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NUMERICAL SIMULATION OF VARIABLE
ORDER FRACTIONAL COUPLED

FITZHUGH-NAGUMO REACTION-DIFFUSION
PROBLEM AND IT’S ANALYSIS

Manpal Singh1,†, S. Das1, Rajeev1 and E. M. Craciun2

Abstract A novel scheme for numerical simulation of the variable order frac-
tional partial differential equation (VOFPDE) has been presented in this ar-
ticle, which has been applied to find the approximate solution of the variable
order time fractional coupled Fitzhugh-Nagumo reaction-diffusion equation.
The solution of the considered model exists and is unique, and the afore-
mentioned model will remain stable under the Ulam-Hyers test. It has been
found that Vieta-Fibonacci wavelets are the appropriate basis function to solve
the aforementioned problem numerically, and the operational matrices of the
Vieta-Fibonacci wavelets have been derived for both integer as well as vari-
able order fractional derivatives. Using these derived operational matrices and
properties of Vieta-Fibonacci wavelets combined with the collocation method,
the main problem is reduced to an algebraic system of equations, which has
been solved easily. The salient feature of the article is the convergence anal-
ysis of the proposed method, which is discussed. The error analysis between
the approximate solution of the particular cases of the concerned model using
the proposed technique and their exact solutions has been presented through
tables and figures.

Keywords Vieta-Fibonacci polynomials, collocation method, Vieta-Fibonacci
wavelets, existence and uniqueness, Ulam-Hyers stability, convergence analy-
sis.
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1. Introduction

A FPDE is a type of differential equation that involves fractional derivatives instead
of integer derivatives. These equations describe complex phenomena where tradi-
tional integer-order differential equations fail. Several applications of FPDE have
been discovered in the last few years, including those in physics, chemistry, engineer-
ing, and finance. For instance, they are used to model the diffusion of pollutants in
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groundwater, heat transfer in complex materials, and wave propagation in hetero-
geneous media. The modeling of fractional order systems allows for a more accurate
representation of real-world phenomena and helps develop efficient algorithms for
simulation and prediction. In addition, fractional partial differential equations en-
able us to understand and analyze complex systems that are inaccessible through
traditional approaches. The study of FPDE is an exciting and rapidly growing field
with numerous potential applications. We can better model and predict complex
systems in various domains as we understand these equations. Finding numerical
solutions to FDE has become increasingly important because of their wide range
of applications. Several difficulties are encountered when solving fractional-order
differential equations analytically, making it necessary to use a numerical method.
Numerous numerical methods can be found in the literature viz., [6] have used
operational matrix together with Tau method to investigate the approximate solu-
tion of FPDE, [8] have used Lucas polynomials with the collocation method and
approximate two-dimensional and one-dimensional diffusion equation of fractional
order, [18] have obtained the numerical solution of linear and nonlinear FPDE using
homotopy perturbation method, [22] have solved the disease model using Genoc-
chi wavelets method, [29] have studied Pine Wilt disease model of fractional order
with the help of ADM and Laplace transform method, [17] have developed a nu-
merical approach and found the AS of fractional BVP, [27] gave an analysis of
dengue fever outbreaks using novel fractional operators. For the solution of FDE
and integro-differential equations, Jacobi and block pulse operational matrices of
fractional integral operators have been used in [37]. An iterative method was used
by [30] to solve the epidemiological model, [4] has solved a two-dimensional, time-
fractional, nonlinear drift reaction-diffusion equation using the shifted airfoil collo-
cation method, [23] has investigated the numerical solution of a fractional model of
host-parasitoid population dynamical system using Adam–Bashforth–Moulton and
new Toufik–Atangana method, [21] has investigated the dynamics and numerical ap-
proximations for the fractional-order coronavirus disease system, [13] has explored
the dynamics and chaotic behavior of a fractional predator-prey-pathogen model
using the Atangana-Baleanu fractional operator, [36] has solved the fractional gen-
eralized nonlinear Schr¨odinger equation using the homotopy analysis transform
method.

This article is primarily aimed at discovering the approximate solutions to the ex-
tended version of the variable order fractional Coupled Fitzhugh Nagumo (VOFFN)
reaction-diffusion model. The mathematical form of VOFFN reaction-diffusion
model is given as [16,39]

∂α(ζ,$)u(ζ,$)

∂$α(ζ,$)

= Du
∂2u(ζ,$)

∂ζ2
+ u(ζ,$)(u(ζ,$)− a)(1− u(ζ,$))− v(ζ,$) + f1(ζ,$),

∂β(ζ,$)v(ζ,$))

∂$β(ζ,$)
= Dv

∂2v(ζ,$)

∂ζ2
+ ε(u(ζ,$)− bv(ζ,$)) + f2(ζ,$), (1.1)

with conditions

u(ζ, 0) = u0(ζ), v(ζ, 0) = v0(ζ),

u(0, $) = u1($), u(1, $) = u2($), (1.2)
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v(0, $) = v1($), v(1, $) = v2($),

where ζ, $ represents space and time, Du ≥ 0, Dv ≥ 0, a ≥ 0, b ≥ 0 and ε ≥ 0. The
coupled Fitzhugh-Nagumo reaction-diffusion model is a mathematical structure that
describes the dynamics of interacting neuron populations in a spatial setting. This
model comprises of two coupled partial differential equations, namely the Fitzhugh-
Nagumo equations, which describe the spiking activity of individual neurons, and
the reaction-diffusion equation, which describes the diffusion of ions and electrical
charges across the neuronal membrane.

In this article, the new approximation approach is derived with Vieta-Fibonacci
(VF) wavelets to find the numerical solution of the considered model (1). The
wavelet method is a powerful and efficient technique for numerical solutions in
PDEs. This is based on decomposing a function into a sum of wavelets, which are
localized functions that capture the fine-scale features of the solution. This ap-
proach enables the wavelet method to capture both the local and global properties
of the solution efficiently, making them ideal for problems with complex geome-
tries, discontinuities, or singularities. In addition, the wavelet method can handle
difficulties with adaptive resolutions by adjusting the wavelet coefficients to match
the required level of accuracy. Moreover, wavelet methods have been widely used
in different fields, including image and signal processing, data analysis, and quan-
tum mechanics. They have been shown to provide accurate and stable numerical
solutions of PDE, making them a popular choice for researchers and practitioners
alike. Wavelet methods represent an innovative and versatile approach for solving
partial differential equations, offering an efficient, accurate, and adaptable numer-
ical solution. There are many wavelet methods available in literature such as in
the article [38] an innovative numerical method is presented that can be used to
solve both linear and nonlinear distributed fractional differential equations, [3] has
developed a Haar wavelet placement technique for solving Volterra-Fredholm frac-
tional integral-differential equations, [34] has generated the operational matrix for
Gagenbauer wavelets and approximate Bagley-Torvik equation, [35] has used Taylor
wavelet method for the approximation of delay differential equation. [7] numerical
solution of fractional differential equations of variable order using Bernoulli wavelet
method for anomalous infiltrations and diffusions. The CAS wavelet method was
introduced by [28] to solve Fredholm integro-differential equations with nonlinear-
ities, [12] has used Chebyshev wavelet for delay problem, [25] has approximated a
problem arising in fluid dynamics, [26] has derived the operational matrix for Leg-
endre polynomials to solve the singular ODE. In the literature the uses of wavelets
can be found viz., Gegenbauer wavelet [24], Chebyshev wavelet [32], second kind
Chebyshev wavelets [1], Lucas OM [31], variation iteration method [9, 10], Vieta-
Lucas operational matrix [19] etc.

Here are the article outlines. Section 2 discusses some preliminary definitions and
properties of fractional order derivatives, Vieta–Fibonacci polynomials, and their
properties have been discussed. Section 3 introduces Vieta-Fibonacci Wavelets. In
section 4, the authors have derived the VF wavelet operational matrix for integer or-
der fractional derivative and VO fractional derivative operators. Section 5 contains
the existence of the solution of the Fitzhugh-Nagumo reaction-diffusion system,
which is unique and shows stability. Section 6 provides a detailed description of the
proposed method to solve the VOFFN reaction-diffusion model. In section 7, the
error bound and convergence analysis of the proposed method have been studied.
The developed scheme has been applied to some numerical examples in section 8.
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In the last section, a summary of the research is provided.

2. Basic of fractional calculus

In this section, we have presented some of the most important definitions and prop-
erties of fractional calculus that are relevant from the perspective of this article.

