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BIFURCATIONS IN A FAMILY OF PIECEWISE

SMOOTH SEPTIC Z2-EQUIVARIANT
SYSTEMS

Xue Zhang1, Yusen Wu2 and Feng Li1,
†

Abstract In this paper, we investigate the center-focus problem and the
number of limit cycles bifurcating from three foci for a family of piecewise
smooth planar septic Z2-equivariant systems, which include (±1, 0) and in-
finity as their singularities. We achieve a comprehensive classification of the
conditions under which (±1, 0) act as centers. Moreover, we rigorously prove
that, under small Z2-equivariant perturbations, the perturbed system pos-
sesses at least 15 limit cycles, comprising 14 with small amplitude and 1 large
amplitude with the scheme 1 ⊃ (7 ∪ 7).
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1. Introduction

For the past few years, the center and bifurcation problems for planar differential
systems have been extensively studied. Theoretically, the center and bifurcation
problems are closely related to the well-known Hilbert’s 16th problem, one of the
23 mathematical problems proposed by D. Hilbert in 1900 [19]. A simplified form
of this problem was also proposed by S. Smale [36] as one of the 18 most challenging
mathematical problems for 21st century. In practical applications, many complex
dynamical behaviors are triggered by the bifurcation of limit cycles.

In the study of dynamical systems, center problems, which are closely related
to the Hilbert’s 16th problem, are far from being completely solved. A complete
study on the bi-center problem for Z2-equivariant cubic vector fields was given
in [40, 41], and the bi-center problem for some Z2-equivariant quintic systems was
studied in [35]. In 2017, the bi-isochronous center problem for cubic systems in Z2-
equivariant vector fields with real coefficients was considered in [15]. In 2020, the
isochronous center problem for the Z2-equivariant cubic vector fields with complex
coefficients was completely solved [24]. The Z2-equivariant cubic vector fields with
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weak saddles or resonant saddles were studied in [25–27]. Weak centers and local
bifurcation of critical periods in a Z2-equivariant vector field of degree 5 were studied
in [39]. For degenerate singular point, a normal form method was given in [42] and
bifurcation of limit cycles and center problem for p : q homogeneous weight systems
were studied in [29].

A great many problems appearing frequently in science, particularly in me-
chanics, electrical engineering and automatic control, are described by dynamical
systems whose vector fields (i.e., the right-hand sides of the equations) are not
continuous or not differentiable. These systems are indistinctly called discontinu-
ous or non-smooth systems and discussed in the classical books [16, 23]. In recent
years, there has been considerable interest in studying bifurcations and chaos in
non-smooth systems because these systems are widely encountered in applications.
Examples include the squealing noise in car brakes [2, 20], the absence of a ther-
mal equilibrium in gases modeled by scattering billiards [21, 22], relay feedback
systems in control theory [1, 6], switching circuits in power electronics [3], impact
and dry frictions in mechanical engineering [7, 13, 14], etc. Due to various forms
of non-smoothness, non-smooth systems can exhibit not only all kinds of bifurca-
tions belonging to smooth systems, but also complicated nonstandard bifurcation
phenomena that are exclusive to non-smooth ones, such as grazing [4, 8], sliding
effects [7], border collision [33] etc.

A non-smooth system is called a switching system if such a system is divided by
one or more curves which may not be continuous on these curves. In recent decades
increasing attention has been paid to the following switching system

(
dx

dt
,
dy

dt

)
=

 (F+(x, y, µ), G+(x, y, µ)), for y > 0,

(F−(x, y, µ), G−(x, y, µ)), for y < 0,
(1.1)

where F±(x, y, µ) and G±(x, y, µ) are analytic functions in x and y. It is seen that
system (1.1) actually includes two systems: the first equation is called the upper
system, defined for y > 0, and the second is called the lower system, defined for
y < 0. Note that y = 0 (i.e., the x-axis) is a switching line.

