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BIFURCATIONS OF CODIMENSION THREE
IN A LESLIE-GOWER TYPE
PREDATOR-PREY SYSTEM WITH HERD
BEHAVIOR AND PREDATOR HARVESTING*

Yong Yao'! and Jun He!

Abstract A Leslie-Gower type predator-prey system with herd behavior in
prey and constant harvesting in predators is considered in this paper. It is
shown that there are two non-hyperbolic equilibria, one is a nilpotent cusp of
codimension at most three and the other one is a weak focus of multiplicity
also at most three. A complete analysis on bifurcations with codimension
three is given as the bifurcation parameters vary, which includes a Bogdanov-
Takens bifurcation of codimension three and a degenerate Hopf bifurcation
of codimension three. The results indicate that the Leslie-Gower type system
exhibits richer bifurcations than the classic Leslie-Gower model and also reveal
the complexity of the interaction between the prey, predators and humans.

Keywords Leslie-Gower type system, herd behavior, predator harvesting,
Bogdanov-Takens bifurcation of codimension three, degenerate Hopf bifurca-
tion of codimension three.
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1. Introduction

Individuals of one population usually gather together in herd for the purposes of
foraging and defense in the ecosystem such as the cooperative hunting and the
group defense. For the defensive purpose, the weakest prey individuals occupy the
interior of the herd and the stronger ones stay at the border of the herd when
the attack arises. As a ecological consequence of the herd behavior in prey, it is
mostly the prey individuals at the border that suffer the attack from the predators.
As a mathematical consequence of the herd behavior in prey, a series of nonlinear
functional responses is proposed to account for the assumption that the interaction
only occurs along the border [1,3,8,9, 14, 22]. For instance, Ajraldi [1] proposed
the square root functional response a+/x and He and Li [9] considered the following
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Leslie-Gower type system with the square root functional response

CCZT:; =raz(l- %) — a\/zy,

(1.1)
W _ roy(l — i)
dt px’’

where x and y are the densities of prey and predator, r; and ry are the intrinsic
growth rates of prey and predator, k£ and px represent the carrying capacities of
prey and predator, a./z is the per-unit predator extraction rate of prey, respectively.
They obtained that the unique positive equilibrium of system (1.1) is either globally
asymptotically stable or unstable and at most one stable limit cycle is induced by
the Hopf bifurcation. Therefore, the dynamics of system (1.1) turn out to be richer
than that of the classic Leslie-Gower model because the functional response takes
the square root of density of prey rather than simply the density of prey [10,15].

Humans usually harvest some populations for the commercial purpose, which
provides a direct motivation to model the harvesting behavior in the predator-
prey systems [19-21,24,27]. The most basic type of harvesting is the constant
harvesting, whose influence on the dynamics of predator-prey systems has received
great attention [11,12,18,25,26]. Huang and Gong [12] considered the following
Leslie-Gower type system with constant predator harvesting and performed detailed
analyses of dynamics

(1.2)

where H represents the constant predator harvesting. Their results showed that the
system has a weak focus of multiplicity 2 and a cusp of codimension 3 for suitable
parameter values and exhibits various kinds of bifurcations including the saddle-
node bifurcation, the Hopf bifurcations and the Bogdanov-Takens bifurcation of
codimension 2 as the values of parameters vary. Therefore, the dynamics of system
(1.2) are more complex than that of the classic Leslie-Gower model because the
term of constant predator harvesting was considered.

In this paper, the following Leslie-Gower type predator-prey system is consid-
ered, in which the prey exhibits herd behavior and the predators are continuously
harvested at the constant harvesting rate

d
d—j =rz(l— %) — av/zy,
(1.3)
ay =roy(l — g) - H.
dt px
For mathematical simplicity, we nondimensionalize model (1.3) by
Ti=2, gi= - =y, si= 2 n._ap\/ﬁ h:= ol
. kv y: Tl\/E’ . 1t . 7"17 . " ) . T%\/E
and drop the bars. Then system (1.3) takes the form
d
o =) = Vay,
t (1.4)
dy y
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where we still denote Z, 4 and ¢ as x, y and ¢ respectively. Due to the biological
significance and not well-defined at = 0 of system (1.4), we restrict our attention
to system (1.4) in Q := {(z,y) : « > 0,y > 0}. In order to study the orbits of
system (1.4) near x = 0 in €, it is necessary to discuss the dynamics of the system
at x = 0. By the time rescaling 7 := nxt, system (1.4) is changed into the following
topologically equivalent system

W a1~ 2) — Vay) = Po(ay), (ws)
% = sy(nz — y) — hnz = Py(z,y),

where 7 is still denoted as ¢. Although the square root functional response is non-
differentiable at © = 0, we can claim that system (1.5) is Lipschitzian in Q :=
QU{(z,y) : =0,y > 0}. In fact,

|Pi(z1,y1) — Pi(z2,y2)] < n{|z(l —x1) — 23(1 — z2)| + |z1/@1y1 — T2y/T2y2}

with (z1,%1) and (z2,72) in Q. Let fi(z) := 22(1 — 2) and fo(z,y) := xy/xy, which
are C'. Therefore, there exist constants K; and K» such that

|Pi(z1,31) — Pi(ze,y2)| < Kilzr — 22| + Ko(|z1 — @2| + |y1 — y2])
<K || (21,91) — (z2,92) ||

with K := max(K; + Ks, K»), which implies that P;(z,y) is Lipschitzian. Anal-
ogously, we also obtain that Ps(x,y) is Lipschitzian. Therefore, system (1.5) is
Lipschitzian in Q, which means that the uniqueness of solution of system (1.5)
holds in Q. The equilibrium (0,0) of system (1.5) is degenerate, whose associated
Jacobian matrix is identically null. We need to perform the desingularization of the
equilibrium (0, 0) by the blow up technique [2]. By applying the y-directional blow
up and the z-directional blow up sequentially, we get the local phase portrait of
system (1.5) near (0,0) in €2, i.e., x = 0 is the unique solution approaches (0,0) in
Q) as t — 400 and the other solutions with the initial values near (0,0) in Q cross
the z-axis as the time increases (see Figure 1).

y

X

Figure 1. The local phase portrait of system (1.5) near (0,0) in Q.

The purpose of this paper is to discuss the dynamics of system (1.4) in Q and
clarify how the herd behavior in prey and the constant harvesting in predators affect
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the dynamics of system (1.4), thereby revealing the effects of which on the densities
of prey and predator in ecology. The layout of this paper is as follows. In Section
2, the number, type and stability of equilibria in system (1.4) are discussed. In
Section 3, the degenerate Bogdanov-Takens and Hopf bifurcations of codimension
3 around the cusp and the weak focus are shown in detail. The paper ends with a
brief discussion in Section 4.

2. Equilibria

In this section, we firstly consider the number, type and stability of equilibria in
system (1.4), which are presented in the following result. Let z := y/z and

h
F(2) ::z4—|—n23—2z2—nz+—n—|—1,
S
T(z) := —3nz> + 452> + n(2s + 1)z — 4s,
S
hy = —5(23 +nzs — 222 —nz + 1),
where function F(z) has a double positive root z, and two simple positive roots z;

and z9 with z; < 29, and zg is the unique positive root of the first derivative of
function F(z), i.e.,

F'(z) == 42" + 3nz* — 42 — n.

Theorem 2.1. System (1.4) has at most two equilibria. Concretely, system (1.4)
has

(i) no equilibrium if h > hq;

(ii) a unique equilibrium E, := (22, 2.(1 — 22)) if h = hy, which is degenerate;

(iii) two equilibria By := (22,21(1 — 22)) and Ey := (23,22(1 — 23)) if 0 < h < hy,
where Eo is a saddle and Ey is either an unstable node or focus if T(z1) > 0 or
center type if T'(z1) = 0 or a stable node or focus if T(z1) < 0.