Definition 2.1. The Riemann-Liouville (R-L) fractional integral for 0 < γ(ζ,$) ≤
1 of u(ζ,$) is defined by [14]

I
γ(ζ,$)
ζ u(ζ,$) =

1

Γ(γ(ζ,$))

∫ ζ

0

(ζ − s)γ(ζ,$)−1u(s,$)ds. (2.1)

Definition 2.2. The fractional derivative of variable-order k − 1 < γ(ζ,$) ≤ k of
the function u(ζ,$) w.r to the variable ζ is given as [33]

c
0D

γ(ζ,$)
ζ u(ζ,$)

=


1

Γ(k − γ(ζ,$))

∫ ζ

0

(ζ − s)k−γ(ζ,$)−1 ∂ku(s,$)

∂sk
ds, k − 1 < γ(ζ,$) < k,

∂ku(ζ,$)

∂ζk
, γ(ζ,$) = k.

(2.2)

The variable order Caputo fractional derivative satisfies the property of linearity,
i.e.

c
0D

γ(ζ,$)
ζ (Aζ1(ζ) +Bζ2(ζ)) = A(c0D

γ(ζ,$)
ζ ζ1(ζ)) +B(c0D

γ(ζ,$)
ζ ζ2(ζ)).

Definition 2.3. According to this definition, a Mittag-Leffler function (which con-
tains two positive parameters i and j) is defined as follows:

Ei,j(ζ) =

∞∑
λ=0

ζλ

(iλ+ j)
, x ∈ R. (2.3)

The Caputo derivative and R-L integral of VO fractional order satisfy the following
relations

c
0D

γ(ζ,$)
ζ ζk =


Γ(k+1)

Γ(k+1−γ(ζ,$))ζ
k−γ(ζ,$), k ∈ N, and k ≥ dγ(ζ,$)e or

k /∈ N, and k > dγ(ζ,$)e,
0, else,

I
γ(ζ,$)
ζ ζk =

Γ(k + 1)

Γ(k + 1 + γ(ζ,$))
ζγ(ζ,$)+k,

c
0D

γ(ζ,$)
ζ

(
I
γ(ζ,$)
ζ

)
u(ζ,$) = u(ζ,$),

I
n−γ(ζ,$)
ζ

(dnu(ζ,$)

dζn

)
= c

0D
γ(ζ,$)
ζ u(ζ,$)−

n−1∑
i=dγ(ζ,$)e

ui(0, $)ζi−γ(ζ,$)

Γ(i+ 1− γ(ζ,$))
.
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3. Vieta Fibonacci wavelets

3.1. Vieta Fibonacci and Shifted Vieta Fibonacci polynomials

In this section, we have discussed some properties of Vieta-Fibonacci polynomials
as well as Shifted Vieta-Fibonacci polynomials.

Vieta-Fibonacci polynomials can be generated using the recurrence relation
given below [2,15]

V Fn(ζ) = ζV Fn−1(ζ)− V Fn−2(ζ), n = 2, 3, · · · (3.1)

with conditions
V F0(ζ) = 0, and V F1(ζ) = 1. (3.2)

V Fk(ζ) can be represented by the following formula as a power series

V Fk(ζ) =

d k−1
2 e∑

n=0

(−1)nΓ(k − n)

Γ(k − 2n)Γ(n+ 1)
ζk−2n−1, k = 2, 3, · · ·, (3.3)

where de is the ceiling function.
In series form, the shifted Vieta-Fibonacci polynomial appears as follows

V F ∗k (ζ) =

k∑
n=0

(−1)k−n−122nΓ(k + n+ 1)

Γ(k − n)Γ(2n+ 2)
ζn. (3.4)

The V F ∗n(ζ) also possesses the property of orthogonality, which corresponds to the

weight function w(ζ) =
√
ζ − ζ2 in the form

〈
V F ∗n(ζ), V F ∗m(ζ)

〉
=

∫ 1

0

V F ∗n(ζ)V F ∗m(ζ)w(ζ)dζ =


π

8
, n = m 6= 0,

0, n 6= m.
(3.5)

Theorem 3.1. Let V F ∗n(ζ) be the Vieta Fibonacci polynomials that are shifted into
[0, 1], then we have

d

dζ
[V F ∗n(ζ)] =

n−1∑
k=0

(k+n) odd

4k V F ∗k (ζ). (3.6)

Proof. Proof is same as given in [26]

3.2. Vieta Fibonacci wavelets

Vieta-Fibonacci wavelets are defined on the interval [0, 1] as [5]

ψn,m(ζ) =

2
k
2

√
8

π
V F ∗(2kζ − n), ζ ∈

[ n
2k
,
n+ 1

2k

]
,

0, otherwise

(3.7)
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where m varies from 1 to M and n varies from 0 to 2k − 1.
In addition, these wavelets are orthogonal to the weight function ωn(ζ) to the

interval [0, 1]

ωn(ζ) = w(2kζ − n) =


√

(2kζ − n)− (2kζ − n)2, ζ ∈
[ n

2k
,
n+ 1

2k

]
,

0, otherwise.
(3.8)

Considering f(ζ) over the interval [0, 1], then linear combination of f(ζ) in terms
of Vieta Fibonacci wavelets will be

f(ζ) =

∞∑
n=0

∞∑
m=0

cnmψn,m(ζ), (3.9)

where cnm =
∫ 1

0
f(ζ)ψn,m(ζ)ωn(ζ)dζ.

Now, This infinite series is truncated as follows:

f(ζ) =

2k−1∑
n=0

M∑
m=1

cnmψn,m(ζ) ∼= CTΨ(ζ), (3.10)

where C and Ψ(ζ) are column vector of order 2kM and given by

C = [c01, c02 · · · c0M |c11, c12 · · · c1M | · · · |c2k−1 1, c2k−1 2 · · · c2k−1 M ]T , (3.11)

and

Ψ(ζ) = [ψ01, ψ02 · · ·ψ0M |ψ11, ψ12 · · ·ψ1M | · · · |ψ2k−1 1, ψ2k−1 2 · · ·ψ2k−1 M ]T .
(3.12)

4. Operational matrix of the derivative

In this section, we derived the operational matrix of derivative of VF wavelets for
both constant and variable order fractional derivative.

Theorem 4.1. Let Ψ(ζ) be the VF wavelets defined in (3.12), then the derivative
of Ψ(ζ) will be

dΨ(ζ)

dζ
= DΨ(ζ), (4.1)

where D is the derivative matrix of order 2kM and is given by

D =



F 0 0 · · · 0

0 F 0 · · · 0

0 0 F · · · 0

...
...

...
. . .

...

0 0 0 0 F


, (4.2)

where F is a square matrix of order M , whose elements are calculated as

Fr,s =

{
2k+2s, r = 2, · · · ,M, s = 1, · · · , (r − 1) and (r + s) odd

0, otherwise.
(4.3)
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Proof. With the help of VF polynomial shifted into [0, 1], the rth element of the
vector Ψ(ζ) is given by

Ψr(ζ) = ψn,m = 2
k
2

√
8

π
V F ∗m(2kζ − n)χ[ n

2k
,n+1

2k
], (4.4)

where r = nM + m, n = 0, 1, · · · , (2k − 1), m = 1, 2, · · · ,M , χ[ n
2k
,n+1

2k
] is the

characteristic function.
Differentiating equation (4.4) w.r.to ζ, we get

dΨr(ζ)

dζ
= 2

3k
2

√
8

π
V F ∗

′

m (2kζ − n)χ[ n
2k
,n+1

2k
]. (4.5)

Since it is zero outside the interval
[
n
2k
, n+1

2k

]
, therefore dΨr(ζ)

dζ = 0 for r = 1,M +

1, 2M + 1, · · · , (2k − 1)M + 1.
Now, substituting the value of V F ∗

′

m (2kζ − n) in equation (4.5) from Theorem
3.1, we obtain

dΨr(ζ)

dζ
= 2

3k
2

√
8

π

m−1∑
j=1

(m+j) odd

4j V F ∗j (2kζ − n)χ[ n
2k
,n+1

2k
]. (4.6)

Expanding the above equation in VF wavelets, we have

dΨr(ζ)

dζ
= 2

3k
2

√
8

π

m−1∑
j=1

(m+j) odd

4j V F ∗j (2kζ − n)χ[ n
2k
,n+1

2k
] = 2k

r−1∑
s=1

(r+s) odd

4s ΨnM+s(ζ).

(4.7)
If we choose Fr,s as

Fr,s =

{
2k+2s, r = 2, · · · ,M, s = 1, · · · , (r − 1) and (r + s) odd,

0, otherwise.