Analogous to the study of smooth dynamical systems, we are interested in the
following two fundamental problems in the analysis of Hopf bifurcation in switching
systems (1.1)
• The center-focus problem, determining if a singular point on the line y = 0 is

either a center, an attractor or a repeller.
• The cyclicity problem, finding the maximal number of limit cycles around the

singular point under the variation of the parameters inside the systems.
Discontinuous planar differential equations have richer dynamical behavior than

smooth dynamical systems. For the center problem, it is well-known that a singular
point is a center in planar smooth systems if and only if there exists a local first
integral around the singular point. However, the situation is quite complicated in
switching systems. The origin of system (1.1) can be a center even if it is not a
center of either the upper system or the lower system. On the other hand, if the
origin is a center for both the upper system and the lower system of (1.1), system
(1.1) may not have a center at the origin. Published literatures show that switching
systems may exhibit more limit cycles than continuous ones.

A good deal of work has been done investigating whether some classical bi-
furcation methods for treating smooth systems, such as the Hopf, homoclinic and
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subharmonic bifurcation methods, can be generalized to non-smooth cases, see, for
example, [5, 10, 11, 17, 30, 31, 37] and the references therein. Both of the center
problem and cyclicity problem of switching systems can be investigated via the
computation of Lyapunov constants [10, 11, 17]. Gasull and Torregrosa [17] pro-
posed a new method to compute the return map near the critical point based on a
suitable decomposition of certain one-forms associated with the expression of (1.1)
in polar coordinates. The studies on center-focus problem for switching systems
were started in [32, 34]. Up to now, some center conditions have been obtained for
some switching Kukles systems [17], switching Liénard systems [12,30] and switch-
ing Bautin systems [11]. It is well known that planar linear systems can not possess
limit cycles. However, compared to smooth systems, piecewise linear switching sys-
tems may have 2 or 3 limit cycles. Han and Zhang [18] proved that 2 limit cycles
can appear near a focus of either FF (focus-focus), FP (focus-parabolic) or PP
(parabolic-parabolic) type. The number of small amplitude limit cycles bifurcating
from a focus of quadratic switching Bautin systems was investigated in [10,11,17,31].
Particularly, examples with linear lower system possessing 5 small amplitude limit
cycles were constructed in [17]. By using the perturbation method, it was shown
in [10] that the cyclicity of discontinuous quadratic systems is at least 9. Recently,
Tian and Yu [38] constructed an example of switching systems to show the exis-
tence of 10 small amplitude limit cycles bifurcating from a center, which is a new
lower bound of the maximal number of small amplitude limit cycles obtained in
quadratic switching systems near a singular point. Nilpotent center conditions in
cubic switching polynomial Liénard systems by higher-order analysis were studied
in [9].

In this paper, we deal with the center problem and bifurcation of limit cycles
for a class of planar septic Z2-equivalent systems with 4 switching lines expressed
as follows:

dx

dt
= −x4y +A1x

3y2 + (3 +A2 + 2A3)x2y3

−(A1 − 2A4)xy4 −A2y
5 − y(x2 + y2)3,

dy

dt
= −x5 − (5 +A3)x3y2 + (2A1 −A4)x2y3

+(2A2 +A3)xy4 +A4y
5 + x(x2 + y2)3,

(x > 0, y > 0),



dx

dt
= −x4y +B1x

3y2 + (3 +B2 + 2B3)x2y3

−(B1 − 2B4)xy4 −B2y
5 − y(x2 + y2)3,

dy

dt
= −x5 − (5 +B3)x3y2 + (2B1 −B4)x2y3

+(2B2 +B3)xy4 +B4y
5 + x(x2 + y2)3,

(x < 0, y > 0),



dx

dt
= −x4y +A1x

3y2 + (3 +A2 + 2A3)x2y3

−(A1 − 2A4)xy4 −A2y
5 − y(x2 + y2)3,

dy

dt
= −x5 − (5 +A3)x3y2 + (2A1 −A4)x2y3

+(2A2 +A3)xy4 +A4y
5 + x(x2 + y2)3,

(x < 0, y < 0),
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dx

dt
= −x4y +B1x

3y2 + (3 +B2 + 2B3)x2y3

−(B1 − 2B4)xy4 −B2y
5 − y(x2 + y2)3,

dy

dt
= −x5 − (5 +B3)x3y2 + (2B1 −B4)x2y3

+(2B2 +B3)xy4 +B4y
5 + x(x2 + y2)3,

(x > 0, y < 0).

(1.2)

It is easy to verify that system (1.2) is unchanged under a real planar coun-
terclockwise rotation through π, so it lies in a Z2-equivariant vector field. System
(1.2) admits three singular points: (±1, 0) and the infinity, the former two have the
same topological structure.

