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FOR COMPUTING SOLUTIONS OF
ABSOLUTE VALUE EQUATIONS
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Abstract In this study, we propose a two-step iterative procedure for solving
absolute value equations. The method includes Simpson’s Three-Eighths for-
mula with five points as a corrector step and generalized Newton’s approach
as a predictor step. For solving large systems, this method is very effective
because it is very simple. Moreover, we show the convergence analysis under
certain conditions using different theorems. We conducted numerical experi-
ments to examine the efficiency of the presented technique.
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1. Introduction

Consider the absolute value equation (AVE) of the form:

Ax− |x| = b, (1.1)

where A ∈ Rn×n, |x| = (|x1|, |x2|, ..., |xn|)T , and b ∈ Rn. Another generalized form
of Eq. (1.1) is

Ax+B|x| = b, (1.2)

where B ∈ Rn×n was first presented by Rohn in [25]. When B = −I, where I rep-
resents the identity matrix, equation (1.2) is transformed into equation (1.1). Many
engineering and scientific computing applications use equation (1.1), including linear
complementarity problems (LCPs), linear programming, and network price [18,19].
Numerical algorithms for AVEs are primarily examined with mathematical theories,
the framework of solutions, and the accurate output of high-quality preconditioners
and highly efficient numerical procedures AVEs. Numerous numerical techniques
have been investigated in recent years to solve AVE, such as Salkuyeh [28] proposed
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the Picard-HSS iterative method for calculating AVE (1.1). A generalized Newton
(GN) algorithm for solving AVE (1.1) was developed by Mangasarian [17], who
also demonstrated that this method converges linearly when ||A−1|| < 1

4 . In their
study, Cacceta et al. [3] investigated a smoothing Newton algorithm for equation
(1.1) and determined that this method is convergent when ||A−1|| < 1. Saheya et
al. [27] examined smoothing type techniques to calculate equation (1.1) and pre-
sented convergence outcomes for the proposed algorithms. Abdallah et al. [1] Pre-
sented equation (1.1) as an LCP and determined it Utilizing a smoothing approach.
In [24], Prokopyev analyzed unique features of AVE and their relationship to LCP.
For instance, [16] presented a preconditioned iterative AOR technique for solving
equation (1.1) and explained the conditions for the technique to converge. Wu with
Li in [29] examined a novel iterative technique for determining the AVE using the
shift splitting (SS) technique. Haghani studied the generalized version of Traub’s
approach in [11]. Hu and Huang [12] gave several convexity and existence results for
the solution of the AVE system and reconstructed the AVE system as a standard
LCP without any assumptions. Fakharzadeh and Shams in [7], investigated the
convergence properties of the mixed-type splitting approach to solve equation (1.1).
Dong et al. in [5] developed a new SOR-like approach for computing AVE. Feng
with Liu [8] introduced an improved generalized Newton technique. Iqbal et al. [13]
presented the Levenberg-Marquardt iterative procedure to solve AVE (1.1). Gul et
al. [9] developed a two-step iterative approach for computing AVE (1.1). Noor et
al. [20, 21] suggested minimization algorithms to solve AVE.

In this paper, Simpson’s Three-Eighths approach, along with the generalized
Newton approach, are discussed for solving equation (1.1). This new algorithm is
simple and very effective. The following is a summary of the points discussed in
this article. In Sec. 2, we introduce the proposed technique, different definitions
and notations utilized in this article. Sec.3 discusses the convergence for solving
equation (1.1). We present the numerical outcomes and our conclusions in Sections
4 and 5, respectively. We use the following notations. Let sign(x) be a vector with
elements −1, 0, 1 based on the related elements of x. The generalized Jacobian ∂|x|
of |x| based on a subgradient [23, 30] of the elements of |x| is the diagonal matrix
D is defined as

D(x) = ∂|x| = diag(sign(x)), (1.3)

svd(A) represents the n singular values of A. ψ is the maximum eigenvalue of ATA

in absolute and ||A|| = (ψ)
1
2 representss the 2-norm of A. The norm ||x|| will

represent the 2-norm
√

(xTx) of the vector x. Note that |x| = D(x)x

2. Proposed method

Suppose
Ψ(x) = Ax− |x| − b. (2.1)