Then, the required result is obtained.

4.1. Vieta-Fibonacci wavelet operational matrix of VOF deriva-
tive

The VOF derivative of order q − 1 < γ(ζ,$) ≤ q of the VF wavelet vector defined
in (3.12) is given by

c
0D

γ(ζ,$)
ζ Ψ(ζ) ' Qγ(ζ,$)

ζ Ψ(ζ), (4.8)

where Q
γ(ζ,$)
ζ is an square matrix of order m̂(m̂ = 2kM) for the VF wavelet.

The explicit form of the matrix is derived by introducing another family of basis
functions as

θnm(ζ) =

ζm−1, ζ ∈ [
n

2k
,
n+ 1

2k
],

0, otherwise.
(4.9)
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A vector form representation of these m̂ set monomials is given by

Θ(ζ) = [θ1(ζ), θ2(ζ), · · · , θm̂(ζ)], (4.10)

where θj(ζ) = θnm(ζ) and i = Mn+m.
VF wavelet and these monomials are related in the following way

Θ(ζ) ' PΨ(ζ). (4.11)

The elements of P are obtained by using (pi,j) =< ωi(ζ), ψj(ζ) >.

Lemma 4.1. Let θnm(ζ) be defined in equation (4.9) and q−1 < γ(ζ,$) ≤ q, then
we have

c
0D

γ(ζ,$)
ζ θnm(ζ)

=


(m− 1)!

Γ(j − γ(ζ,$))
ζm−1−γ(ζ,$), m = q + 1, q + 2, · · · ,M, ζ ∈ [

n

2k
,
n+ 1

2k
],

0, otherwise.

(4.12)

Proof. The proof is straightforward.

Theorem 4.2. Let Θ(ζ) be a vector defined in (4.10), then the fractional derivative
of variable order q − 1 < γ(ζ,$) ≤ q is given by

c
0D

γ(ζ,$)
ζ Θ(ζ) = V

γ(ζ,$))
ζ Θ(ζ), (4.13)

where V
γ(ζ,$)
ζ is a m̂× m̂ order matrix defined as

V
γ(ζ,$)
ζ =



D
γ(ζ,$)
ζ 0 0 · · · 0

0 D
γ(ζ,$))
ζ 0 · · · 0

0 0 D
γ(ζ,$)
ζ · · · 0

...
...

...
. . .

...

0 0 0 0 D
γ(ζ,$)
ζ


,

where D
γ(ζ,$)
ζ is M ×M diagonal matrix defined by

D
γ(ζ,$)
ζ =ζ−γ(ζ,$)diag

[
0, 0, · · · , (q − 1)!

Γ(q − γ(ζ,$))
,

· · · , (M − 1)!

Γ(M − γ(ζ,$)− 1)
,

M !

Γ(M − γ(ζ,$))

]
.

Proof. For proof, see Lemma.

Theorem 4.3. Let Ψ(ζ) be the VF wavelets defined in (3.12), then the VOF deriva-
tive of order q − 1 < γ(ζ,$) ≤ q of Ψ(ζ) is given by

c
0D

γ(ζ,$)
ζ Ψ(ζ) = Q

γ(ζ,$)
ζ Ψ(ζ) = (P−1V

γ(ζ,$)
ζ P )Ψ(ζ). (4.14)
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Proof. Considering equation (4.14) and Theorem 4.2, we have

Ψ(ζ) = P−1Θ(ζ),

and

c
0D

γ(ζ,$)
ζ Ψ(ζ) = P−1 c

0D
γ(ζ,$)
ζ Θ(ζ) = P−1V

γ(ζ,$)
ζ Θ(ζ) = (P−1V

γ(ζ,$)
ζ P )Ψ(ζ),

(4.15)
which completes the proof.

5. Mathematical analysis of the proposed model

This section has two purposes: to provide the mathematical analysis of the present
model. The first one is to prove that a solution exists and is unique, and the second
one is to demonstrate the stability of the model.

5.1. Existence and uniqueness

Consider the variable order fractional coupled Fitzhugh-Nagumo model

∂α(ζ,$)u(ζ,$)

∂$α(ζ,$)
= Du

∂2u

∂ζ2
+ u(u− a)(1− u)− v + f1(ζ,$),

∂β(ζ,$)v(ζ,$)

∂$β(ζ,$)
= Dv

∂2v

∂ζ2
+ ε(u− bv) + f2(ζ,$). (5.1)

Now, introducing the R-L integral operator of fractional order in equation (5.1), we
have

u(ζ,$)− u(ζ, 0) = Iα(ζ,$)
$

(
Duu(ζ,$)

+ u(u− a)(1− u)− v + f1(ζ,$)
)

=
1

Γ(α(ζ,$))

∫ $

0

($ − s)α(ζ,$)−1
(
Duuζζ + u(ζ, s)

× (u(ζ, s)− a)(1− u(ζ, s))− v(ζ, s)− f1(ζ, s)
)
ds,

(5.2)

and

v(ζ,$)− v(ζ, 0) =
1

Γ(β(ζ,$))

∫ $

0

($ − s)β(ζ,$)−1
(
Dvvζζ + ε(u(ζ, s)

− bv(ζ, s)) + f2(ζ, s))
)
ds.

(5.3)

Let

K1($,u(ζ,$)) = Duuζζ + u(u− a)(1− u)− v + f1, (5.4)

and

K2($, v(ζ,$)) = Dvvζζ + ε(u− bv) + f2, (5.5)
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and for continuous functions u(ζ,$), u1(ζ,$), v(ζ,$) and v1(ζ,$) ∈ L2
(

(0, 1)×

(0, 1)
)

, there exist some constants γ1 > 0 and γ′1 > 0 such that

||uζζ − (u1)ζζ || ≤ γ1||u− u1||,
||vζζ − (v1)ζζ || ≤ γ′1||v − v1||. (5.6)

Also, here |Du| ≤ s1, |a| ≤ s2, |Dv| ≤ l1, |b| ≤ l2 and |ε| ≤ l3. Now, we will show
that K1($,u(ζ,$)) and K2($, v(ζ,$)) satisfy the Lipschitz condition. For this
purpose, we have

||K1($,u)−K1($,u1)||
=||Duuζζ + u(u− a)(1− u)− v + f1(ζ,$)− (Du(u1)ζζ

+ u1(u1 − a)(1− u1)− v + f1(ζ,$))||
≤λ1||uζζ − (u1)ζζ ||+ λ2||u− u1||+ λ3||u− u1||+ λ4||u− u1||

≤
(
s1γ1 + (λ2

1 + λ2
2 + λ1λ2) + (1 + a)(λ1 + λ2) + s2

)
||u− u1||.

Setting

M1 = s1γ1 + (λ2
1 + λ2

2 + λ1λ2) + (1 + a)(λ1 + λ2) + s2,

where u and u∗ are bounded function such that |u| ≤ λ1 and |u∗| ≤ λ2. Thus, we
have

||K1($,u)−K1($,u1)|| ≤M1||u− u1||. (5.7)

Similarly, for the function v(ζ,$), we have

||K2($, v)−K2($, v1)|| ≤M2||v − v1||, (5.8)

where M2 = (l1γ
′
1 + l2l3). Here, the Lipschitz condition is satisfied by the kernel.

In addition, if 0 ≤Mi < 1, i = 1, 2, it is contraction.

Theorem 5.1. Let us assume that u(ζ,$) and v(ζ,$) are bounded functions, then
the operator Φ(u(ζ,$)) and Φ(v(ζ,$)) are defined by [20]

Φ(u(ζ,$)) = u(ζ, 0) +
1

Γ(α(ζ,$))

∫ $

0

($ − s)α(ζ,$)−1K1(ζ, u)ds, (5.9)

and

Φ(v(ζ,$)) = v(ζ, 0) +
1

Γ(β(ζ,$))

∫ $

0

($ − s)β(ζ,$)−1K2(ζ, v)ds, (5.10)

which satisfy the Lipschitz condition.

Proof. Assume that u(ζ,$) and w(ζ,$) are bounded functions such that u(ζ, 0)=
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w(ζ, 0), then

Φ(u(ζ,$))− Φ(w(ζ,$)) =
1

Γ(α(ζ,$))

∫ $

0

($ − s)α(ζ,$)−1
(
K1(ζ, u)

−K1(ζ, w)
)
ds,

||Φ(u(ζ,$))− Φ(w(ζ,$))|| ≤ 1

Γ(α(ζ,$))

∫ $

0

($ − s)α(ζ,$)−1||K1(ζ, u)

−K1(ζ, w)||ds

≤ t
α(ζ,$)
0 M1

Γ(α(ζ,$))α(ζ,$)
||u− w||.