The remaining sections are depicted as follows. A method of computing Lya-
punov constants for switching systems is given in Section 2 as preliminary. Section 3
is devoted to looking for center conditions. The bifurcation of limit cycles generated
from the equilibria is considered in Section 4.

2. Preliminary

Lyapunov constants are effective in distinguishing weak foci from centers and in
determining the cyclicity of linear center type equilibria. The vanishing of all Lya-
punov constants is a necessary and sufficient condition for a singular point to become
a center. We will give some properties and technical results about the Poincaré
return map and Lyapunov constants associated to switching systems, as offered
by [28].

If the functions F±(x, y, µ) and G±(x, y, µ) in system (1.1) are analytic functions
in x and y in the neighborhood of the origin, systems (1.1) can be expanded as the
following system

dx

dt
= δ+x− y +

∞∑
k=2

X+
k (x, y),

dy

dt
= x+ δ+y +

∞∑
k=2

Y +
k (x, y),

on y ≥ 0 and,


dx

dt
= δ−x− y +

∞∑
k=2

X−k (x, y),

dy

dt
= x− δ−y +

∞∑
k=2

Y −k (x, y),

on y ≤ 0, (2.1)

where X±k (x, y), Y ±k (x, y) are homogeneous polynomials in x, y of degree k, Accord-
ing to Lemma 2.1 of [17], a Poincare map can be defined by using the upper and
lower systems of (2.1). At first, the lower system of (2.1) can be changed to

dx

dt
= −δ−x− y −

∞∑
k=2

X−k (x,−y),

dy

dt
= x− δ−y +

∞∑
k=2

Y −k (x,−y),

on y ≥ 0, (2.2)
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by the transformation (x, y, t)→ (x,−y,−t) . Then, under the transformation

x = r cos θ, y = r sin θ, (2.3)

the upper system (2.1) and system (2.2) become

dr

dt
= r

[
δ± +

∞∑
k=1

ϕ±k+2(θ)rk

]
,

dθ

dt
= 1 +

∞∑
k=1

ψ±k+2(θ)rk,

(2.4)

where ϕk(θ), ψk(θ) are polynomials of cos θ and sin θ, given by

ϕ±k (θ) = cos θX±k−1(cos θ, sin θ) + sin θY ±k−1(cos θ, sin θ),

ψ±k (θ) = cos θY ±k−1(cos θ, sin θ)− sin θX±k−1(cos θ, sin θ).
(2.5)

We see from (2.4) that

dr

dθ
= r

δ± +
∞∑
k=1

ϕ±k+2(θ)rk

1 +
∞∑
k=1

ψ±k+2(θ)rk
. (2.6)

To study the solutions of this equation, we shall consider a general differential
equation

dr

dθ
= r

∞∑
k=0

R±k (θ)rk, (2.7)

where θ ∈ (0, π). Suppose system (2.7) have the following solution of convergent
power series

r1 = r̃1(θ, h) =

∞∑
k=1

uk(θ)hk (2.8)

and

r2 = r̃2(θ, h) =

∞∑
k=1

vk(θ)hk, (2.9)

respectively, satisfying the initial condition r1|θ=0 = r2|θ=0 = h, where h is suffi-
ciently small and

u1(0) = v1(0) = 0, uk(0) = vk(0) = 0, k = 2, 3, · · · . (2.10)

We can then define the following successive functions

∆1(h) = r̃1(π, h)− h (2.11)

and
∆2(h) = r̃2(π, h)− h (2.12)

for the upper system and lower system of (2.2), respectively. Therefore, the succes-
sive function for the switching system (2.2) can be defined as

∆(h) = ∆1(h)−∆2(h) = r̃1(π, h)− r̃2(π, h). (2.13)
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Definition 2.1. (See [28]) Define

∆(h) =

∞∑
k=1

[uk(π)− vk(π)]hk =

n∑
k=1

Vkh
k, (2.14)

where Vk is called the kth order Lyapunov constant of the switching system (2.2).

Definition 2.2. (See [28]) If the functions on the right-hand side of system (2.2)
satisfy the following conditions:

X+(x, y) = −X−(x,−y), Y +(x, y) = Y −(x,−y), (2.15)

then system (2.2) is said to be symmetric with the x-axis; If the functions on the
right-hand side of system (2.2) satisfy the following conditions:

X+(x, y) = X+(−x, y), Y +(x, y) = −Y +(−x, y),

X−(x, y) = X−(−x, y), Y −(x, y) = −Y −(−x, y),
(2.16)

then system (2.2) is said to be symmetric with the y-axis.