The generalized Jacobian of Ψ(x) at x is:

∂Ψ(x) = A−D(x). (2.2)

Consider the predictor step as:

λk =

(
A−D

(
xk

))−1

b. (2.3)
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Let m be the solution to AVE (1.1). To construct the corrector step, we proceed as
follows: ∫ m

u

Ψ′(t)dt = Ψ(m)−Ψ(u) = −Ψ(u). (2.4)

Now, we use the five-point Simpson’s Three-Eighths formula, we get∫ m

u

Ψ′
(
t

)
dt =

m− u

90

[
7Ψ′(u) + 32Ψ′

(
3u+m

4

)
+ 12Ψ′

(
u+m

2

)
+ 32Ψ′

(
u+ 3m

4

)
+ 7Ψ′

(
m

)]
.

(2.5)

From Equations (2.4) and (2.5), we get

−Ψ

(
u

)
=
m− u

90

[
7Ψ′

(
u

)
+ 32Ψ′

(
3u+m

4

)
+ 12Ψ′

(
m+ u

2

)

+ 32Ψ′
(
u+ 3m

4

)
+ 7Ψ′

(
m

)]
.

(2.6)

Thus

m =u− 90

[
7Ψ′

(
u

)
+ 32Ψ′

(
3u+m

4

)
+ 12Ψ′

(
m+ u

2

)

+ 32Ψ′
(
u+ 3m

4

)
+ 7Ψ′

(
m

)]−1

Ψ(u).

(2.7)

From equation (2.7) the algorithm for STE approach can be writte as:

Algorithm 2.1

1: Select x(0) ∈ Rn.

2: For k compute λk =

(
A−D

(
xk

))−1

b.

3: Using Step 2, compute

xk+1 = xk − 90

[
7Ψ′

(
xk

)
+ 32Ψ′

(
3xk+λk

4

)
+ 12Ψ′

(
λk+xk

2

)
+ 32Ψ′

(
xk+3λk

4

)
+ 7Ψ′

(
λk

)]−1

Ψ

(
xk

)
.

4: If xk+1 = xk, then end. Otherwise, apply k = k + 1 and continue from step 2.

3. Convergence

In this section, we prove the convergence of STE method. The predictor step is well
defined (see Lemma 2 [17]) as

λk =

(
A−D

(
xk

))−1

b. (3.1)
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Now, we want to prove that

7Ψ′
(
xk

)
+ 32Ψ′

(
3xk + λk

4

)
+ 12Ψ′

(
λk + xk

2

)
+ 32Ψ′

(
xk + 3λk

4

)
+ 7Ψ′

(
λk

)
(3.2)

is nonsingular, we first consider

αk =

(
3xk + λk

4

)
, βk =

(
λk + xk

2

)
, γk =

(
xk + 3λk

4

)
. (3.3)

Now

7Ψ′
(
xk

)
+ 32Ψ′

(
3xk + λk

4

)
+ 12Ψ′

(
λk + xk

2

)
+ 32Ψ′

(
xk + 3λk

4

)
+ 7Ψ′

(
λk

)
= 7A− 7D

(
xk

)
+ 32A− 32D

(
αk

)
+ 12A− 12D

(
βk

)
+ 32A− 32D

(
γk

)
+ 7A− 7D

(
λk

)
= 90A− 7D

(
xk

)
− 32D

(
αk

)
− 12D

(
βk

)
− 32D

(
γk

)
− 7D

(
λk

)
,

which is nonsingular.

Lemma 3.1. If svd(A) > 1, then

(
90A − 7D

(
xk

)
− 32D

(
αk

)
− 12D

(
βk

)
−

32D

(
γk

)
− 7D

(
λk

))−1

exists for any D defined in equation (1.3).