Letting m1 =
t
α(ζ,$)
0 M1

Γ(α(ζ,$))α(ζ,$) , we get

||Φ(u(ζ,$))− Φ(w(ζ,$))|| ≤ m1||u− w||.

Similarly, by assuming v(ζ,$) and φ(ζ,$) as bounded functions we can proof

||Φ(v(ζ,$))− Φ(φ(ζ,$))|| ≤ m2||v − φ||.

Hence, the proof is complete.

Theorem 5.2. Let us assume that u(ζ,$) and v(ζ,$) are bounded functions, then
the operators are defined as

Φ(u) = Duuζζ + u(u− a)(1− u)− v + f1(ζ,$), (5.11)

and

Φ(v) = Dvvζζ + ε(u− bv) + f2(ζ,$), (5.12)

which satisfy the conditions∣∣∣〈Φ(u)− Φ(w), u− w
〉∣∣∣ ≤M1||u− w||2, (5.13)

and ∣∣∣〈Φ(v)− Φ(φ), v − φ
〉∣∣∣ ≤M2||v − φ||2, (5.14)

respectively.

Proof. By considering the function u(ζ,$) as bounded function, we have∣∣∣〈Φ(u)− Φ(w), u− w
〉∣∣∣

=
∣∣∣〈Du(uζζ − wζζ)− (u3 − w3) + (1 + a)(u2 − w2)

− a(u− w), u− w
〉∣∣∣

≤|Du|| < (u− w)ζζ , u− w > |+ | < u3 − w3, u− w > |
+ (1 + a)| < u2 − w2, u− w > |+ a| < u− w, u− w > |
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≤|Du|||(u− w)ζζ ||||u− w||+ ||u3 − w3||||u− w||
+ (1 + a)||u2 − w2||||u− w||+ a||u− w||2,∣∣∣〈Φ(u)− Φ(w), u− w

〉∣∣∣
≤
(
s1γ1 + (λ2

1 + λ2
2 + λ1λ2) + (1 + a)(λ1 + λ2) + s2

)
||u− w||2,

which implies that ∣∣∣〈Φ(u)− Φ(w), u− w
〉∣∣∣ ≤M1||u− w||2.

Repeating this same process for the bounded function v(ζ,$)), we have∣∣∣〈Φ(v)− Φ(φ), v − φ
〉∣∣∣ ≤M2||v − φ||2.

Theorem 5.3. Suppose that u(ζ,$) and v(ζ,$) are bounded functions and 0 <
||z|| <∞, then

Φ(u) = Duuζζ + u(u− a)(1− u)− v + f1(ζ,$), (5.15)

and

Φ(v) = Dvvζζ + ε(u− bv) + f2(ζ,$), (5.16)

satisfy the conditions ∣∣∣〈Φ(u)− Φ(w), z
〉∣∣∣ ≤M1||u− w|| ||z||, (5.17)

and ∣∣∣〈Φ(v)− Φ(φ), z
〉∣∣∣ ≤M2||v − φ|| ||z||, (5.18)

respectively.

Proof. Let u(ζ,$) is a bounded function and 0 < ||z|| <∞, then∣∣∣〈Φ(u)− Φ(w), z
〉∣∣∣

=
∣∣∣〈Du(uζζ − wζζ)− (u3 − w3) + (1 + a)(u2 − w2)− a(u− w), z

〉∣∣∣
≤|Du|| < (u− w)ζζ , z > |+ | < u3 − w3, z > |

+ (1 + a)| < u2 − w2, z > |+ a| < u− w, z > |
≤|Du|||(u− w)ζζ || ||z||+ ||u3 − w3|| ||z||

+ (1 + a)||u2 − w2|| ||z||+ a||z|| ||u− w||,∣∣∣〈Φ(u)− Φ(w), z
〉∣∣∣

≤
(
s1γ1 + (λ2

1 + λ2
2 + λ1λ2) + (1 + a)(λ1 + λ2) + s2

)
||u− w|| ||z||,
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which implies that ∣∣∣〈Φ(u)− Φ(w), z
〉∣∣∣ ≤M1||u− w|| ||z||.

Repeating this in the similar way for the bounded function v(ζ,$), we have∣∣∣〈Φ(v)− Φ(φ), z
〉∣∣∣ ≤M2||v − φ|| ||z||.

Hence, the proof is complete.
Now, the iterated formulae for equations (5.2) and (5.3) are formulated as

un+1(ζ,$) =
1

Γ(α(ζ,$))

∫ $

0

($ − s)α(ζ,$)−1K1($,un)ds, (5.19)

vn+1(ζ,$) =
1

Γ(β(ζ,$))

∫ $

0

($ − s)β(ζ,$)−1K2($, vn)ds, (5.20)

u(ζ, 0) = u0 and v(ζ, 0) = v0.
The successive difference is presented in the following way

ξn(ζ,$) = un(ζ,$)− un−1(ζ,$) =
1

Γ(α(ζ,$))

∫ $

0

($ − s)α(ζ,$)−1

×
(
K1($,un−1)−K1($,un−2)

)
ds,

(5.21)

and

χn(ζ,$) = vn(ζ,$)− vn−1(ζ,$) =
1

Γ(β(ζ,$))

∫ $

0

($ − s)β(ζ,$)−1

×
(
K2($, vn−1)−K2($, vn−2))

)
ds.

(5.22)

Note that

un(ζ,$) =

n∑
i=0

ξi(ζ,$), (5.23)

vn(ζ,$) =

n∑
j=0

χj(ζ,$). (5.24)

Applying norm on both sides of equation (5.21), we get

||ξn(ζ,$)|| =
∣∣∣∣∣∣ 1

Γ(α(ζ,$))

∫ $

0

($ − s)α(ζ,$)−1
(
K1($,un−1)−K1($,un−2)

)
ds
∣∣∣∣∣∣,

(5.25)

or

||ξn(ζ,$)|| ≤ 1

Γ(α(ζ,$))

∫ $

0

($ − s)α(ζ,$)−1
∣∣∣∣∣∣(K1($,un−1)−K1($,un−2)

)
ds
∣∣∣∣∣∣.

(5.26)

As the Lipschitz condition is satisfied by the kernel, therefore

||ξn(ζ,$)|| ≤ M1

Γ(α(ζ,$))

∫ $

0

($ − s)α(ζ,$)−1||un−1 − un−2||ds. (5.27)
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Proceeding for the bounded function v(ζ,$), we get

||χn(ζ,$)|| ≤ M2

Γ(β(ζ,$))

∫ $

0

($ − s)β(ζ,$)−1||vn−1 − vn−2||ds. (5.28)

Based on the above result, we prove the following theorem.

Theorem 5.4. The Fitzhugh-Nagumo system defined in equation (1.1) has a solu-
tion if there exists t0 such that

M1t
α(ζ,$)
0

α(ζ,$)Γ(α(ζ,$))
< 1, (5.29)

M2t
β(ζ,$)
0

β(ζ,$)Γ(β(ζ,$))
< 1. (5.30)

Proof. Considering u(ζ,$) as a bounded function and performing the recursive
scheme, we have

||ξn(ζ,$)|| ≤
[ M1$

α(ζ,$)

α(ζ,$)Γ(α(ζ,$))

]n
u(ζ, 0), (5.31)

and thus, the function

un(ζ,$) =

n∑
i=0

ξi(ζ,$),

exists and smooth.
Now, to show that equation (5.27) is a solution of (1.1), let us assume that

u(ζ,$)− u(ζ, 0) = un(ζ,$)− Ln(ζ,$), then we have

||Ln(ζ,$)|| =
∣∣∣∣∣∣ 1

Γ(α(ζ,$))

∫ $

0

($ − s)α(ζ,$)−1
(
K1($,u)−K1($,un−1)

)
ds
∣∣∣∣∣∣

≤
[ M1$

α(ζ,$)

α(ζ,$)Γ(α(ζ,$))

]
||u− un−1||. (5.32)

Recursively, we get

||Ln(ζ,$)|| ≤
[ $α(ζ,$)

α(ζ,$)Γ(α(ζ,$))

]n+1

Mn+1
1 δ, (5.33)

at $ = t0, the above equation becomes

||Ln(ζ,$)|| ≤
[ t

α(ζ,$)
0

α(ζ,$)Γ(α(ζ,$))

]n+1

Mn+1
1 δ1. (5.34)

Now, ||Ln(ζ,$)|| → 0 as n→∞.
Similarly for the function v(ζ,$),

||dn(ζ,$)|| ≤
[ t

β(ζ,$)
0

β(ζ,$)Γ(β(ζ,$))

]n+1

Mn+1
2 δ2, (5.35)

which tends to zero as n→∞.
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Hence, the proof is complete.
Next, we examine whether there is any unique solution to the fractional Fitzhugh-

Nagumo system (1.1) of variable order. Let u(ζ,$) and r(ζ,$) are two solutions
of the system (1.1). Thus we have

u(ζ,$)− r(ζ,$) =
1

Γ(α(ζ,$))

∫ $

0

($ − s)α(ζ,$)−1
(
K1($,u)−K1($, r)

)
ds.