With the above definitions, we have the following result.

Theorem 2.1. (See [28]) If system (2.2) is symmetric with the x-axis or the y-axis,
then the origin is a center.

Theorem 2.2. (See [28]) If the upper half plane and lower half plane of system (2.2)
have analytic first integrals H1(x, y) and H2(x, y), respectively, then the origin of
system (2.2) is a center if and only if for x1 > 0 small there exists x2 < 0 such that
Hj(x1, 0) = Hj(x2, 0), j = 1, 2.

3. Center conditions

This section is dedicated to finding the center conditions of system (1.2) with the
aid of symbolic computation.

Since system (1.2) is a Z2-equivariant system with two symmetric critical points
(±1, 0), without loss of generality, it suffices to discuss the case of (1, 0).

It is well-known that the Hopf bifurcation is always considered in a small neigh-
borhood of the critical point. Therefore, when we consider the Hopf bifurcation in
the neighborhood of (±1, 0), it can be treated as the Hopf bifurcation in a switch-
ing system with a switching line. Namely, the Lyapunov constants at (1, 0) are the
same as 

dx

dt
= −x4y +A1x

3y2 + (3 +A2 + 2A3)x2y3

−(A1 − 2A4)xy4 −A2y
5 − y(x2 + y2)3,

dy

dt
= −x5 − (5 +A3)x3y2 + (2A1 −A4)x2y3

+(2A2 +A3)xy4 +A4y
5 + x(x2 + y2)3,

(y > 0),
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dx

dt
= −x4y +B1x

3y2 + (3 +B2 + 2B3)x2y3

−(B1 − 2B4)xy4 −B2y
5 − y(x2 + y2)3,

dy

dt
= −x5 − (5 +B3)x3y2 + (2B1 −B4)x2y3

+(2B2 +B3)xy4 +B4y
5 + x(x2 + y2)3,

(y < 0). (3.1)

With the translation substitution (x, y, t)→ (x+ 1, y, 2t), system (1.2) is trans-
formed to the form

dx

dt
= −y − 5xy +

1

2
A1y

2 − 21

2
x2y +

3

2
A1xy

2 +
1

2
(A2 + 2A3)y3

−12x3y − (3−A2 − 2A3)xy3 − 1

2
(A1 − 2A4)y4 − 8x4y

+
1

2
A1x

3y2 − 1

2
(15−A2 − 2A3)x2y3 − 1

2
(A1 − 2A4)xy4

−1

2
(3 +A2)y5 − 3xy(x2 + y2)2 − 1

2
y(x2 + y2)3,

dy

dt
= x+

11

2
x2 − 1

2
(2 +A3)y2 +

25

2
x3 − 3

2
A3xy

2

+
1

2
(2A1 −A4)y3 + 15x4 +

3

2
(5−A3)x2y2 + (2A1 −A4)xy3

+
1

2
(3 + 2A2 +A3)y4 + 10x5 +

1

2
(25−A3)x3y2

+
1

2
(2A1 −A4)x2y3 +

1

2
(9 + 2A2 +A3)xy4

+
1

2
(7x2 + y2)(x2 + y2)2 +

1

2
x(x2 + y2)3,

(y > 0),



dx

dt
= −y − 5xy +

1

2
B1y

2 − 21

2
x2y +

3

2
B1xy

2 +
1

2
(B2 + 2B3)y3

−12x3y − (3−B2 − 2B3)xy3 − 1

2
(B1 − 2B4)y4 − 8x4y

+
1

2
B1x

3y2 − 1

2
(15−B2 − 2B3)x2y3 − 1

2
(B1 − 2B4)xy4

−1

2
(3 +B2)y5 − 3xy(x2 + y2)2 − 1

2
y(x2 + y2)3,

dy

dt
= x+

11

2
x2 − 1

2
(2 +B3)y2 +

25

2
x3 − 3

2
B3xy

2

+
1

2
(2B1 −B4)y3 + 15x4 +

3

2
(5−B3)x2y2 + (2B1 −B4)xy3

+
1

2
(3 + 2B2 +B3)y4 + 10x5 +

1

2
(25−B3)x3y2

+
1

2
(2B1 −B4)x2y3 +

1

2
(9 + 2B2 +B3)xy4

+
1

2
(7x2 + y2)(x2 + y2)2 +

1

2
x(x2 + y2)3,

(y < 0).