Proof. If 90A−7D

(
xk

)
−32D

(
αk

)
−12D

(
βk

)
−32D

(
γk

)
−7D

(
λk

)
is singular,

then

(
90A − 7D

(
xk

)
− 32D

(
αk

)
− 12D

(
βk

)
− 32D

(
γk

)
− 7D

(
λk

)
x = 0 for

some x ̸= 0. As the svd(A) > 1, thus

xTx <xTATAx

=
1

8100
xT

(
7D

(
xk

)
+ 32D

(
αk

)
+ 12D

(
βk

)
+ 32D

(
γk

)
+ 7D

(
λk

))
×
((

7D

(
xk

)
+ 32D

(
αk

)
+ 12D

(
βk

)
+ 32D

(
γk

)
+ 7D

(
λk

))
x

=
1

8100
xT

(
49D

(
xk

)
D

(
xk

)
+ 49D

(
λk

)
D

(
λk

)
+ 1024D

(
αk

)
D

(
αk

)
+ 144D

(
βk

)
D

(
βk

)
+ 1024D

(
γk

)(
γk

)
+ 448D

(
xk

)
D

(
αk

)
+ 168D

(
xk

)
D

(
βk

)
+ 448D

(
xk

)
D

(
γk

)
+ 768D

(
αk

)
D

(
βk

)
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+ 2048D

(
γk

)
D

(
αk

)
+ 448D

(
αk

)
D

(
λk

)
+ 168D

(
zk

)
D

(
βk

)
+ 768D

(
βk

)
D

(
γk

)
+ 448D

(
λk

))
D

(
γk

))
x

≤ 1

8100
8100xTx

=xTx,

which is a contradiction, hence 90A−7D

(
xk

)
−32D

(
αk

)
−12D

(
βk

)
−32D

(
γk

)
−

7D

(
λk

)
is non-singular.

Lemma 3.2. If svd(A) > 1, then the sequence of STE approach is bounded and
well-defined. Therefore, an accumulation point x̄ exists such that

x̃ =x̃− 90

(
7Ψ′

(
xk

)
+ 32Ψ′

(
αk

)
+ 12Ψ′

(
βk

)
+ 32Ψ′

(
γk

)
+ 7Ψ′

(
λk

))−1

Ψ

(
x̃

)
,

(3.4)

or it is equivalent to(
7Ψ′

(
xk

)
+ 32Ψ′

(
αk

)
+ 12Ψ′

(
βk

)
+ 32Ψ′

(
γk

)
− 7Ψ′

(
λk

))
x̃

=

(
7Ψ′

(
xk

)
+ 32Ψ′

(
αk

)
+ 12Ψ′

(
βk

)
+ 32Ψ′

(
γk

)
+ 7Ψ′

(
λk

))
x̃− 90Ψ

(
x̃

)
.

(3.5)

Hence, there exists an accumulation point x̃ with(
A− D̃(x̃)

)
x̃ = b, (3.6)

for some diagonal matrix D̃ with diagonal elements 0 or ±1 depends on wether the
corresponding component of x̃ is positive, zero, or negative as defined in equation
(1.3).

Proof. The proof of this Lemma is analogous to proposition 3 of [17]. Thus it is
omitted.

Theorem 3.1. If

∣∣∣∣∣∣∣∣(7Ψ′
(
xk

)
+ 32Ψ′

(
αk

)
+ 12Ψ′

(
βk

)
+ 32Ψ′

(
γk

)
+ 7Ψ′

×
(
λk

))−1∣∣∣∣∣∣∣∣ < 1
270 , then the STE approach converges to a solution m of equa-

tion (1.1).

Proof. Consider

xk+1 −m =xk − 90

(
7Ψ′

(
xk

)
+ 32Ψ′

(
αk

)
+ 12Ψ′

(
βk

)
+ 32Ψ′

(
γk

)
+ 7Ψ′

(
λk

))−1

Ψ

(
xk

)
−m.