(5.36)

If we take the norm on both sides of equation (5.36), we get

||u(ζ,$)− r(ζ,$)||

=
∣∣∣∣∣∣ 1

Γ(α(ζ,$))

∫ $

0

($ − s)α(ζ,$)−1
(
K1($,u)−K1($, r)

)
ds
∣∣∣∣∣∣, (5.37)

or

||u(ζ,$)− r(ζ,$)|| ≤
( M1$

α(ζ,$)

α(ζ,$)Γ(α(ζ,$))

)
||u(ζ,$)− r(ζ,$)||, (5.38)

which implies that

||u(ζ,$)− r(ζ,$)||
(

1− M1$
α(ζ,$)

α(ζ,$)Γ(α(ζ,$))

)
≤ 0. (5.39)

Similarly, for the function v(ζ,$)

||v(ζ,$)− r∗(ζ,$)||
(

1− M2$
β(ζ,$)

β(ζ,$)Γ(β(ζ,$))

)
≤ 0. (5.40)

Theorem 5.5. A fractional Fitzhugh-Nagumo system has a unique solution if the
following conditions are met(

1− M1$
α(ζ,$)

α(ζ,$)Γ(α(ζ,$))

)
> 0,(

1− M2$
β(ζ,$)

β(ζ,$)Γ(β(ζ,$))

)
> 0. (5.41)

Proof. We have the following result if the condition of the previous Theorem is
satisfied

||u(ζ,$)− r(ζ,$)||
(

1− M1$
α(ζ,$)

α(ζ,$)Γ(α(ζ,$))

)
≤ 0. (5.42)

Consequently, it implies that

||u(ζ,$)− r(ζ,$)|| = 0,

as a result u(ζ,$) = r(ζ,$).
Similarly, for v(ζ,$), we have v(ζ,$) = r1(ζ,$).
Therefore, system (1.1) has a unique solution.
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5.2. Ulam-Hyers stability

Our goal here is to demonstrate that the VOFFN system presented in equation
(1.1) is Ulam-Hyers stable.

Definition 5.1. The equation (1.1) is Ulam-Hyers stable if the following relation-
ship holds for δ1, δ2 > 0, for u(ζ,$) and v(ζ,$) [11],

|c0Dα(ζ,$)
$ u−Duuζζ + (1− u)(u− a)u+ v(ζ,$)− f1(ζ,$)| < δ1, (5.43)

and

|c0Dβ(ζ,$)
$ v −Dvvζζ − ε(u− bv)− f2(ζ,$)| < δ2, (5.44)

there exist solutions u∗ and v∗, such that

|u− u∗| < a1δ1, a1 ∈ R, (5.45)

and

|v − v∗| < a2δ2, a2 ∈ R. (5.46)

When u and v satisfy the following equations (5.43) and (5.44), then there exist
functions q1(ζ,$) and q2(ζ,$) which are defined as follows:

c
0D

α(ζ,$)
$ u−Duuζζ − (1− u)(u− a)u+ v − f1 = q1(ζ,$), (5.47)

and

c
0D

β(ζ,$)
$ v −Dvvζζ − ε(u− bv)− f2 = q2(ζ,$). (5.48)

Using R-L fractional integral to both sides of the equation (5.47), we achieve

u(ζ,$)− u(ζ, 0) + Iα(ζ,$)
$

(
−Duuζζ − u(u− a)(1− u) + v − f1

)
=Iα(ζ,$)

$ q1(ζ,$).
(5.49)

Now,

|u(ζ,$)− u(ζ, 0) + Iα(ζ,$)
$ (−Duuζζ − u(u− a)(1− u) + v − f1(ζ,$))|

=|Iα(ζ,$)
ζ q1(ζ,$)|

≤|q1|Iα(ζ,$)
$ (1)|

=|q1|
Tα(ζ,$)

Γ(α(ζ,$) + 1)
,

|u(ζ,$)− u(ζ, 0) + Iα(ζ,$)
$ (−Duuζζ − u(u− a)(1− u) + v − f1(ζ,$)))|

≤ Tα(ζ,$)

Γ(α(ζ,$) + 1)
δ1.

Similarly for v(ζ,$), we have

|v(ζ,$)− v(ζ, 0) + Iβ(ζ,$)
$ (−Dvvζζ − ε(u− bv)− f2(ζ,$))| ≤ T β(ζ,$)

Γ(β(ζ,$) + 1)
δ2.
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Suppose that u∗(ζ,$) and v∗(ζ,$) be the solutions of the system (1.1) with
u(ζ, 0) = u∗(ζ, 0) = ζ0 and v(ζ, 0) = v∗(ζ, 0) = ζ1, then

u∗(ζ,$) = u(ζ, 0) + Iα(ζ,$)
$

(
Duuζζ + (1− u)(u− a)u− v + f1(ζ,$)

)
.

Now,

||u− u∗|| =||u− u(ζ, 0)− Iα(ζ,$)
$ (Duu

∗
ζζ +−v + f1(ζ,$))||

=||u− u(ζ, 0)− Iα(ζ,$)
$ (Duuζζ + (1− u)(u− a)u− v + f1(ζ,$))

− Iα(ζ,$)
$ (Duu

∗
ζζ + (1− u∗)(u∗ − a)u∗ − v∗

+ f1(ζ,$)) + Iα(ζ,$)
$ (Duuζζ + (1− u)(u− a)u− v + f1(ζ,$))||,

||u− u∗|| ≤ Tα(ζ,$)

Γ(α(ζ,$) + 1)
δ1 +

(
s1γ1 + (λ2

1 + λ2
2 + λ1λ2) + (1 + a)(λ1 + λ2) + s2

)
× (Iα(ζ,$)

$ (||u− u∗||)). (5.50)

Similarly for the function v(ζ,$), we have

||v − v∗|| =||v(ζ,$)− v(ζ, 0)− Iβ(ζ,$)
$

(
Dvv

∗
ζζ + ε(u− bv∗) + f2

)
||

=||v(ζ,$)− v(ζ, 0)− Iβ(ζ,$)
$

(
Dvvζζ + ε(u− bv) + f2

)
− Iβ(ζ,$)

$

(
Dvv

∗
ζζ + ε(u− bv∗) + f2

)
+ Iβ(ζ,$)

$

(
Dvvζζ + ε(u− bv) + f2

)
||,

||v − v∗|| ≤ T β(ζ,$)

Γ(β(ζ,$) + 1)
δ2 + (l1γ

′
1 + l2l3)(Iβ(ζ,$)

$ ||v − v∗||). (5.51)

Lemma 5.1. Let γ(ζ,$) > 0 and z1(ζ,$) be locally integrable, nonnegative and
nondecreasing functions on interval (a, b). Also, let u(ζ,$) be nonnegative and
locally integrable on interval [a, b) and z2(ζ,$) is bounded by some constant, then
the inequality

u ≤ z1 + z2

(
Iγ(ζ,$)
$ u

)
, (5.52)

implies

u ≤ z1Eγ(ζ,$)

(
z2($ − a)γ(ζ,$)

)
, (5.53)

where Eγ(ζ,$)($) =
∑∞
i=0

$i

Γ(γ(ζ,$)i+1) .

We obtain the following result by applying the Gronwall relation to equation

(5.50) with z1(ζ,$) = Tα(ζ,$)

Γ(α(ζ,$)+1)δ1 and z2(ζ,$) =
(
s1γ1 + (λ2

1 +λ2
2 +λ1λ2) + (1 +

a)(λ1 + λ2) + s2

)
||u− u∗|| ≤ Tα(ζ,$)

Γ(α(ζ,$) + 1)
δ1Eα(ζ,$)

×
((
s1γ1 + (λ2

1 + λ2
2 + λ1λ2) + (1 + a)(λ1 + λ2) + s2

)
$α(ζ,$)

)
,
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≤ Tα(ζ,$)

Γ(α(ζ,$) + 1)
δ1Eα(ζ,$)

×
((
s1γ1 + (λ2

1 + λ2
2 + λ1λ2) + (1 + a)(λ1 + λ2) + s2

)
Tα(ζ,$)

)
.