(3.2)
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Executing the Mathematica program for computing the Lyapunov constants
results in

Theorem 3.1. The first 7 Lyapunov constants at the origin of system (3.2) are
given as follows:

V1 = −2

3
(A3 −B3),

V2 =
1

16
(2A1 −A1A3 − 3A4 + 2B1 −A3B1 − 3B4)π,

V3 =
2

45
(4A2

1 + 9A2 − 2A2
1A3 − 3A2A3 − 6A1A4 + 4A1B1

− 2A1A3B1 − 6A4B1 − 9B2 + 3A3B2).

(3.3)

Case (I). For A3 6= 3,

V4 = − 1

2304(A3 − 3)
(A1 +B1)(864 + 90A2

1 + 540A2 − 252A3 − 55A2
1A3

−360A2A3 − 120A2
3 + 5A2

1A
2
3 + 60A2A

2
3 + 36A3

3 + 45A1A4

−75A1A3A4 − 270A2
4 + 30A1B1 − 25A1A3B1 + 5A1A

2
3B1

−45A4B1 + 15A3A4B1)π,

V5 = − 4

141754
(A1 +B1)(270A1 + 10A3

1 − 144A1A3 − 5A3
1A3 + 18A1A

2
3

−324A4 − 15A2
1A4 + 108A3A4 − 54B1 + 20A2

1B1 − 36A3B1

−10A2
1A3B1 + 18A2

3B1 − 30A1A4B1 + 10A1B
2
1

−5A1A3B
2
1 − 15A4B

2
1),

(3.4)

Subcase (Ia). For A3 6= 1
36 [108 + 5(A1 +B1)2],

V6 =
1

737280[108− 36A3 + 5(A1 +B1)2]2
(A3 − 3)(1 +A3)(A1 +B1)f6π,

V7 = − 1

1134[108− 36A3 + 5(A1 +B1)2]3[48 + 35(A1 +B1)2]
(A3 − 3)

× (1 +A3)(A1 −B1)3(A1 +B1)3[144 + 5(A1 +B1)2]f7.

(3.5)

Subcase (Ib). For A3 = 1
36 [108 + 5(A1 +B1)2],

V6 = − 1

7464960A1
g6π,

V7 =
64

14467005(5A2
1 − 12)

A3
1(9072− 24A2

1 + 35A4
1)(9A1 + 5A3

1 + 27A4).
(3.6)

Case (II). For A3 = 3,

V4 = − 5

256
(A1 + 3A4)(A2 −B2)π,

V5 = V6 = V7 = 0,
(3.7)
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In the above expression of Vk, it is assumed that: V1 = V2 = · · · = Vk−1 = 0, k =
2, 3, 4, 5, 6, 7, and

f6 = 4478976 + 5857920A2
1 + 160800A4

1 − 875A6
1 − 2985984A3 − 2315520A2

1A3

−100800A4
1A3 + 497664A2

3 + 362880A2
1A

2
3 + 3006720A1B1 + 1248000A3

1B1

+26250A5
1B1 − 4631040A1A3B1 − 403200A3

1A3B1 + 725760A1A
2
3B1

+5857920B2
1 + 2174400A2

1B
2
1 + 112875A4

1B
2
1 − 2315520A3B

2
1

−604800A2
1A3B

2
1 + 362880A2

3B
2
1 + 1248000A1B

3
1 + 171500A3

1B
3
1

−403200A1A3B
3
1 + 160800B4

1 + 112875A2
1B

4
1 − 100800A3B

4
1

+26250A1B
5
1 − 875B6

1 ,

f7 = 145152 + 96A2
1 + 35A4

1 + 192A1B1 + 140A3
1B1 + 96B2

1 + 210A2
1B

2
1

+140A1B
3
1 + 35B4

1 ,

g6 = 61236A2
1 + 59805A4

1 + 43350A6
1 − 875A8

1 + 367416A1A4 + 51030A3
1A4

−85050A5
1A4 + 551124A2

4 − 229635A2
1A

2
4.