(3.7)
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Fot simplicity, let

P =7Ψ′
(
xk

)
+ 32Ψ′

(
αk

)
+ 12Ψ′

(
βk

)
+ 32Ψ′

(
γk

)
+ 7Ψ′

(
λk

)
. (3.8)

Then, equations (3.7) converts into

xk+1 −m = xk −m− 90P−1Ψ

(
xk

)
,

P

(
xk+1 −m

)
= P

(
xk −m

)
− 90Ψ

(
xk

)
. (3.9)

We know that, m is the solution of equation (1.1), thus

Ψ(m) = Am− |m| − b = 0. (3.10)

From equations (3.9) and (3.10), we obtain

P

(
xk+1 −m

)
= P

(
xk −m

)
− 90Ψ

(
xk

)
+ 90Ψ

(
m

)
= P

(
xk −m

)
− 90

(
Ψ

(
xk

)
−Ψ

(
m

))
= P

(
xk −m

)
− 90

(
Axk − |xk| −Am+ |m|

)
=

(
P − 90A

)(
xk −m

)
− 90

(
|m| − |xk|

)
= −

(
E

)(
xk −m

)
+ 90

(
|xk| − |m|

)
where

E = 7D

(
xk

)
+ 32D

(
αk

)
+ 12D

(
βk

)
+ 32D

(
γk

)
+ 7D

(
λk

)
.

Now

xk+1 −m =

(
P

)−1[
90

(
|xk| − |m|

)
−
(
E

)(
xk −m

)]
, (3.11)

xk+1 −m =

(
P

)−1[
90

(
|xk| − |m|

)
− E

(
xk −m

)]
, (3.12)∣∣∣∣∣∣∣∣xk+1 −m

∣∣∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣∣∣(P)−1∣∣∣∣∣∣∣∣[ 180∣∣∣∣∣∣∣∣xk −m

∣∣∣∣∣∣∣∣+ ∣∣∣∣∣∣∣∣(E)∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣xk −m

∣∣∣∣∣∣∣∣]. (3.13)

In equation (3.13), we utilized Lipschitz continuity of the absolute value (see [17]);
that is, ∣∣∣∣∣∣∣∣|xk| − |m|

∣∣∣∣∣∣∣∣ ≤ 2

∣∣∣∣∣∣∣∣xk −m

∣∣∣∣∣∣∣∣.
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Since D

(
xk

)
, D

(
λk

)
, D

(
αk

)
, D

(
βk

)
and D

(
γk

)
are diagonal matrices whose

diagonal elements are 0 or ±1, thus∣∣∣∣∣∣∣∣E∣∣∣∣∣∣∣∣ = ∣∣∣∣∣∣∣∣7D(
xk

)
+ 32D

(
αk

)
+ 12D

(
βk

)
+ 32D

(
γk

)
+ 7D

(
λk

)∣∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣∣7D(
xk

)∣∣∣∣∣∣∣∣+ ∣∣∣∣∣∣∣∣32D(
αk

)∣∣∣∣∣∣∣∣+ ∣∣∣∣∣∣∣∣12D(
βk

)∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣32D(
γk

)∣∣∣∣∣∣∣∣+ ∣∣∣∣∣∣∣∣7D(
λk

)∣∣∣∣∣∣∣∣
≤ 90. (3.14)

From equation (3.13) and (3.14), we obtain∣∣∣∣∣∣∣∣xk+1 −m

∣∣∣∣∣∣∣∣ ≤ 270

∣∣∣∣∣∣∣∣(P)−1∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣xk −m

∣∣∣∣∣∣∣∣ < ∣∣∣∣∣∣∣∣xk −m

∣∣∣∣∣∣∣∣. (3.15)

In equation (3.15), we have utalized the condition that

∣∣∣∣∣∣∣∣(7Ψ′
(
xk

)
+32Ψ′

(
αk

)
+

12Ψ′
(
βk

)
+32Ψ′

(
γk

)
+7Ψ′

(
λk

))−1∣∣∣∣∣∣∣∣ < 1
270 . Thus, x

k linearly converges to the

solution of AVE (1.1).

Lemma 3.3. Let

∣∣∣∣∣∣∣∣A−1

∣∣∣∣∣∣∣∣ < 1
271 and D

(
xk

)
, D

(
αk

)
, D

(
βk

)
, D

(
γk

)
and

D

(
λk

)
be nonzero. Then STE method is well defined and converges to the unique

solution of AVE (1.1) for any initial vector x0.