Proof. Equilibria of system (1.4) are determined by the following nullclines

21— 2) — Ey =0,
sy(l—-2)—h=0.

(2.1)

The first equation of (2.1) has one positive root y = /z(1—z) with 0 < z < 1 in Q.
Substituting y = v/x(1 — z) in the second equation of (2.1), we obtain the quartic
equation F'(z) given just above Theorem 2.1. In what follows, we discuss the positive
roots of F'(z) in the interval (0, 1) by analyzing the monotonic interval partition and
the signs of F'(z) at endpoints of interval indirectly rather than by the formulae of
quartic roots directly. The second derivative of F(z) is F(z) := 622 + 3nz — 2,
which is strictly increasing on the interval (0,1) and has one positive root

. —3n +v9In? + 48
zZ0 =
12

in the interval (0, 1). Clearly, the first derivative F’(z) given just above Theorem 2.1
is strictly decreasing on the interval (0, Zp) and strictly increasing on the interval
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(Z20,1). That the monotonic interval partition of F’(z) combined with the signs
of F'(z) at endpoints of interval (i.e., F/(0) < 0 and F’(1) > 0) indicates that
F’(z) has no positive root in the interval (0,Zp) and one positive root zp in the
interval (Zp, 1). Therefore, function F'(z) is strictly decreasing on the interval (0, zo)
and strictly increasing on the interval (zg,1). Similarly, the monotonic interval
partition of F(z) combined with F(0) > 0 and F(1) > 0 indicates that function
F(z) has no positive root if F(zy) > 0, one positive root z, if F(z) = 0 and
two positive roots z; and zo with z; < zg < 29 if F(z9) < 0. It follows from the
expression of F(z) that F(z9) > 0, = and < 0 if and only if ~ > hy, h = h; and
0 < h < hq, respectively, where the expression of h; is given just above Theorem 2.1.
Incidentally, we can claim that h; > 0 by applying the successive pseudo-division
to hy and F’(zg). Correspondingly, system (1.4) has no equilibrium if h > hq, one
equilibrium E, = (22, z,(1 — 22)) if h = hy and two equilibria E; = (23, 21 (1 — 27))
and Fy = (23,22(1 — 23)) if 0 < h < hy.

Next we study types of equilibria of system (1.4). The Jacobian matrix of system
(1.4) at positive equilibrium E = (22, 2(1 — 2?)) is given by

1—322
—z
2
J(E) =
&) s(1—22)% s(222 4+ nz —2)
nz? nz
Then the determinant and trace of J(E) are

sF'(2) T(z)
D E = - ’I‘I‘ E = —"
() = LG mgmy = 1O

respectively, where F/(z) and T'(z) are given just above Theorem 2.1. It implies
that Fs is a saddle since F'(z2) > 0, E, is a degenerate equilibrium since F'(z,) =0
and FE is either an unstable node or focus if T'(z1) > 0 or center type if T'(z1) =0
or a stable node or focus if T'(z1) < 0 since F’(z1) < 0. The proof of Theorem 2.1
is completed. O

Theorem 2.1 shows that equilibria E; and F5 coalesce into a unique double
equilibrium FE, when h = hy. In what follows, we need to consider the detailed
types of degenerate equilibrium F, further. Let

4z, (1—22) 22(322 - 1)

. 5 5 s(1—2z7) 2
Sy :={(s,n,h) eR] : h = n = 321 , 8 F =
1
— <z < 1},
v } (22 +1)(322 — 1) (1-22) 2322 -1)
o 3 ., (182 — Dz 4z (1 — 2 2 (382 -1
So1 :={(s,n,h) €eR} : h = 1 ,n = 321 ,8 = 2
1
7<Z*<2’3}
v | (22 +1)(322 — 1) (1-22) 2322 -1)
o 3 ., (132 — Dz 4z (1 — 2 28z -1
Sog :={(s,n,h) €eR} : h = 1 ,n = 321 ,8 = -z
23 < z4 < 1},
2 2 2 2(9.,2
o 3, (ZEH1D)Bz =1z 4z(l-2)) 2i(3z 1)
Ss:={(s,n,h) €R] : h = 1 ,n= 321 8= [z

Ze = 23},
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where

23 = \/2{3/4 107 — 212 — \*/4@1 +212 — 5} = 0.7427
is the maximal positive root of function
g(z) =325 + 1524 — 1122 + 1.
Theorem 2.2. Equilibrium E, is a saddle-node if (s,n,h) € S1, a cusp of codi-

mension 2 if (s,n, h) € So1USa2, and a cusp of codimension 3 if (s,n,h) € Ss. The
phase portraits of cusp are shown in Figure 2.

T
0.385

> 03751

0.3651

Figure 2. The phase portraits of cusp E.: (a) cusp of codimension 2 when s = 0.1957, n = 5.6131 and
h = 0.0618; (b) cusp of codimension 3 when s = 0.8056, n = 2.0341 and h = 0.1887.

Proof. For (s,n,h) € S1, equilibrium F, is degenerate with one simple zero eigen-
value. Applying transformation

3 1— 2

22* 4 2 *
__x z —
S(Zg _ 1)y1 w0 Y 22:*

T =z + o1y 4 2(1—27)

to translate E, to the origin and diagonalize the linear part of system (1.4), we
obtain

dzy 53z +1) 22
dt 41— 22) {328+ (s—1)22 — s} '
2128+ (145 = 5)zd + 3s(s — 2)22 — 5%
2s(22 — 1){3z¢ + (s — 1)22 — s} n
(s+5)zt+ (25 —1)22 — s 3
0] , )
N FE s}xlyl +O(|| (z1,91) I°)

@773zf+(571)2375

5322 = 1){-328 + (s + 2)2 + (25 + 1)22 + S}x2
1625{324 + (s — 1)22 — s} !
N (322 = 1){—928 + (25 4+ 1)28 + 25(2s — 1)2} + s%(s — 4)22 — 33}y2
423s(22 — 1){324 + (s — 1)22 — s} !

(322 — 1){628 + 322s + s(s + 1)22 + 5%} )
_ o |
424320 4 (s — 1)22 — s} z1y1 + O(|| (z1,91) [I°)
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Because the coefficient of 22 in the first equation of system (2.2) satisfies

s(3z1+1)
41 — 22){3z¢ + (s — 1)22

0

for (s,n,h) € S1, Theorem 7.1 in [29] shows that the origin of system (2.2) is a
saddle-node. Therefore, degenerate equilibrium FE, is a saddle-node if (s,n,h) € S;.
For the other cases, equilibrium FE, is degenerate with one double zero eigenvalue.
Applying transformation
224 4z,

_ _ 2 _
r=— 522 $1+y1+2*7 Y=y + 2 (1 —z), t_WT

to translate F, to the origin and normalize the linear part of system (1.4), we obtain