(5.54)

Applying the Gronwall relation to equation (5.51), we get

||v − v∗|| ≤ T β(ζ,$)

Γ(β(ζ,$) + 1)
δ2Eβ(ζ,$)

(
(l1γ

′
1 + l2l3)$β(ζ,$)

)
≤ T β(ζ,$)

Γ(β(ζ,$) + 1)
δ2Eβ(ζ,$)

(
(l1γ

′
1 + l2l3)T β(ζ,$)

)
. (5.55)

Equation (5.54) and (5.55), implies ||u− u∗|| ≤ a1δ1 and ||v − v∗|| ≤ a2δ2, with

a1 =
Tα(ζ,$)

Γ(α(ζ,$) + 1)
δ1Eα(ζ,$)

×
((
s1γ1 + (λ2

1 + λ2
2 + λ1λ2) + (1 + a)(λ1 + λ2) + s2

)
Tα(ζ,$)

)
,

and

a2 =
T β(ζ,$)

Γ(β(ζ,$) + 1)
δ2Eβ(ζ,$)

(
(l1γ

′
1 + l2l3)T β(ζ,$)

)
,

which completes the stability result.

6. Description of the proposed method

To investigate the numerical solutions of the system (1.1), the solution can be
written in terms of VF wavelet as

u(ζ,$) '
m̂∑
i=1

m̂∑
j=1

uijψi(ζ)ψj($)

, ΨT (ζ)UΨ($), (6.1)

v(ζ,$) '
m̂∑
i=1

m̂∑
j=1

vijψi(ζ)ψj($)

, ΨT (ζ)VΨ($),

where U and V are unknown matrices of order m̂× m̂ to be determined and Ψ(ζ)
is vector defined in equation (3.12). Theorem 4.1 yields

∂2u(ζ,$)

∂ζ2
' ΨT (ζ)(D(2))TUΨ($),

∂2v(ζ,$)

∂ζ2
' ΨT (ζ)(D(2))TVΨ($). (6.2)

Also, from Theorem 4.3, we get

∂α(ζ,$)u(ζ,$)

∂$α(ζ,$)
' ΨT (ζ)U(P−1V α(ζ,$)

$ P )Ψ($),
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∂β(ζ,$)v(ζ,$)

∂$β(ζ,$)
' ΨT (ζ)V (P−1V β(ζ,$)

$ P )Ψ($). (6.3)

The residual function can be obtained by inserting equation (6.1)-(6.3) into equation
(1.1)

R1(ζ,$) ,−ΨT (ζ)U
(
P−1V α(ζ,$)

$ P
)

Ψ($)

+DuΨT (ζ)(D(2))TUΨ($) + ΨT (ζ)UΨ($) (6.4)

×
(

ΨT (ζ)UΨ($)− a
)(

1−ΨT (ζ)UΨ($)
)
−ΨT (ζ)VΨ($) + f1(ζ,$),

R2(ζ,$) ,−ΨT (ζ)V
(
P−1V β(ζ,$)

$ P
)

Ψ($) +DvΨ
T (ζ)VΨ($)

+ ε
(

ΨT (ζ)UΨ($)− bΨT (ζ)VΨ($)
)

+ f2(ζ,$). (6.5)

Now, associated initial and boundary conditions can be approximated via VF
wavelets as follows

Ψ(ζ)TUΨ(0)− u0(ζ) , U0(ζ) ' 0, Ψ(ζ)TVΨ(0)− v0(ζ) , V0(ζ) ' 0, (6.6)

and

Ψ(0)TUΨ($)− u1($) , U1($) ' 0, Ψ(1)TUΨ($)− u2($) , U2($) ' 0,

Ψ(0)TVΨ($)− v1($) , V1($) ' 0, Ψ(1)TVΨ($)− v2($) , V2($) ' 0.
(6.7)

At this stage collocating equation (6.4)-(6.7) at the certain collocation points i.e.
Rr(ζi, $j) = 0, r = 1, 2, 2 ≤ i ≤ m̂− 1, 2 ≤ j ≤ m̂,
U0(ζi) = 0, V0(ζi) = 0, 1 ≤ i ≤ m̂,
U1($j) = 0, U2($j) = 0, 2 ≤ j ≤ m̂,
V1($j) = 0, V2($j) = 0, 2 ≤ j ≤ m̂.

(6.8)

This system (6.8) generates 2(m̂× m̂) equations. To derive a numerical solution to
the original system, we will have to solve these algebraic equations to compute the
unknown matrices.

7. Convergence analysis and error bound

Theorem 7.1. Let f(x) be a square-integrable function defined in [0, 1] with |f ′′(x)|
≤ B, can be written as the infinite sum of the VF wavelets, and the series converges
uniformly to the function f(x), that is

f(x) =

∞∑
n=0

∞∑
m=1

cnmΨnm(x),

where

|cnm| <
3

2

√
π

8

B

(1 + n)2(m− 1)2(m− 2)2
, m > 2, n ≥ 0.
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Proof.

cnm =

∫ 1

0

f(x)Ψnm(x)ωn(x)dx =

∫ n+1

2k

n

2k

f(x)2k
√

8

π
V F ∗m(2kx− n)w(2kx− n)dx.

Now, let 2kx− n = t, then dx = 1
2k
dt. Then

cnm =

√
8

π

∫ 1

0

f
( t+ n

2k

)
V F ∗(t)w(t)dt.

Substituting t = 2+2 cos(θ)
4 in the above equation, we have

cnm =

√
1

2π

∫ π

0

f
(2n+ cos θ + 1

2k+1

)
sinmθ sin θ dθ

=
1

8

√
8

π

∫ π

0

f
(2n+ cos θ + 1

2k+1

)(
cos(m− 1)θ − cos(m+ 1)θ

)
dθ

=
1

8

√
8

π

1

2k+1

∫ π

0

f ′
(2n+ cos θ + 1

2k+1

)
×
( sin(m− 1)θ sin θ

(m− 1)
− sin(m+ 1)θ sin θ

(m+ 1)

)
dθ

=
1

8

√
8

π

1

2k+1

(
1

(m− 1)

∫ π

0

f ′
(2n+ cos θ + 1

2k+1

)
sin(m− 1)θ sin θ dθ

− 1

(m+ 1)

∫ π

0

f ′
(2n+ cos θ + 1

2k+1

)
sin(m+ 1)θ sin θ dθ

)

=
1

8

√
8

π

1

2k+1

(
I1 − I2

)
,

where I1 = 1
(m−1)

∫ π
0
f ′
(

2n+cos θ+1
2k+1

)
sin θ sin(m − 1)θ dθ and I2 = 1

(m+1)

×
∫ π

0
f ′
(

2n+cos θ+1
2k+1

)
sin θ sin(m+ 1)θ dθ.

Now, the task is to estimate the values of I1 and I2.

I1 =
1

(m− 1)

∫ π

0

f ′
(2n+ cos θ + 1

2k+1

)
sin(m− 1)θ sin θ dθ

=
1

2(m− 1)

∫ π

0

f ′
(2n+ cos θ + 1

2k+1

)(
cos(m− 2)θ − cosmθ

)
dθ

=
2−k−1

2(m− 1)

(
1

(m− 2)

∫ π

0

f ′′
(2n+ cos θ + 1

2k+1

)
sin(m− 2)θ sin θ dθ

− 1

m

∫ π

0

f ′′
(2n+ cos θ + 1

2k+1

)
sinmθ sin θ dθ

)

=
2−k−1

2(m− 1)

∫ π

0

f ′′
(2n+ cos θ + 1

2k+1

)( sin θ sin(m− 2)θ

(m− 2)
− sinmθ sin θ

m

)
dθ.