Proof. Since

∣∣∣∣∣∣∣∣A−1

∣∣∣∣∣∣∣∣ < 1
271 , therefore, AVE (1.1) is uniquely solvable for any b see

( [18], Proposition 4). Since A−1 exists, therefore, by Lemma 2.3.2 [22], we have∣∣∣∣∣∣∣∣(7Ψ′
(
xk

)
+ 32Ψ′

(
αk

)
+ 12Ψ′

(
βk

)
+ 32Ψ′

(
γk

)
+ 7Ψ′

(
λk

))−1∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣(90A− 7D

(
xk

)
− 32D

(
αk

)
− 12D

(
βk

)
− 32D

(
γk

)
− 7D

(
λk

))−1∣∣∣∣∣∣∣∣

≤

∣∣∣∣∣∣∣∣(90A

)−1∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣−7D

(
xk

)
−32D

(
αk

)
−12D

(
βk

)
−32D

(
γk

)
−7D

(
λk

)∣∣∣∣∣∣∣∣
1−

∣∣∣∣∣∣∣∣(90A

)−1∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣(−7D

(
xk

)
−32D

(
αk

)
−12D

(
βk

)
−32D

(
γk

)
−7D

(
λk

)∣∣∣∣∣∣∣∣
≤

1
90

∣∣∣∣∣∣∣∣(A)−1∣∣∣∣∣∣∣∣90
1− 1

90

∣∣∣∣∣∣∣∣(A)−1∣∣∣∣∣∣∣∣90
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<
1

271

1− 1
271

=
1

270
.

Based on Theorem 3.1, we conclude that the STE approach converges linearly to
the unique solution of equation (1.1).

4. Numerical outcomes

Here, we conduct numerical tests to demonstrate the efficiency of Simpson’s Three-
Eighths method. Moreover, the iteration, residual, and CPU time, are represented,
by Iters, RES, and CPU, respectively. We utilized Intel (R) Core (TM) i5-8145U,
2.30 GHz CPU, and 8 GB of RAM for all numerical experiments. All numerical
experiments are initiated with the null vector, and the analysis is terminated when
the current iteration is concluded.

RES := ∥Axk−|xk|−b∥2

∥b∥2
≤ 10−6.

Example 4.1. Let A be a matrix in the form of

A = (aij)


1000 + i, for j = i,

1, for

{
j = i+ 1, i = 1, 2, ..., n− 1,

j = i− 1, i = 2, ..., n,

0, Otherwise.

Calculate Au⋆ − |u⋆| = b ∈ Rn, with u⋆ = (x1, x2, x3, ...xn)
T ∈ Rn such that

xi = (−1)i.
In Example 4.1, the starting vector and the stopping criterion are taken from [14].

Furthermore, we compare the suggested technique to the new iteration procedure
(NA) in [14], and the SORLoapt method given in [4] and with Picard method
in [26]. Table 1 summarizes the outcomes of the investigation. According to Table
1 , the developed method determines the AVE solution more rapidly than existing
algorithms in terms of Iters and CPU.

Example 4.2. [6] Let

A =Tridiag(−1, 4,−1) =



4 −1 0 · · · 0 0

−1 4 −1 · · · 0 0

0 −1 4 · · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · 4 −1

0 0 0 · · · −1 4


∈ Rn×n, u⋆ =



−1

1

−1

1

...

−1

1



∈ Rn,

where Au⋆ − |u⋆| = b ∈ Rn.
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Table 1. Numerical results for Example 4.1 with NA, SORLaopt, Technique I, and STE method.

Techniques n 1000 2000 3000 4000 5000

Iters 17 18 18 18 18

NA CPU 1.9831 10.5160 28.6587 63.6419 117.3205

RES 7.38e-09 2.60e-09 3.19e-09 3.68e-09 4.11e-09

Iters 15 15 15 15 15

SORLaopt CPU 1.4542 9.1963 25.5616 56.0278 102.4061

RES 1.99e-09 3.62e-09 7.58e-09 3.68e-09 9.88e-09

Iters 5 5 5 5 5

Picard CPU 0.6201 1.3475 4.4926 13.3852 44.5911

RES 1.34e-11 1.68e-11 2.38e-11 3.73e-11 3.13e-11

Iters 2 2 2 2 2

STE CPU 0.2638 0.6417 1.4300 2.8050 4.7831

RES 2.04e-07 2.04e-07 2.04e-07 2.04e-07 2.04e-07

In this example, we compare the presented approach with the SOR-like ap-
proach [4] (written as SORLaopt) and the SS iterative approach proposed in [31]
(represented by SSA) and with GGS approach [6].