B ¥ as? + any? + + agoa + anady; + 2+ agay?
dr Y1 20T7] T Ap2Y1] T A11T1Y1 T A30T1] T A21T1Y1 T A12X1Y1 T A03Yq
+ agort + az173y1 + agery? + a3zt + aoayi + O(|| (w1,91) ||5)7<2 )
d . ’
% = bzomf + bozy% + b1y + b30£? + b21I%y1 + b12x1y% + b03yf
+ baoxt 4 ba12ty1 4 bazayt + bizzry} + boayi + O(|| (z1, 1) [I°),
where
(22 4+1)? 2(z2+1) 1
ao = — ay = — aps i = —
% (22— 12322 -1)27 " %(B22-1)(22-1)" " b
) 19722 — 69 2(22 +1)2
= ————F—=, 30 = — =
04 3225(322 —1)27 "% 2. (22 — 1)2(322 — 1)3
(322 = 5)(22+1) 4
agy) 1= — aip 1=
AR -E - T z%ﬁfMQfW
U (-2t Vi B3R
TR - 2E2 - )T T B2 - 1)2(322 - 1)
322 +622 - 13 2(22 - 3)
a = a =
P AB2 o122 -1 P ABB2-1)(2- 1)
LI 423(3z¢ +1) b 2122 -5
ap4 1= — == = oo g
e ) S ) PR CE S Dk
4(522 - 1) 4(228 + 724 = 1)
by = — , bgo = — ;
(B2 -1 1) (2 - 1732 - 17
— 2128 — 23z — 2522 + 11 (2. —3)(5z. +3)
TG (2 - 0 T 232 1)3(:2 - 1)
2522 -9 4125 49324 + 1122 — 17
b03 = 209 oo b40 == )
423(322 — 1)2 22, (22 — 1)2(322 — 1)6
1 2(1428 — 3122 — 2822 +13)
ape == ——5, bs1:i=—
2 22 1)2(BE-1p
7528 4+ 12324 — 37522 + 113 2524 — 8322 4 26

b13 =

bog = .
A2 1232 - ) 2:4(322 — 1)3(:2 - 1)
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Then, using the near-identity transformation

To =T,
- 2 2 3 2 2
Y2 :=Y1 + az0x] + ao2y] + a11x1y1 + a3 + a21r1Y1 + a1221Y)
+ agsy; + asor] + azaiyy + asxiy; + aizz1yi + aoayl,
where the right hand side of the second equation is the fourth order truncation

of the right hand side of the first equation in system (2.3), system (2.3) takes the
Kukles form

dxg -
dT - y2a
d
% = 020953 + Cozyg + c11%2y2 + Csoﬁcg + 021353212 + Clzzzyg + 00393 (2.4)
+ cao®sy + C3123Y2 + coaw3Y5 + c13ays + coays + O(|| (22,92) [1°),
where
423324 + 1) 3324 — 1822 +1
C = - C = —
TR oE2 DY T 2322 - 1)2(:2 - 1)
2(328 +152% — 1122 +1) 1628
‘1 == 2 30,2 2 v G0= 75 2(2,2 57
2(2128 + 1228 — 2422 + 822 — 1) 5128 — 4824 + 1522 — 2
C = — C = -
* B2 -2 -1 23221322 -1)2
22 -1 2427

T BE2 o2 T B2 o182 - 1)

2(69210 — 328 — 6625 + 422% — 1122 + 1)

T 22(322 — 1)5(22 — 1) ’
15328 — 19828 +9924 — 2422 + 2
C = - C I —
2 23(322 — 1)4(22 — 1)3 T 022322 — 1)
3(22-1)

01T 39,5322 — 1)2

Further, using the transformation z3 := %2, y3 := y2 — cgox2y2 and time rescaling
t := (1 + cpox3)T to eliminate the term of 33 in system (2.4), we obtain

drs _

dt - y37

d

% = dzox;%, + di1x3ys + d3ox§ + d21x§y3 + d12x3y§ + do3y§ + d4ox§ (2.5)

+ d3123y3 + dao3y3 + diszsys + doays + O(|| (s, y3) [1°),
where

o ._ . ._ o 2
dag := ca9, d11 := c11, d30 = c30 — 2cp2C20, d21 := c21 — Cp2c11, di2 i= C12 — Cjg,
o 6.2 ._ ._ 3

do3 = co3, dao = 2¢fyC20 — 2€02€30 + Ca0, d31 := 31 — Cpaca1, daz 1= C22 — Cyo,

dy3 := coaco3 + €13, dos := Coa.
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Because dog < 0 and di; # 0 (reps. =0) for (s,n, h) € So;USas (reps. Ss3), Theorem
7.3 in [29] shows that the origin of system (2.5) is a cusp of codimension 2 (reps.
at least 3). Therefore, degenerate equilibrium F, is a cusp of codimension 2 (reps.
at least 3) if (s,m, h) € Sa1 U Saa (reps. S3).

Next, we determine the exact codimension of cusp E, for (s,n,h) € S3. The
transformation

T3 = T4,
ys = ya + doszayi + Sdis2y] + doazays

and time rescaling 7 := (1 + dogzays + 3d1323ys + doaz4y3 )t bring system (2.5) into
the form

dx4 -

dr = Y4,

d

% = doox] + dsox} + do12iys + diazay; + daoxy + (ds1 — 3doodos)ziys (2-6)

+ da2x3yd + O] (24, 5a) [1°)-

Further, reducing the coefficient of term of 23 in system (2.6) to 1 by the transfor-
mation x4 = —x5, Y4 = —v/ —d20ys and time rescaling ¢t := \/—doo7, we obtain

dl‘5 -

dt - y57

dy5 - q

P Ig + 63093§ + 612$5y§ + 62117%3/5 + 640$§ + ezzx§y§ + 631I§y5 (2.7)

+O(|| (zs,95) |1°),

where
d d do1
e30 = ———, e12 :=di2, €21 := ,
30 dyy’ 12 12, €21 —dog
€40 1= dao oo = —d - 3doszdag — da1
0= 5, €22:= —d22, €31 '= — — .
dao V—dao
Proposition 5.3 in [16] shows that system (2.7) is equivalent to the system
dl‘ﬁ -
dt = Ys,
dys
25— 23+ Gy + O (w,36) ),

where

G = e31 — e3pe21
_3(3231216 + 12240214 — 23696212 + 19440210 — 1351428 + 721625 — 210427} + 27222 — 13)
22,(22 —1)3(322 — 1)%(322 + 1)/2: (322 + 1)

= 1.6457

for (s,n,h) € S3. Therefore, degenerate equilibrium F, is a cusp of codimension
3 if (s,n,h) € S3 and there is no cusp with codimension larger than 3 for system
(1.4). The proof of Theorem 2.2 is completed. O
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3. Bifurcations

In this section, we discuss the possible bifurcations in system (1.4) around the
nonhyperbolic equilibria F, and EF;. From Theorem 2.2, we can see that system
(1.4) may undergo a degenerate Bogdanov-Takens bifurcation of codimension 3
around FE,, which is first displayed in the following result.

Theorem 3.1. System (1.4) undergoes a degenerate Bogdanov-Takens bifurcation
of codimension 3 in a small neighborhood of equilibrium E, as parameter (s,n,h)
varies near S3. Hence, system (1.4) can exhibit the existence of two limit cycles or
one limit cycle and one homoclinic loop.

Proof. Introducing small € = (€1, €2, €3) into system (1.4), we obtain the unfolding

system
dx
at =z(1—2) - Vay,
dy y (3.1)
7 (s+e)y(l— m) — (h +e3).

Following the procedures given by Li et al. [17] (see also [13]), we make a series of
transformations transform system (3.1) to the versal unfolding of Bogdanov-Takens
singularity of codimension 3

dx

-7 =Y

di

o (3.2)
= =77y + sy + z® + 2%y + R(z,y,€),

where
R(z,y,€) = y*O(|lz,y1*) + O(|z,y[*) + O(e)(O(y*) + O(|z,y|*)) + O(e>)O(|z, y|),

and check
#0.

