
xub g

2
c+1
≥ 4xub g

2
c+1
.

It follows that xub g
2
c
> xub g

2
c+1

. Thus, we have xub g
2
c
≥ xub g

2
c+1

. Let

G′ = G0
g+1 − {ub g2 c+1ub g2 c+2}+ {ub g2 cub g2 c+2}.

Clearly, G′ ∼= G
b g2 c
g (see Figure 4). By Lemma 2.4, we have ρα(G0

g+1) < ρα(G′) =

ρα(G
b g2 c
g ). This completes the proof of Theorem 1.5.
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Figure 4. The graphs G0
g+1 and G′, where the edge with “X” represents it is deleted.
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