In Table 2, we present the results of the study. Table 2 indicates that all ex-
perimented techniques quickly analyze equation (1.1). The proposed method offers
superior Iters and CPU values in comparison to existing techniques.

Table 2. Numerical results for Example 4.2 with SORLaopt and SSA techniques, Technique I, and STE
technique.

Techniques n 1000 2000 3000 4000

Iters 21 22 22 22

GGS CPU 2.9658 7.7891 17.6613 31.6259

RES 7.89e–07 4.90e–07 6.01e–07 6.94e–07

Iters 18 18 18 18

SORLaopt CPU 2.5147 6.1249 15.9104 27.1345

RES 6.12e-07 6.13e-07 6.13e-07 6.14e-07

Iters 14 14 14 14

SSA CPU 1.7828 5.0954 13.3028 21.1644

RES 8.91e-07 8.92e-07 8.93e-07 8.93e-07

Iters 7 7 7 7

STE CPU 0.6072 1.9383 3.7563 9.5864

RES 5.47e-07 5.48e-07 5.48e-07 5.48e-07

Example 4.3. [10] We consider AVE (1.1) with

A=Tridiag(−In, Zn,−In)=



Z −I 0 · · · 0 0

−I Z −I · · · 0 0

0 −I Z · · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · Z −I

0 0 0 · · · −I Z


∈ Rn×n, u⋆=



−1

1

−1

1

...

−1

1


∈ Rn,
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Zn =Tridiag(−1, 8,−1) =



8 −1 0 · · · 0 0

−1 8 −1 · · · 0 0

0 −1 8 · · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · 8 −1

0 0 0 · · · −1 8


∈Rn×n,

where m = n2 and b = Au⋆ − |u⋆| ∈ Rn.
In Example 4.3, we compare our proposed algorithm with the SOR-like method

[10], MSOR approach [2], and NSOR method [5].
Table 3 shows the numerical outcomes of the four methods. According to the

data presented in Table 3, every tested technique produced an accurate outcome
in solving for equation (1.1). Compared with the existing methods, the Iters and
CPU values in the suggested method are superior. Therefore, we can conclude that
the proposed approach is both very effective and practicable in terms of Iters and
CPU.

Table 3. Numerical results for Examlpe 4.3 with SOR-like, MSOR, NSOR and STE technique.

Techniques n 1600 2500 3600 4900

Iters 16 16 16 16

SOR-like CPU 0.0433 0.0910 0.1945 0.3554

RES 4.48e–08 5.68e–08 6.97e–08 8.19e–08

Iters 12 12 12 12

MSOR CPU 0.0351 0.0774 0.1585 0.2779

RES 4.71e–07 5.99e–07 7.28e–07 8.56e–07

Iters 9 9 10 10

NSOR CPU 0.0252 0.0538 0.1276 0.2299

RES 7.10e–07 9.16e–07 1.54e–07 1.82e–07

Iters 6 6 6 6

STE CPU 0.0131 1.0336 0.0955 0.1971

RES 2.69e–07 2.76e–07 2.81e–07 2.84e–07

Example 4.4. [5]. Let

A=Tridiag(−1, 8,−1)=



8 −1 0 · · · 0 0

−1 8 −1 · · · 0 0

0 −1 8 · · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · 8 −1

0 0 0 · · · −1 8


∈Rn×n, u⋆ =



−1

1

−1

1

...

−1

1



∈ Rn,
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and vector b = Au⋆ − |u⋆| ∈ Rn.