' (1,72, 73)
e=0

6(617 €2, 63)

Firstly, transforming equilibrium E, to the origin when € = 0 by x = x1 + 22,
y = y1 + 23(1 — 22) and using Taylor expansion, then system (3.1) becomes

B romn + G + e +a + agoa} + amatyr + dzad
a a1px1 + ap1yY1 + aA0x7 T A11T1Y1 T 30T T A21T1Y1 T A31T1Y1
+ aaor + O(lz1, 1),
dyp 5 | 5 T ~2~3~2(3.3)
T boo + b1ox1 + bory1 + b0y + br11x1y1 + bo2yi + bsoxy + barxiys
+ 5123:13/% + 8401‘411 + Bglx‘;’yl + 132233%:% 4 O(|$1, y1|5)’
where
~ 1—32,3 - ~ 1-92% - 1 ~ Z§—1
a = , Q = —2z3, Q = , a =—— =8 -
10 5 01 3, 020 822 11 5, 030 1621
~ - 1 5(1 — 23)
a ===, Q =, a =
TR T 62 M0 712848
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(322 —1)(22 — 1)(325 — 221 — 22 + €1)

810 =
(423 — 3226 — 423 + €2) 23 ’
’6 . —4Z3(3Z§—1)(Z§—1)5162+4(Z§+1)(Z§—1)261+4(1—32§)€2€3+Z3(323—1)362—‘1-1623(23—1)63
00 -= 4(423 —322e3—4z3+€2) ’
by = (325 — 251 — 23 + €1)(225 + B2fer — 425 — 2365 + 2)
T )

23(2% — 1)(425 — 323€x — 423 + €2)

Bo = (328 —1)(23 — 1)(325 — z8er — 23 + 1)
0" (423 — 32269 — 423 + €2)23 ’

2(325 — 23e1 — 22 +€1)(323 — 1)

by = ———
" 23(425 — 323€x — 423 + €2)
B (323 — 2z3e1 — 23 + €1)(323 — 1)
02 (22 — 1)(423 — 32%€2 — 423 + €2)23’
(@ - ) -0(3 —Ba — G+ e)
0 (423 — 3230 — 423 + €2)2§ ’
. 2(324 — 2361 — 23 +€1)(322 — 1)
T B4 — 3226 — 423 + €2)
~ (325 — 2361 — 22 +€1)(322 — 1)
b12 =

(22 —1)(423 — 322€x — 423 + €2)25

bio = (328 —1)(28 — 1)(325 — z8e1 — 23 + 1)
0" (423 — 323€9 — 425 + €2)25 ’

Boi i 2(325 — 2361 — 23 + €1)(323 — 1)
o 25(425 — 323€x — 423+ €2)

(325 — 23e1 — 25 +€1)(322 — 1)
(22 — 1)(423 — 323€ — 423 + €2)25’

byo 1= —

in which parameters h, n and s have been eliminated by equations given in Ss.
Secondly, reducing system (3.3) to the Kukles form by the near-identity trans-
formation

To = T,
_ = ~ -9 =~ L3~ 9 ~ 3
Y2 = G10T1 + Go1Y1 + G20T] + A11T1Y1 + A3027 + A21T7Y1 + A31T7Y1
~ 4 5
+ agor] + O(|z1, y1[°),

then we obtain

d.TQ -
dt - y27
dya - N . . _ _ _
o - Coo + E1022 + Go1ya + G203 + Er122Y2 + Co2ys + Ca0xs + Earadys (3.4)
+ C12T2Y3 + Ca0T3 + C31T3Yy2 + C2273y3 + O(|z2, y2]?),
where

Coo :=01boo, C10 = Gp1b10 — @10bo1 + G11b00, Co1 := bo1 + @10,
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1 - - - - - -
~ ~2 - ~ ~ ~ ~ ~2
C20 lzaf{bmam — b11@10G01 + (G11b10 — @20b01 + G21b00)a01 + bo2G7y },
01

11 12?;(2@015120 + Go1b11 — @10a11 — 2a10bo2), oz 1= d%l(du + bo2),

C30 12&%1{530@81 + (—d10521 + @11boo — Gg0b11 + a21b10 — dzobor + d31500)d31
+ @10(@10b12 + 2a20bo2)do1 — drga11boz}

C21 12&%1{(3&30 + 521)51(2)1 — (2a10a21 + 2a10b12 + G11d20 + 2&20502)501
+ G101 (@11 + 2bo2) },

. 1, _ o= ~ R
C12 1:?(2001021 + ap1bi2 — a7y — @11bo2),
01

1 - _ ~ _ _ ~ N
~ ~4 ~ ~ ~ ~ ~ ~
€10 '==5~{baolp; + (—G10b31 + G11b30 — G20b21 + G21b20 — @30b11 + 31010

ap1
~ 7 o\s3 ~2 7 - o7 B SRR
— Ga0bo1)ag, + (aigb2z + 2a10a20b12 + 2a10a30b02 + G50bo2)dg,
- 4~ o~ 3 ~ o~ 7 . o~ T \x -2 ~2 7
— a10(@10G11b12 + G10G21bo2 + 2G11G20b02)G01 + G107 002},

1 _ _ _
~ . ~ ~3 ~ ~ ~ ~ ~ ~ ~ ~
C31 =g {(4a40 + b31)ag, — (3@10G31 + 2a10b22 + A11G30 + 2G20021 + 2G20b12

01

~ 7 ~92 -~ o~ ~ ~ 7 ~ o~ 7 ~2 ~
+ 2a30bo2)ag + (3@10G11021 + 2G10a11012 + 2a10a21bo2 + @71G20

+ 2411 a20b02) @01 — G10a3; (@11 + 2bo2) },

5 1 5 ~ L o - NS o ~
C22 12?{(36131 + bao)a@gy — (3a11a21 + @111 + d21bo2)dor + @iy (arr + boz)}-
01

Thirdly, removing the term of y3 from system (3.4) by the near-identity trans-
formation o = x3 + COTQJU%, Y2 = y3 + Co2x3ys, then system (3.4) is transformed

to

drs _

dt = Y3,

d 7 7 7 7 et ~ ~

% = doo + d1ows + dorys + daozi + di1w3ys + dzoxs + da123y3 (3.5)

+ J12$3y§ + Ci4o$§ + 623156‘?;?!3 + me%y% + O(|z3, ys]°),
where
doo := Goo, dio = 10 — CooCo2, do1 = Go1, di1 i= C11, dag = %(502511 + 2621),
dag = %(2500532 — Go2810 + 2620), d3o = *%(2500582 — Coatro — 2830),
dig := 282y 4 12, dag = 3(4500532 — 235C10 + E2yCan + 202830 + 4é40),

PP P S 3 _ax = -
d31 = Cp2Ca1 + €31, dap := —5(2002 — 3€02C12 — 2é22).

Fourthly, removing the term of z3y2 from system (3.5) by the near-identity
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transformation x3 = x4 + d“‘ :104, Yys = Y4 + d12 m4y4, then we obtain

drs _

dt - y4a

dys . . N N _ . _

o €po + €10%4 + €01Y4 + 620%21 + €1124Y4 + ezoxi + 6215104213/4 (3.6)

+ €102 + E3125ya + €20x3yF + O(|ma, ya|®),
where
éo0 := doo, €10 1= di0, o1 = do1, E11:=dy1, E21 = da,
€20 = _%(d00d12 — 2dsp), é31 = %(JMJM +6d31), €22 1= doo,
€30 1= —%(Cilodlz — 3d30), €40 := %(362000%2 — 2dy2d0 + 12d49).

Fifthly, removing the terms of 3 and 2} from system (3.6) when ¢ = 0 by the
near-identity transformation and time rescaling

~ ~2 ~ ~
€30 o 15630 - 16620640 3

Ty = X5 — 1eng 5 80620 Ty, Y4 =1Ys,
. 2 - _ =2
{1+ 2663200 4862024(;)6% 25€e3 o2 €30 (486280846%0_ 35€3) 2,
where €59 = % = 0.7788 for € = 0, then system (3.6) becomes
dxs
dr = Y5,
% = foo + fiows + forys + f20$§ + fuzsys + f30$§ + ngwgys (3.7)

+ faord + farxdys + faswdy? + O(|s, ys|°),
where

foo := €00, fo1 := €01, fo2 := €22, fr0:= (2€10€20 — €00€30),

2e20
~ 1 B o N N L N
f20 = W{(Zli')ego — 48620640)600 — 20620(3610630 — 46%0)},
20
r3 1 ~ ~ ~ ~ r3 610 ~2 ~ o~
fi1 = E(Qenezo — €01€30), f30 := 1062, (35635 — 32€20€40),

_ 1 3 o o o

fo1 == 80?{(456;2),0 — 48620€40)€01 — 20€20(3€11€30 — 4€20€21)},
20

_ 1 3 o o o

f31 = W{(S&%O — 32690€40)€11 + 40820 (E20€31 — €21€30) },

~ i Y T -4\
Jao:= 640084 {(2304830e%, — 1440820E30E40 — 275830)€00
20

+ 10081020830 (16620840 — 1562,)}.