By using the expressions of Lyapunov constants obtained in the above theorem,
we can get the center conditions.

Theorem 3.2. The first 7 Lyapunov constants at the origin of system (3.2) vanish
if and only if one of the following conditions holds:

B1 = −A1, B2 = A2, B3 = A3, B4 = −A4; (3.8)

A2 = B2 = A3 = B3 = −1, A4 = A1, B4 = B1; (3.9)

A3 = B3 = 3, A4 = −1

3
A1, B4 = −1

4
B1. (3.10)

Proof. By linearly solving V7 = 0 for A4 given in (3.6), we have

A4 = − 1

27
A1(9 + 5A1), (3.11)

under which, V6 is rewritten as

V6 =
1

186624
A3

1(36 + 5A2
1)(12 + 35A2

1)π 6= 0. (3.12)

Therefore, the origin of system (3.2) is impossible to be a center in case (Ib).
Using the expressions of Lyapunov constants in subcase (Ia) and solving the

nonlinear system {V1 = V2 = V3 = V4 = V5 = V6 = V7 = 0}, we obtain conditions
(3.8) and (3.9). Using the expressions of Lyapunov constants in case (II) and solving
the nonlinear system {V1 = V2 = V3 = V4 = V5 = V6 = V7 = 0}, we obtain condition
(3.10) and

B1 = −A1, B2 = A2, B3 = A3 = 3, B4 = −A4, (3.13)

which is a special case of condition (3.8).
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Theorem 3.3. For system (3.2), all the Lyapunov constants at the origin vanish if
and only if the first 7 Lyapunov constants vanish, i.e., one of the three conditions in
Theorem 3.2 holds. Relevantly, the three conditions in Theorem 3.2 are the center
conditions of the origin.

Proof. When condition (3.8) is satisfied, system (3.2) becomes

dx

dt
= −y − 5xy +

1

2
A1y

2 − 21

2
x2y +

3

2
A1xy

2 +
1

2
(A2 + 2A3)y3

−12x3y − (3−A2 − 2A3)xy3 − 1

2
(A1 − 2A4)y4 − 8x4y

+
1

2
A1x

3y2 − 1

2
(15−A2 − 2A3)x2y3 − 1

2
(A1 − 2A4)xy4

−1

2
(3 +A2)y5 − 3xy(x2 + y2)2 − 1

2
y(x2 + y2)3,

dy

dt
= x+

11

2
x2 − 1

2
(2 +A3)y2 +

25

2
x3 − 3

2
A3xy

2

+
1

2
(2A1 −A4)y3 + 15x4 +

3

2
(5−A3)x2y2

+(2A1 −A4)xy3 +
1

2
(3 + 2A2 +A3)y4 + 10x5

+
1

2
(25−A3)x3y2 +

1

2
(2A1 −A4)x2y3 +

1

2
(9 + 2A2 +A3)xy4

+
1

2
(7x2 + y2)(x2 + y2)2 +

1

2
x(x2 + y2)3,

(y > 0),



dx

dt
= −y − 5xy − 1

2
A1y

2 − 21

2
x2y − 3

2
A1xy

2 +
1

2
(A2 + 2A3)y3

−12x3y − (3−A2 − 2A3)xy3 +
1

2
(A1 − 2A4)y4 − 8x4y

−1

2
A1x

3y2 − 1

2
(15−A2 − 2A3)x2y3

+
1

2
(A1 − 2A4)xy4 − 1

2
(3 +A2)y5

−3xy(x2 + y2)2 − 1

2
y(x2 + y2)3,

dy

dt
= x+

11

2
x2 − 1

2
(2 +A3)y2 +

25

2
x3 − 3

2
A3xy

2 − 1

2
(2A1 −A4)y3

+15x4 +
3

2
(5−A3)x2y2 − (2A1 −A4)xy3 +

1

2
(3 + 2A2 +A3)y4

+10x5 +
1

2
(25−A3)x3y2 − 1

2
(2A1 −A4)x2y3

+
1

2
(9 + 2A2 +A3)xy4 +

1

2
(7x2 + y2)(x2 + y2)2 +

1

2
x(x2 + y2)3,

(y < 0),

(3.14)

whose vector field is symmetric with respect to the x-axis.
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Under condition (3.9), system (3.2) writes

dx

dt
= −y − 5xy +

1

2
A1y

2 − 21

2
x2y +

3

2
A1xy

2 − 3

2
y3 − 12x3y

+
3

2
A1x

2y2 − 6xy3 +
1

2
A1y

4

−1

2
y(16x2 −A1xy + 2y2)(x2 + y2)