Table 4 shows the numerical results of four techniques. Example 4.4 compares
the proposed approach with SOR-like approach, MSOR method, and NSOR ap-
proach. As shown in Table 4, the four techniques have the potential to solve the
problem efficiently and effectively. In Table 4, we report the Iters, the CPU, and
the RES. Table 4 shows that the iterations and CPU of the suggested technique are
better than the SOR-like, MNSOR, and NSOR methods.

Table 4. Numerical results for Examlpe 4.4 with SOR-like, MSOR, NSOR and STE technique.

Techniques n 1000 2000 3000 4000 5000 6000

Iters 12 13 13 13 13 13

SOR-like CPU 0.0188 0.0501 0.0785 0.1030 0.1358 0.1581

RES 9.45e–08 2.69e–08 3.29e–08 3.80e–08 4.25e–08 4.66e–08

Iters 10 10 10 10 10 11

MSOR CPU 0.0120 0.0464 0.0954 0.1711 0.2583 0.4067

RES 4.14e–07 5.86e–07 7.18e–07 8.29e–07 9.27e–07 1.03e–07

Iters 8 9 9 9 9 9

NSOR CPU 0.0128 0.0347 0.0571 0.0761 0.0960 0.1153

RES 8.69e–07 6.88e–08 8.43e–08 9.73e–08 1.08e–07 1.19e–07

Iters 5 5 5 5 5 5

STE CPU 0.0119 0.02942 0.0484 0.0731 0.1163 0.1920

RES 1.97e–07 1.97e–07 1.97e–07 1.97e–07 1.97e–07 1.96e–07

Exmple 4.5. Let

A = I ⊗Q+H ⊗ I ∈ Rq×q,

where I ∈ Rq×q is the identity matrix, and ⊗ represents the Kronecker product.
Similarly, Q and H are g × g tridiagonal matrices given by:

Q = Tridiag

[
− (

2 + p̄

8
), 8,−(

2− p̄

8
)

]
,

H = Tridiag

[
− (

1 + p̄

4
), 4,−(

1− p̄

4
)

]
,

p̄ =
1

n
; q = n2.

The right-hand side vector b = Au⋆ − |u⋆| ∈ Rq, where u⋆ = ones(q, 1) ∈ Rq. The
assumption and the ultimate limiting factor of this example is the starting point
from [15]. In the section on the assumption, we evaluate the offered Techniques
in light of those demonstrated in [4] (revealed by SPM), the special shift-splitting
iteration technique [29], and the Technique described in [26] (revealed by Picard).

Table 5 contains the results of this investigation. Table 5 shows that for each
value of q, the presented techniques analyze the solution x̄. Based on the numer-
ical resultss proposed in Table 5, we can determine that the strategies we have
provided are more successful than the SPM, SSM, and Picard techniques under
specific situations when seen from the perspective of the ‘Iters’ and ‘CPU’.

In conclusion, our unique strategies are relevant to AVEs and are within their
capabilities. Table 5 shows all the results of the proposed techniques.
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Table 5. Numerical results for Example 4.5 with SPM, SSM, Picard, and STE techniques.

Techniques n 256 1296 2401 4096

Iters 12 12 12 12

SPM CPU 1.6492 2.0258 4.1522 7.3811

RES 3.77e-07 3.74e-07 3.73e-07 3.72e-07

Iters 8 8 8 8

SSM CPU 0.9853 1.1725 2.0863 4.3729

RES 1.54e-07 1.55e-07 1.56e-07 1.56e-07

Iters 6 6 6 6

Picard CPU 0.7305 0.9477 1.3571 3.2084

RES 2.13e-07 2.10e-07 2.09e-07 2.08e-07

Iters 4 4 4 4

STE CPU 0.0514 0.6840 1.6036 1.9221

RES 2.95e-07 2.92e–07 2.91e–07 2.90e–07

5. Conclusion

In this article, we have used a five-point technique to solve AVE. The well-known
generalized Newton approach is used as the predictor step in this innovative new
technique, while the STE method for AVEs is utilized as the corrector step. The
proposed technique converges in the third phase of the analysis. The new technique
is extremely useful for finding solutions to complex systems. This concept can be
developed further to answer generalized equations involving absolute value.
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