Sixthly, removing the term of z2ys from system (3.7) by the near-identity trans-
formation and time rescaling

f21 f2 f21 f
Ts =T, Y5 =Y6+ =Yg+ s, t={1+-"5ys+ =

~ Y6
3 fa0 36/2,"° 3f20 36,2,

yG} ’
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B0z +1) - 7788 for € = 0, then system (3.7) is changed into

where fao = SGZ-1)2
dl‘ﬁ
— — Ys,
d‘g (3.8)
6 - - - N N -
o goo + 9106 + Jo1Ys + 920552 + 911%6Ys + gslzv%ya + Ri(w6, Y6, €)
where

Goo := foo, 10 := fi0, G20 := fao, o1 := ];10 (fo1fa0 — foo fa1),
(firfa0 — frofa1), Gz1 = fio (faof31 — fa1f30),

~ o 1
g11 ‘= f20

and Rj(xg,ys,€) has the property of R(x,y,¢).
Seventhly, Changing go¢ and g3; to 1 by rescalings

1
5t

3 3
T = 920931

2 4 _3
Y6 = 920931 Y7,

12
T6 = go0931” L7,

since o = PELHCHE = 07788 and

g31
_ —5432224501922°4-3041228 - 7917220 4513423 6702232 +594223° —237425 451325 — 6125 — 72243
- 160(22—1)%25(323+1)2

=0.1874

for e = 0, then we can transform system (3.8) to

dLL'7
— =Y,
jT (3.9)
—dzf = hoo + h1ox7 + horyr + h1127y7 + 33% + x§y7 + Ra(27,y7,€)
where
1
5

~ 4 7 ~ 2 6 ~ 1 3 ~ 2
. x x5 % P et P ot N T
hoo = G00931920" > P10 = §10931920" > ho1 := G01931920" » P11 := G11Ga0" G31

and Ro(x7,y7,€) has the property of R(z,y, €).
Eighthly, removing the term of z7 from system (3.9) by z7 = zg — hé“, Y7 = Ys,

then system (3.9) can be put in the form of

dl‘g

=V = Ys,

dr (3.10)
dys 2, .3 R

o Y1+ Yoys + y3r8Ys + T + TRy + R3(ws, ys, €),

where
"= iLOO - iﬁ%m Y2 = FL01 - %(ﬁi’o + 4B10B11)7 Y3 = hi1 + %E%Oa

and Rs(xs,ys, €) has the property of R(x,y,e€).
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Furthermore, the direct computation shows that

‘ 8(’)/17 Y2, ’73) = _0.2236

8(61) €2, 63)

e=0

So system (3.10) is the versal unfolding of cusp of codimension 3. Hence, sys-
tem (1.4) undergoes a Bogdanov-Takens bifurcation of codimension 3 in a small
neighborhood of equilibrium E, as parameter (s,n,h) varies near S3. The proof of
Theorem 3.1 is completed. O
We next describe the bifurcation diagram of system (3.10) as in Dumortier et
al. [6] and Chow et al. [5]. System 3.10 obviously has no equilibrium for v; > 0.
v1 = 0 is a saddle-node bifurcation plane, i.e., the saddle and the node or focus
are created as y; crosses the plane to 3 < 0. The other bifurcation surfaces are
located in the half space 71 < 0. Each bifurcation surface is a cone with vertex at
the origin, which can best be visualized by drawing its trace on the half sphere

S = {(v,72,1)7i +7 +73 =%, < 0,7 > 0 sufficiently small}.

There are three bifurcation curves on S, i.e., Hopf bifurcation curve H, homoclinic
bifurcation curve C and saddle-node bifurcation curve of limit cycles L. To see the
trace on the half sphere clearly, Figure 3 gives the projection of trace on the (y1,v2)
plane. Bifurcation curves H and C' are tangent to the boundary 9S at points by
and bs and cross each other at point d. Bifurcation curve L is tangent to curves
H and C at points ho and cs, respectively. Various bifurcations can be describe as
below.

The saddle-node bifurcation occurs along boundary 0.5 except for points b; and
bo, while the Bogdanov-Takens bifurcations of codimension 2 occur at points b, and
ba.

The Hopf bifurcation of codimension 1 occurs along the curve H except for the
point ho, i.e., the subcritical Hopf bifurcation occurs when € crosses the arc byho
of curve H from the right to the left, which induces an unstable limit cycle, the
supercritical Hopf bifurcation occurs when € crosses the arc hoby of curve H from
the left to the right, which induces a stable limit cycle, while the Hopf bifurcation
point of codimension 2 occurs at point hs.

The homoclinic bifurcation of codimension 1 occurs along curve C' except for
point cs, i.e., the separatrices of saddle coincide and an unstable limit cycle appears
when € crosses the arc bycy of curve C from the left to the right, the separatrices
of saddle coincide and a stable limit cycle appears when € crosses the arc cobs of
curve C from the right to the left, while the homoclinic bifurcation of codimension
2 occurs at point cs.

The Hopf bifurcation of order 1 and the homoclinic bifurcation of order 1 occur
simultaneously at point d.

The saddle-node bifurcation of limit cycles occurs along curve L, i.e., two limit
cycles (the inner one is stable and the outer one is unstable) appear when e crosses
curve L from the right to the left triangle dhsoco, and two limit cycles coalesce into
a semistable limit cycle on arc L.

From Theorem 2.1, we can see that equilibrium F; may be a weak focus if
(s,n, h) € Dy := Dg1 U Dgs U Dgy3, where

3 4 1
Doy :={(s,n,h) € R : h = £s,n

TR S 1
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.--7’_.'_‘_.:‘

Figure 3. Bifurcation diagram for system (1.4) on S.

1—22 2(1 — 22
Do = {(s,m,h) €R® : h = hy,s = s1, A, A o

1
21 Z1 ﬁ

2(1—2%) 4z1(1—23) 1
— 3 .7 _ 1 1
Dos :={(s,n,h) € RY : h = h3,s = 51, o <n< 371 ,f3<z1<1}
with
py e A=E A0 DR -V na(H 1)

2(222 +nz — 2) ©2(228 +nz —2)

In the following, we devoted to exploring the final multiplicity of weak focus F; and
determining the exact codimension of Hopf bifurcation around FEj.

Theorem 3.2. For (s,n,h) € Dy, equilibrium Ey of system (1.4) is a weak focus
of multiplicity at most 3. More ezactly,
(i) E1 is a weak focus of multiplicity 1 if (s,n,h) € Dy := D11 U D15 U D3 with

D1 :={(s,n,h) € Do : s # ?}7 D1y :={(s,n,h) € Doz : L1 # 0},

Dy := {(s,n,h) € Do3 : L1 # 0},
(i) By is a weak focus of multiplicity 2 if (s,n,h) € Dy := Doy U Dag U Dag with
Dyy := Do1\D11, Daa := Dog\D12, Daz :={(s,n,h) € Do3\D13: Lz # 0},
(iii) Ey is a weak focus of multiplicity 3 if (s,n,h) € D3 := Do3\(D13U Da3), where
Ly :=324(322 + 1)n3 — 221(62% + 928 + 1)n? — 2(27 — 1)(3320 + 321 =522 + 1)n
—1621(32F — 1)(2% — 1)2

and Lo is given in the Appendiz.