In a similar way one can get

I2 =
2−k−1

2(m+ 1)

∫ π

0

f ′′
(2n+ cos θ + 1

2k+1

)( sin θ sinmθ

m
− sin θ sin(m+ 2)θ

(m+ 2)

)
dθ.
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Thus, we have

cnm =
2−2k−2

√
8π

∫ π

0

f ′′
(2n+ cos θ + 1

2k+1

)
Ω(θ) dθ,

where

Ω(θ) =

[
1

2(−1 +m)

(
sin θ sin(m− 2)θ

(m− 2)
− sinmθ sin θ

m

)

− 1

2(1 +m)

(
sinmθ sin θ

m
− sin θ sin(m+ 2)θ

(m+ 2)

)]
,

or

|cnm| =

∣∣∣∣∣2−2k−2

√
8π

∫ π

0

f ′′
(2n+ cos θ + 1

2k+1

)
Ω(θ) dθ

∣∣∣∣∣,
|cnm| ≤

2−2k−2B√
8π

∫ π

0

|Ω(θ)|dθ.

After some mathematical calculations, we get

|cnm| <
3

2

√
π

8

B

(1 + n)2(m− 1)2(m− 2)2
, m > 2,

which completes the proof.

Theorem 7.2. Let f(x) be a continuous function defined in [0, 1] such that its
second derivative is bounded by some constant B. Then, the error bound will be

σk,M <
3B

2

√
π

8

( ∞∑
n=0

∞∑
m=M+1

(
1

(1 + n)2(m− 1)2(m− 2)2

)2

+

∞∑
n=2k

∞∑
m=1

(
1

(1 + n)2(m− 1)2(m− 2)2

)2) 1
2

,

where

σ2
k,M =

∫ 1

0

[
f(x)−

2k−1∑
n=0

M∑
m=1

cnmψn,m(x)
]2
ωn(x)dx.

Proof.

σ2
k,M =

∫ 1

0

[
f(x)−

2k−1∑
n=0

M∑
m=1

cnmψn,m(x)
]2
ωn(x)dx

=

∫ 1

0

[ ∞∑
n=0

∞∑
M=1

ccmψn,m(x)−
2k−1∑
n=0

M∑
m=1

cnmψn,m(x)
]2
ωn(x)dx

=

∫ 1

0

( ∞∑
n=0

∞∑
m=M+1

cnmψn,m(x) +

∞∑
n=2k

∞∑
m=1

cnmψn,m(x)

)2

ωn(x)dx
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=

∞∑
n=0

∞∑
m=M+1

c2nm +

∞∑
n=2k

∞∑
m=1

c2nm

<
(9πB2

32

)( ∞∑
n=0

∞∑
m=M+1

(
1

(1 + n)2(m− 1)2(m− 2)2

)2

+

∞∑
n=2k

∞∑
m=1

(
1

(1 + n)2(m− 1)2(m− 2)2

)2)
.

Therefore, we have

σ2
k,M <

(9πB2

32

)( ∞∑
n=0

∞∑
m=M+1

(
1

(1 + n)2(m− 1)2(m− 2)2

)2

+
∞∑

n=2k

∞∑
m=1

(
1

(1 + n)2(m− 1)2(m− 2)2

)2)
.

By taking the square root of both sides, the proof can be obtained.

8. Numerical applications

The purpose of this section is to illustrate some numerical experiments and apply
the method that have been proposed to solve those. The results of these numerical
experiments demonstrate the validity and applicability of our proposed method.
During the numerical computations, Mathematica 11.3 software was used on Win-
dows 10, 64 bit to operate all the numerical calculations. To illustrate the absolute
error at (ζi, $j), the following notation is adopted in order to demonstrate it:

eu(ζi, $j) = |u(ζj , $j)− um̂(ζi, $j)|, (8.1)

where u(ζi, $j) and um̂(ζi, $j) are exact and approximate solutions, respectively
at (ζi, $j).

Example 8.1. Consider model (1.1) by assuming Du = Dv = 0.5, a = 0.25, b = 0.5
and ε = 0.001 with

f1(ζ,$) =
2$2−α(ζ,$) cos(ζ)

Γ(3− α(ζ,$))
+Du$

2 cos(ζ)

− cos(ζ)$2($2 cos(ζ)− a)(1−$2 cos(ζ)) + sin(ζ)$2,

f2(ζ,$) =
2$2−β(ζ,$) sin(ζ)

Γ(3− β(ζ,$))
+Dv$

2 sin(ζ)− ε(cos(ζ)− b sin(ζ))$2.

The IC and BCs are obtained using the exact solutions u(ζ,$) = $2 cos(ζ) and
v(ζ,$) = $2sin(ζ).
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(a) Exact solution (b) Numerical solution

(c) Exact solution (d) Numerical solution

Figure 1. Behaviour of exact solution and their corresponding numerical solutions for Example 8.1 at
m̂ = 4.

Table 1. Tabular presentation of absolute error of Example 8.1 for two different values of m̂.

m̂ = 4 m̂ = 8

ζ eu(ζ,$) ev(ζ,$) eu(ζ,$) ev(ζ,$)

0.1 3.5993× 10−4 1.0668× 10−4 2.5985× 10−8 8.6582× 10−9

0.3 1.1373× 10−3 3.3706× 10−4 8.3329× 10−8 2.7798× 10−8

0.5 1.8997× 10−3 5.8260× 10−4 1.5829× 10−7 5.2981× 10−8

0.7 2.2062× 10−3 7.2479× 10−4 2.5998× 10−7 8.7720× 10−8

0.9 1.2675× 10−3 4.5465× 10−4 2.6505× 10−7 9.1621× 10−8

The main observations are as follows:

• The numerical results of Example 8.1 for the fractional order α(ζ,$) = (2 +
sin(ζ$))/4 and β(ζ,$) = 0.55 + 0.35 sin(ζ$) at $ = 0.5 and for particular
values of ζ are shown in Table 1. From Table 1, it is clear that increasing the
number of approximations significantly reduces the absolute error, indicating
the efficiency of the method in capturing the solution’s details by increasing
the number of approximation.
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(b) Error in v(ζ,$)

Figure 2. Comparison of maximum absolute error for Example 8.1 for different value of m̂ at $ = 0.5.

• Behaviour of exact and numerical results can be seen in Fig 1, in which ap-
proximate results are obtained at m̂ = 4. It is clear from the figures that
the exact solution and approximate solution graph are very similar for small
values of approximation. The close alignment between the graphs of the exact
solution and the approximate solution, particularly for small approximation
values, demonstrates the robustness of the numerical method in replicating
the true dynamics of the problem.

• A comparison of maximum absolute error for various values of m̂ is indicated
in Fig 2, which clearly shows that on increasing the number of approxima-
tions, the error decreases rapidly for both u(ζ,$) and v(ζ,$), signifying that
the method not only converges but does so efficiently across different com-
ponents of the solution. The results confirm the reliability of the proposed
computational approach in accurately solving fractional-order problems, with
the decreasing error providing strong evidence of its effectiveness.

Example 8.2. By assuming Du = Dv = 1, a = 0.35, b = 0.45 and ε = 0.00125 in
the model (1.1), the problem is reduced to

∂α(ζ,$)u(ζ,$)

∂$α(ζ,$)
=
∂2u

∂ζ2
+ u(u− 0.35)(1− u)− v + f1(ζ,$),

∂β(ζ,$)v(ζ,$)

∂$β(ζ,$)
=
∂2v

∂ζ2
+ 0.00125(u− 0.45v) + f2(ζ,$),

whose exact solutions are given by u(ζ,$) = sin($) cosh(ζ), v(ζ,$) = cos($)
× sinh(ζ), considering

f1(ζ,$) =$1−α(ζ,$)E2,2−α(ζ,$)(−$2) cosh(ζ)− cosh(ζ) sin($)

− sin($) cosh(ζ)(sin($) cosh(ζ)− 0.35)(1− sin($) cosh(ζ))

+ cos($) sinh(ζ),

f2(ζ,$) =−$2−β(ζ,$)E2,3−α(ζ,$)(−$2) sinh(ζ)− sinh(ζ) cos($)

− 0.00125(cosh(ζ) sin($)− 0.45 cos($) sinh(ζ)).
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(a) Exact solution (b) Numerical solution

(c) Exact solution (d) Numerical solution

Figure 3. Behaviour of exact solution and their corresponding numerical solutions for Example 8.2 at
m̂ = 10.

Table 2. Tabular presentation of absolute error of Example 8.2 for two different values of α(ζ,$) and
β(ζ,$).