750 Y. Yao & J. He

Proof. Translating F to the origin and making the linear transformation

e nz? " (32 — Dnzf v, U — lv
TSE - o YT
and the time rescaling 7 := wt with w := /Det(J(E1)) system (1.4) takes the form
i Z,Q%w +O(|(u,v)[*),
) Z;rjf (311)
v S 8
E—U‘f‘ Z b”’u,zUJ—I—O(K’U,,’U)' )’
i+j=2

where the coefficients a;; and Bij with (s,m,h) € Dy are given in the Appendix.

In what follows, we compute the focal values of weak focus E; by the method of
successive function [29] and prove whether they have common zeros for (s,n, h) € Dy
so as to show that F; is weak focus of multiplicity at most 3.

For (s,n,h) € Do1, the first two focal values Ly and Lo are given by

3 . . 54675316 — 2755626
I = -5(3s2-9). [, — . 3.12
1=y s B2 L 16384 (8:12)

It is obvious that L; =0 and Ly < 0 if s = % otherwise L; = 0 in Dg;1. Therefore,
E; is a weak focus of multiplicity at most 2 for (s,n,h) € Dg;. More exactly, E; is a
weak focus of multiplicity 1 if (s,n,h) € D11 and E; is a weak focus of multiplicity
2 if (S,?’L, h) S D21. B
For (s,n,h) € Doa U Dgs, the first three focal values L;(i = 1,2, 3) are given by

[ —n?21(322 —1)%L4

PT512(22 — 1)2(222 + nzy — 2)4s2wd
B 4,2 3 2 _ 1 4L
Ly = W8 — 1)L — (3.13)

12582912(z% — 1)6(222 + nzy — 2)9sTwll

= —nb23(327 — 1)°L3
37108517437440(27 — 1)10(222 4 nzy — 2)1450wlT’

where L;(1 = 1,2,3) are listed in Theorem 3.2 and Appendix. Since the other
factors in the numerators and denominators of L;(i = 1,2,3) are all positive, the
zeros of L(z =1,2,3) are determined by L;(i = 1,2, 3), respectively

We first claim that E; is a weak focus of multiplicity at most 3 for (s,n,h) €
Doz U Dy3. By Lemma 2 in [4], we have the following decomposition of algebraic
variety

Ll; L27 L37 T1 (2)7 T1 (3)
lcoeff(Lq, n)

V (L1, La, L) = V (L1, L2, Lg, lcoeft(Ly, n)) U V( ), (3.14)
where lcoeff(L1,n) denotes the leading coefficient of Ly with respect to the variable
n, r1(2) and r1(3) are Sylvester resultants [7]

r1(2) :=res(L1, La,n) = c17ror173, (3.15)
r1(3) :=res(Ly, L3, n) = c227 (321 + 1)(323 — 1)%(22 — 1)1 0r¢r3rs,
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where ¢; (i = 1,2) are nonzero constants and

ro = 272(327 + 1)(27 + 1)(321 + 1)*(32F — )M (e — 1'%,
1= 228927222 + 1650930270 + 4445478218 + 5460554216 + 2513088214
— 884090212 — 104073021% — 1642902 + 6070525 + 1627221 + 10442% + 112,
ro =328 + 1521 — 1127 + 1,
73 1= 95214674781205887953727% + 1655836798420404825969627°
+ 10851133563595038896553627* + 327919476010019019876324 272
+ 41497570031980102957931427° — 31501440547934684294916278
— 534250061393667918777180216 — 2269737161432794298248202 4
+ 351634118627473002046719232 + 20267484337367878596541221°
— 13786218368531914165119627% — 66609031213834294956984 27
+ 1437389474627871190258823* + 16146925396460767595288 232
4 288227529103424397120823° — 3666368186160886521384278
— 80449248351397707609727° + 717504696640659860216224
— 422602803968614258422% — 7452429117688338702022°
+ 1766375400414366942621° + 2533990992640113580216
— 198486707993967607621* + 1641184240140516122]2
+ 57575503826637745210 — 88911565506300282F + 353944700440404 2
— 6168938572272027 + 357659796640027 + 221457920000.

Since lcoeff(L1,n) = 321(32% + 1), 7 and the first four factors of r13 do not vanish,
it immediately follows that

V(L1, Ly, L3) N (Do U Dog) = V (L1, Lo, Ly, 172, 7273) N (Doz U Do3)
= Vl U ‘/27

(3.16)

where
Vi :=V(L1, L2, L3, r1,73) N (Do2 U Do3), Va :=V(L1, L2, L3, 72) N (Do U Dog).

Next, we prove that varieties V7 and V, are both empty. It follows that V3 = ()
since the resultant r5(3) := res(r1,73, 21) is a nonzero constant. In order to prove
that V5 is also empty, we start to consider zeros of the single-variable function 5.
By the formulae of cubic roots, we see that r5 has exactly two positive real zeros
z3 € (%, 1) given before Theorem 2.2 and

1 (V3i—1)? 1
2= \/3{(\@4) V/4V107i — 212 — \/322 \/4V107i + 212 — 5}
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1
= 0.3268 € (0, —=).
0. 7)

Moreover, applying the successive pseudo-division to equations L; =0 and Ls =0
we get 71 := prem(Lq,72,n) = g1(21)n + g2(21), where
g1(21) := — 322486272212 (5486081845521 4 1912561899302 — 69541717449621°
— 186946973292625 4 110721601520125¢ + 208316807218823*
— 108004433410825% — 73253716869623°
+ 45220611749422% + 8337154287622°
— 9065268115227 + 7461668988272 + 779764792223Y — 26201847042°
+ 10318877621¢ + 15442384821* — 40456509212 4 164042621 4 75065625
— 18974228 + 2690927 — 222027 4 84)(9z} — 1)°(32] + 1)%(27 — 1)?,
ga(z1) := — 2579890176212 (8972419005212 4 3908104191921° — 6222902849158
— 276057764469235 + 3957627956424
+ 316654253208232 — 43399997964 25°
— 140520561588228 +2886367483822¢ +28568713986224 — 8841136842272
— 2292826998270 + 129368221221% — 9403324421° — 595823002
+ 24075036212 — 319217121° — 4848412% + 18399729 — 2393327 4 196022
—84)(921 — 1)°(327 + 1)%(27 — 1),
79 := prem(La, L1,n) and prem(«, 3, ) denotes the pseudo-remainder [23] of «(z)

divided by B(z). It is clear that L1 = Lo = 0 if and only if 7; = 5 = 0. From the
equation 7, = 0, we obtain the dependence of n on z;

n=mn; .= —

For the case z1 = z4, we have n = n; = —1.717978052 ¢ I; = (2.7333,5.4665) with

[ (1—;;% 2(1—zf))
te Z1 ’ Z1

implying that L1 and Le have no common zeros in the interval ;. For the other
case z1 = z3, the number of the zeros of polynomial L; in the interval

I (2(1—7:%) 4z1(1 — 23)
2 o 3231

)

is equal to the number of the positive zeros of

2(1 — 2%)(3kz? + 223 — k)
(322 — 1)(1+ k)=

®(k) :==(1+ k)>Ly( )

4(75% - 1)2k 2 2 472 2/.2 2 3 10
:721@22 ~1)2 {=(27 +1)(327 = 1)*k" — 427 (2] +2)(32y — 1)°k — 39z
1

— 14728 + 11425 — 302] + 522 + 1}
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as indicated in [28]. We can check that all the coefficients of k in the bracket {---}
are negative for z; = z3 implying that ®(k) has no positive zeros. Thus, L; has no
zeros in the interval I for z; = z3. Summarily, we see that Vo = (). Since the two
varieties V7 and V, are proved to be empty, we see that V(Ly, Lo, L3)N(Dg2UDg3) =
() from (3.16), which implies the claimed result that F; is a weak focus of multiplicity
at most 3 for (s,n,h) € Dga U Dos.

Then, we further claim that the multiplicity of weak focus F; can be up to 3
for (s,n,h) € Doz U Dy3. Using Lemma 2 in [4] again we similarly decompose the
algebraic variety

V (L1, L2) N (Do2 U Dog) = V (L1, La,r172) N (Do2 U Do3) = V3 U Vy,
where
Vg = V(Ll, LQ,TQ) n (DOQ U Dog), Vi = V(Lla Lo, 7‘1) N (D02 U D03)'

Next, we can prove that variety V3 is empty and variety Vj is not empty, or more
specifically, V(Li, La,7m1) N Dop3 is not empty. It immediately shows that V3 = ()
from the above proof of Vo = ). Polynomial r; has two positive zeros zs = 0.5491 €
(0, %) and zg = 0.6815 € (%, 1). For z; = z5, we obtain n = n; = —0.9026 ¢
I, = (1.2722,2.5444) implying that L; and Ls have no common zeros. Thus,
V (L1, La,m1) N Doy = 0. For z; = zg, we obtain that n = ny = 2.0755 € I, =
(1.5720,3.7138) is the common zero of 7; and 75 implying that L; and Ly have
common zeros. In fact, substituting the expression of n; into 79 we just obtain that
r1 is one of the factor of the numerator of 7o. Thus, V(L1, Lo, 1) N Do3 # 0, which
actually is the set D3 defined in Theorem 3.2. Consequently, the claimed result is
proved. The proof of Theorem 3.2 is completed. O

4. Discussions

The basic idea of modeling is that while the predators are assumed to be harvested
by humans and live independently of others, the prey instead gathers in herds.
So that a Leslie-Gower type predator-prey system with herd behavior in prey and
constant harvesting in predators is considered in this paper. We present the com-
plete analysis on qualitative properties of equilibria and bifurcations around the
non-hyperbolic ones in system (1.4). It is shown that system (1.4) undergoes a
Bogdanov-Takens bifurcation of codimension three and a degenerate Hopf bifurca-
tion of codimension three.

From the viewpoint of mathematics, the dynamics of system (1.4) are much
more complex than the dynamics of the classic Leslie-Gower model because the
latter only has a unique globally asymptotically stable positive equilibrium. The
reason for this difference in dynamics between them undoubtedly comes down to
the additional herd behavior and constant predator harvesting. By comparing the
dynamics of systems (1.4) and (1.1), both of which take the herd behavior into
account, we obtain that the constant predator harvesting is responsible for the
more positive equilibria, the Bogdanov-Takens bifurcation and the degenerate Hopf
bifurcation since the latter only has one positive equilibrium and undergoes the Hopf
bifurcation. By continuing to compare the dynamics of systems (1.4) and (1.3),
both of which take the constant predator harvesting into account, we find that the
herd behavior is what causes the degenerate Hopf bifurcation of codimension three
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since the latter has a weak focus with multiplicity at most two. The above series
of dynamic comparisons show that the constant predator harvesting has a greater
impact on the dynamics than the herd behavior, because the constant predator
harvesting is the cause of the more positive equilibria and the Bogdanov-Takens
and degenerate Hopf bifurcations, while the herd behavior merely increases the
multiplicity of the weak focus. From the ecological viewpoint, the herd behavior
and the constant predator harvesting actually affect the coexistence of the prey and
the predators. When the intensity of the predator harvesting is relatively high, i.e.,
h > hq, the predators go extinct since system (1.4) has no positive equilibrium,
which results in all solutions of system (1.4) cross the z-axis and leave the region
) in finite time. This phenomenon results from the overexploitation of predator
population. When the intensity of the predator harvesting is not too high, i.e.,
h < hq, system (1.4) has the stable positive equilibrium and even stable periodic
solutions. Therefore, there exist some parameter values and initial values such that
the predators and prey can coexist. Moreover, the herd behavior in prey can increase
the probability of coexistence of predators and prey because the herd behavior can
increase the number of limit cycle induced by the Hopf bifurcation. Some numerical
examples are given to illustrate the rich dynamics of system (1.4) and exhibit the
coexistence of predators and prey (see Figure 4). System (1.4) has an unstable focus
E; surrounded by a stable limit cycle when s = 0.78, n = 3.308 and h = 0.0807 (see
Figure 4 (a)). System (1.4) has a stable focus E; surrounded by two limit cycles
(the inner one is unstable and the outer one is stable) when s = 0.78, n = 4.995 and
h = 0.0403 (see Figure 4 (b)). System (1.4) has an unstable focus E4 surrounded
by a homoclinic orbit when s = 0.78, n = 2.09799 and h = 0.18 (see Figure 4 (c)).
System (1.4) has a stable focus Ej surrounded by an unstable limit cycle and a
homoclinic orbit when s = 0.78, n = 5.0475 and h = 0.0403 (see Figure 4 (d)).

The research results show that system (1.4) has richer dynamics compared to
the system without constant predator harvesting and different dynamics compared
to the system without herd behavior in prey. However, the too great predator
harvesting intensity can lead to the extinction of predators due to the overharvesting
except for the moderate harvesting intensity. The complex dynamics indicate the
coexistence of positive equilibria, limit cycles or homoclinic orbit, which also reveal
the complexity of the interaction between the prey, predators and humans.
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Appendix
Coeflicients a;; and I;ij in system (3.11) are defined as follows:

n8(310522 — 1057) .
aro -

B o nP(15572 — 533)  n%(3912% — 135)
T 2048s6(22 — 1)2w’ 0T 102455(22 — 1) 0w’ T 2565%(22 — 1)3w’
_n5{721 (322 — 1)(310527 — 1057)n — 4s(22 — 1)(30932% — 1045)}

409621 s6w2(22 — 1)12 ’

as0

d61 =
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(c) (d)

Figure 4. Limit cycles and homoclinic orbit of system (1.4): (a) a stable limit cycle when s = 0.78,
n = 3.308 and h = 0.0807; (b) two limit cycles (the inner one is unstable and the outer one is stable)
when s = 0.78, n = 4.995 and h = 0.0403; (c) a homoclinic orbit when s = 0.78, n = 2.09799 and
h = 0.18; (d) an unstable limit cycle and a homoclinic orbit when s = 0.78, n = 5.0475 and h = 0.0403.

a20

&52 =
d43 =
asy4

&25 :

aopy -

d51 :

&30 =

d42 :

n(21z% — 5)

T 8s(z2— 1)’

n*(322-1){2122(322—1)(310527 —1057)n> — 2452, (27 —1) (309327 —1045)n+40965> (27 —1)%}
8192s6w3 (27 —1)1222 ’

_5n4(3z'12 — 1)2{722(322 — 1)(31052% — 1057)n? — 12521 (2? — 1)(309327 — 1045)n + 409652 (2% — 1)2}

16384s0wt (23 — 1)1222 ’

5n4(322 — 1)3{722(32% — 1)(310522 — 1057)n? — 16521 (22 — 1)(309327 — 1045)n + 8192s%(2? — 1)2}
32768s0w5 (27 — 1)1222 ’

' (327 — {2127 (327 — 1)(310527 — 1057)n” — 60s2y (27 — 1)(309327 — 1045)n + 40960s° (27 — 1)°}
65536506 (22 — 1)1222 ’

 on*(322 — 1)°{722(32% — 1)(31052% — 1057)n? — 24521 (22 — 1)(309327 — 1045)n + 2048052 (27 — 1)?}
- I