α(ζ,$)) = 0.45 + 0.25 sin(ζ +$), β(ζ,$) = 1 α(ζ,$) = 1, β(ζ,$) = 0.95− 0.20 cos(3ζ$)

ζ eu(ζ,$) ev(ζ,$) eu(ζ,$) ev(ζ,$)

0.1 1.7767× 10−10 1.8072× 10−10 1.5870× 10−10 1.6476× 10−10

0.3 5.5243× 10−10 5.4063× 10−10 5.0208× 10−10 4.9739× 10−10

0.5 9.8704× 10−10 8.9514× 10−10 9.2273× 10−10 8.3810× 10−10

0.7 1.5216× 10−09 1.2361× 10−09 1.4667× 10−09 1.1857× 10−09

0.9 1.7289× 10−09 1.2531× 10−09 1.7064× 10−09 1.2318× 10−09

The main observations are as follows:

• Table 2 is designed to show the absolute errors for Example 8.2 for α(ζ,$) =
0.45 + 0.25 sin($ + ζ), β(ζ,$) = 1 and α(ζ,$) = 1, β(ζ,$) = 0.95 −
0.20 cos(3ζ$) at $ = 0.5 for different values of ζ with m̂ = 10. From the
Table, it can be observed that errors computed by the presented approach are
very close to zero, and thus, the proposed method provides good numerical
results.

• Graph of exact and approximate results for fractional order α(ζ,$) = 0.45 +
0.25 sin($+ ζ), and β(ζ,$) = 1 can be seen in Fig.3. The visual comparison
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Figure 4. Comparison of maximum absolute error for Example 8.2 for different value of m̂ at $ = 0.5.

between these results highlights the substantial agreement between the exact
solution and the numerical approximation, demonstrating the method’s ca-
pability to replicate the behavior of the system under study accurately. The
close agreement of the graphs for exact and approximate solutions further
confirms the effectiveness of the method.

• A comparison of maximum absolute error for various values of m̂ for α(ζ,$) =
1 and β(ζ,$) = 0.95−0.20 cos(3ζ$) is indicated in Fig 4, which clearly shows
that on increasing the value of m̂, error is decreasing. This trend confirms
the method’s convergence and highlights its efficiency in reducing the error
by increasing the number of approximations. The results in Fig. 4 show that
the proposed method is highly effective in solving fractional-order differential
equations.

9. Conclusion

This article has developed and thoroughly investigated a new computational scheme
to find the approximate solution of variable-order partial differential equations
where the derivatives are considered in the Caputo sense. The study delves into
the uniqueness and existence of the solution for the Fitzhugh-Nagumo model, along
with a detailed discussion on the Ulam-Hyers stability of the model. Vieta-Fibonacci
wavelets are employed to find the numerical solution of the PDEs, and the opera-
tional matrices corresponding to both integer and variable-order differential oper-
ators are meticulously derived. These operational matrices play a crucial role in
transforming the original problem into a system of algebraic equations. The error
analysis associated with this method is rigorously examined, providing valuable in-
sights into the accuracy and reliability of the proposed approach. The effectiveness
and precision of the method are further validated by applying it to several numeri-
cal examples. These examples demonstrate the robustness of the proposed scheme
in handling complex differential equations and underline its potential as a powerful
tool in the numerical analysis of VOPDEs.
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97–116.

[9] S. Das, Analytical solution of a fractional diffusion equation by variational
iteration method, Computers & Mathematics with Applications, 2009, 57(3),
483–487.

[10] S. Das, A note on fractional diffusion equations, Chaos, Solitons & Fractals,
2009, 42(4), 2074–2079.

[11] M. Derakhshan, Existence, uniqueness, Ulam–Hyers stability and numerical
simulation of solutions for variable order fractional differential equations in
fluid mechanics, Journal of Applied Mathematics and Computing, 2022, 68(1),
403–429.

[12] U. Farooq, H. Khan, D. Baleanu and M. Arif, Numerical solutions of fractional
delay differential equations using Chebyshev wavelet method, Computational
and Applied Mathematics, 2019, 38, 1–13.

[13] B. Ghanbari and S. Kumar, A study on fractional predator–prey–pathogen
model with Mittag–Leffler kernel-based operators, Numerical Methods for Par-
tial Differential Equations, 2024, 40(1), e22689. DOI: 10.1002/num.22689.



Numerical simulation of variable order 837

[14] M. Heydari and Z. Avazzadeh, A new wavelet method for variable–order frac-
tional optimal control problems, Asian Journal of Control, 2018, 20(5), 1804–
1817.

[15] M. Heydari, Z. Avazzadeh and A. Atangana, Shifted Vieta–Fibonacci polyno-
mials for the fractalfractional fifth–order Kdv equation, Mathematical Methods
in the Applied Sciences, 2021, 44(8), 6716–6730.

[16] L. Hou, H. Kokubu, A. Marciniak-Czochra and I. Takagi, Existence of traveling
wave solutions to reaction–diffusion–ODE systems with hysteresis, Journal of
Differential Equations, 2023, 364, 667–713.

[17] A. Jajarmi and D. Baleanu, A new iterative method for the numerical solu-
tion of high–order non–linear fractional boundary value problems, Journal of
Differential Equations, 2020, 8, 220. DOI: 10.3389/fphy.2020.00220.

[18] M. Javidi and B. Ahmad, Numerical solution of fractional partial differential
equations by numerical Laplace inversion technique, Advances in Difference
Equations, 2013, 2013(1), 1–18.

[19] M. Kashif, M. Singh, T. Som and E.-M. Craciun, Numerical study of vari-
able order model arising in chemical processes using operational matrix and
collocation method, Journal of Computational Science, 2024, 80, 102339. DOI:
10.1016/j.jocs.2024.102339.

[20] D. Kumar, J. Singh, D. Baleanu and Sushila, Analysis of regularized long–
wave equation associated with a new fractional operator with Mittag–Leffler
type kernel, Physica A: Statistical Mechanics and its Applications, 2018, 492,
155–167.

[21] S. Kumar, R. Chauhan, S. Momani and S. Hadid, Numerical investigations
on COVID-19 model through singular and non–singular fractional operators,
Numerical Methods for Partial Differential Equations, 2024, 40(1), e22707.
DOI: 10.1002/num.22707.

[22] S. Kumar, R. Kumar, M. Osman and B. Samet, A wavelet based numerical
scheme for fractional order SEIR epidemic of measles by using Genocchi poly-
nomials, Numerical Methods for Partial Differential Equations, 2021, 37(2),
1250–1268.

[23] S. Kumar, A. Kumar, B. Samet and H. Dutta, A study on fractional host–
parasitoid population dynamical model to describe insect species, Numerical
Methods for Partial Differential Equations, 2021, 37(2), 1673–1692.

[24] S. Kumar, P. Pandey and S. Das, Gegenbauer wavelet operational matrix
method for solving variable–order non–linear reaction–diffusion and Galilei in-
variant advection–diffusion equations, Computational and Applied Mathemat-
ics, 2019, 38, 1–22.

[25] A. Mahmoud, I. G. Ameen and A. A. Mohamed, A new operational matrix
based on Jacobi wavelets for a class of variable–order fractional differential
equations, Proceedings of the Romanian Academy Series A, 2017, 18(4), 315–
322.

[26] F. Mohammadi and M. Hosseini, A new Legendre wavelet operational matrix
of derivative and its applications in solving the singular ordinary differential
equations, Journal of the Franklin Institute, 2011, 348(8), 1787–1796.



838 M. Singh, S. Das, Rajeev & E. M. Craciun

[27] S. Qureshi and A. Atangana, Mathematical analysis of dengue fever outbreak
by novel fractional operators with field data, Physica A: Statistical Mechanics
and its Applications, 2019, 526, 121127. DOI: 10.1016/j.physa.2019.121127.

[28] H. Saeedi, M. M. Moghadam, N. Mollahasani and G. Chuev, A CAS wavelet
method for solving nonlinear Fredholm integro–differential equations of frac-
tional order, Communications in Nonlinear Science and Numerical Simulation,
2011, 16(3), 1154–1163.

[29] K. Shah, M. A. Alqudah, F. Jarad and T. Abdeljawad, Semi–analytical
study of PineWilt Disease model with convex rate under Caputo–Febrizio frac-
tional order derivative, Chaos, Solitons & Fractals, 2020, 135, 109754. DOI:
10.1016/j.chaos.2020.109754.

[30] J. Singh, D. Kumar, Z. Hammouch and A. Atangana, A fractional epidemi-
ological model for computer viruses pertaining to a new fractional derivative,
Applied mathematics and computation, 2018, 316, 504–515.

[31] M. Singh, S. Das, Rajeev and E. Craciun, Numerical solution of two–
dimensional nonlinear fractional order reaction–advection–diffusion equation
by using collocation method, Analele ştiinţifice ale Universităţii “Ovidius”
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