131072s0w7 (23 — 1)1222
0t (328 — 1)9{22(32f — 1)(310527 — 1057)n° — 4s21 (2§ —1)(309327 — 1045)n + 40965° (27 — 1)°}

262144s0w8 (22 — 1)1222 ’
nt{321(32% — 1)(15572% — 533)n — 4s(2? — 1)(77527 — 263)}
102421 s5w? (22 — 1)10 ’

n?(2522 — 9)
16s2(27 — 1)4w’
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faa 1= n3(323 — 1)2{527(327 — 1)(155722 — 533)n? — 20s21 (27 — 1)(77523 — 263)n + 2048s% (23 — 1)? }
3 2048s5w? (23 — 1)1022
Gon 1= n?(323 — 1)3{1522(322 — 1)(15572% — 533)n? — 80s21 (27 — 1)(7752% — 263)n + 122885 (22 — 1)}
M= 1638455w5 (22 — 1)1022 ’
P n3(323 — 1)*{323(322 — 1)(15572% — 533)n? — 20521 (22 — 1)(7752% — 263)n + 409652 (2% — 1)?}
15 16384s5w6 (27 — 1)1022 ’
P n3(322 — 1)5{22(322 — 1)(155722 — 533)n? — 8521 (22 — 1)(77527 — 263)n + 204852 (22 — 1)2 }
06— 65536557 (22 — 1)1022
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G41 = — ,
" 51221 s4w?2 (22 — 1)8
. n3(1972% — 69)
40 = ———= 35—
40 12853 (22 — 1)6w
Gy = n2(322 — 1){522(3912% — 135)(322 — 1)n? — 8sz1 (27 — 1)(38922 — 133)n + 25652 (27 — 1)}
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5(322 — 1)2n{722(322 — 1)2n? — 16521 (27 — 1)(327 — 1)n + 8s2(2? — 1)}

as 1= 1650w (27 — 1)1222 ’
by = (322 —1)3n*{2122(322 —1)2n2 — 60521 (22 —1)(322 —1)n + 4052 (22 —1)2}
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2 4stw3 (23 — 1)823 ’
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- (3nz — 2822 — nzy + 25)(Inzf — 2527 — 3nzy + 25)

big 1= 7

b qw? (23 — 1)*2%s2

7 (322 — 1)(3nz3 — 2822 —nz +25)2 . n

bog := — Ll - by = o
8s2w3 (27 — 1)427 s(z2—1)

by = 3nz? — 252§ —nz 4 2s bog = — (3nz} — 2522 — nzy + 25)?

21 (23 — 1)2ws dw?nz? (23 — 1)2s

Functions L; (i = 2,3) used in system (3.13) are defined as follows:

Lo :=1082F(327 + 1)(14327 — 9527 + 16)(327 — 1)?n® 4 1827 (327 — 1)(31548212
— 721692,° 4 364442% — 298228 — 91221 — 18527 + 64)n” — 321 (27 — 1)
x (14159721* + 2493762212 — 281429721° + 121935225 — 33184528 4 9804221
— 2204727 + 1868)n° — 227 (818842521 — 1456839212 — 56954192,°
+ 48240212% — 203710928 4 581659z] — 9551327 + 5911) (27 — 1)?n®
— 227(2495331921% — 16197615212 — 42004532,° + 897838925 — 443639520
+ 11594912} — 15064727 + 6935) (22 — 1)3n* — 42,(2108016921*
— 15344343212 — 9420512 4 59228612% — 29265492°
+ 66177127 — 6520127 + 1951)(27 — 1)*n® — 8(1101105921*
— 7491447212 — 56750121° + 264984125 — 117203128 + 21251527 — 1411927
+163) (27 — 1)°n% — 9621 (545049212 — 312258210 — 703892% + 11642029
— 41857z} + 524627 — 163)(27 — 1)%n — 25627 (52083210 —223472% —127682%
+ 920027 — 249127 + 163) (27 — 1)7,
Lz :=518421%(32% + 1)(124584692F — 1996745429 + 112845312 — 272561627
+ 240310) (327 — 1)*n'® 4 86427 (331716330921° — 122384905862,
+ 1413088664721% — 619261554021° + 62415149125 + 24224883829
— 4516163127 — 429448827 + 961240) (327 — 1)3n!?
— 3627 (27 — 1)(9890704109072;% — 4702353768021° — 2975856806592z *
+ 3005913369720212 —122830199956221° +-2822907125762F — 6470205583227
+ 1735374984821 — 282569868127 + 174322496)(327 — 1)2n!!
— 2427 (4569586508201427° — 1039419573767282,° + 587407030277672°
+ 9869253552918214 — 2404341493504221% 4 1265279878783821°
— 42470951585762F + 10748384782742% — 1881641313722 + 1874459929827
— 762674551)(322 — 1)(22 — 1)*n'° — 325(2587195409565429272
— 1029196098343812627° 4+ 1158558162774218121° — 535876341035356827°
+ 49698177416231421* + 66028020277546821% — 40968038203774227°
+ 1349137522525842F — 287867416696632¢ + 3835647297810~
— 2782822595432% 4 7944498536) (27 — 1)3n? + 227 (44331544471177082%>
+ 1714291683488563522° — 3400986152945964621° + 2368870358053063521°
— 820316397284294421* 4 121954416696250221% + 1877780102263322;°
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— 14821493675771425 4 369003691536042° — 4608055410025z

+ 2577391362742 —3569553369) x (27 — 1)n® 4-227(48282047584509717232
— 3706700872162200323° — 1986261815579249721% + 38225865970680327 2,6
— 2342024814074815821* + 8370454699108530212 — 19158950361209462°

+ 2775012292876782% — 257238277002952% + 2046643459985~

— 1792191527492 +8107116715) x (22 — 1)°n7 +823(34285798924318017 222
— 42900228139283514270 4+ 1175046474869792121° + 104492233009712882,°
— 1078584899379300621* + 476066323817365221% — 12610135853503742°

+ 21598924806754425 — 249296697865472% + 2011537619862z

— 1055060705232% 4-2400207328) x (23 — 1)%n% +827(56547709919403147232
— 7884422514002668522° + 31187999490255009218 + 953828009714650521°
— 1437677280606208221* + 6565577529675502212 — 16888160974324302,°

+ 2721496193448022F — 285216990910332% + 1933756677119z

— 7408952304327 + 993689125) x (27 — 1)™n® + 322, (15212813518875267 23>
— 217896301864937702%" + 896337270348911121® + 21743805115421282,6

— 347769825866605821% 4 149429191092899621% — 3486502384902822;°

+ 4931538512767225 — 43486770190652% 4 2296306523102 — 583002014122
+ 36446952) (22 —1)%n* +32(10890025177930371222 —1550730960857241922°
+ 599588073845262921% + 178561724384069121° — 2352140417467554214

+ 896777998461922212 — 18058623627467821° + 211347231819582%

— 145165176859320 + 5293232244927 — 68485975927 + 1234775) (22 — 1)°n3
+ 51221 (314099653794597 220 — 43729015883284821° 4 14847346430331321°
+ 6480116297863221% — 65081138021202212 + 2108094065609621°

— 34625271306822F + 30859644471229 — 145002319552] + 27876441627
—1234775) (23 — 1)1%2 + 512(8482440687756321° — 114432526193517216

+ 3171108116617221* + 21869748125172212 — 1677579779237421°

+ 44052491296182F — 5370812587722 + 3097516984427 — 73798714927

+ 6173875)22 (22 — 1)Mn + 409623 (1274725515645216 — 1661125718682214

+ 3371348365562, 2 + 39912296704221" — 2364858453182

+ 4658455393025 — 330430218821 + 8100071827 — 1234775) (21 — 1)'%.
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