−3xy(x2 + y2)2 − 1

2
y(x2 + y2)3,

dy

dt
= x+

11

2
x2 − 1

2
y2 +

25

2
x3 +

3

2
xy2 +

1

2
A1y

3 + 15x4 + 9x2y2

+A1xy
3 +

1

2
(20x3 + 6xy2 +A1y

3)(x2 + y2)

+
1

2
(7x2 + y2)(x2 + y2)2 +

1

2
x(x2 + y2)3,

(y > 0),



dx

dt
= −y − 5xy +

1

2
B1y

2 − 21

2
x2y +

3

2
B1xy

2 − 3

2
y3 − 12x3y

+
3

2
B1x

2y2 − 6xy3 +
1

2
B1y

4

−1

2
y(16x2 −B1xy + 2y2)(x2 + y2)

−3xy(x2 + y2)2 − 1

2
y(x2 + y2)3,

dy

dt
= x+

11

2
x2 − 1

2
y2 +

25

2
x3 +

3

2
xy2 +

1

2
B1y

3 + 15x4 + 9x2y2

+B1xy
3 +

1

2
(20x3 + 6xy2 +B1y

3)(x2 + y2)

+
1

2
(7x2 + y2)(x2 + y2)2 +

1

2
x(x2 + y2)3,

(y < 0). (3.15)

By means of complex transformation

z = x+ iy, w = x− iy, T = it, i =
√
−1, (3.16)

system (3.15) is transferred into

dz

dT
=

1

8
(1 + z)2(1 + w)[8z + (6 + iA1)z2

+2(6− iA1)zw + (2 + iA1)w2

+8z2w + 8zw2 + 4z2w2],

dw

dT
= −1

8
(1 + w)2(1 + z)(8w + (6− iA1)w2

+2(6 + iA1)wz + (2− iA1)z2

+8w2z + 8wz2 + 4w2z2),

(Im(z) = Im(w) > 0),
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dz

dT
=

1

8
(1 + z)2(1 + w)[8z + (6 + iB1)z2

+2(6− iB1)zw + (2 + iB1)w2

+8z2w + 8zw2 + 4z2w2],

dw

dT
= −1

8
(1 + w)2(1 + z)[8w + (6− iB1)w2

+2(6 + iB1)wz + (2− iB1)z2

+8w2z + 8wz2 + 4w2z2],

(Im(z) = Im(w) < 0). (3.17)

The upper system and lower one in system (3.17) have the following first integrals

H+
1 (z, w)

=
(2− iA1)z(2 + z) + 2(2 + iA1 + 8z + 4z2)w + (2 + iA1 + 8z + 4z2)w2 + 2i(2i−A1)(1 + z)(1 + w) ln(1 + w)

8(1 + z)(1 + w)

+
1

4
i(2i+A1) ln(1 + z),

H−1 (z, w)

=
(2− iB1)z(2 + z) + 2(2 + iB1 + 8z + 4z2)w + (2 + iB1 + 8z + 4z2)w2 + 2i(2i−B1)(1 + z)(1 + w) ln(1 + w)

8(1 + z)(1 + w)

+
1

4
i(2i+B1) ln(1 + z), (3.18)

respectively. Furthermore,

H+
1 (z, z) = H−1 (z, z) =

1

2
[2z + z2 − 2 ln(1 + z)]. (3.19)

When condition (3.10) holds, system (3.2) takes the form

dx

dt
= −y − 5xy +

1

2
A1y

2 − 21

2
x2y +

3

2
A1xy

2 +
1

2
(6 +A2)y3

−12x3y +
3

2
A1x

2y2 + (3 +A2)xy3 − 5

6
A1y

4 − 8x4y

+
1

2
A1x

3y2 − 1

2
(9−A2)x2y3 − 5

6
A1xy

4 − 1

2
(3 +A2)y5

−3xy(x2 + y2)2 − 1

2
y(x2 + y2)3,

dy

dt
= x+

11

2
x2 − 5

2
y2 +

25

2
x3 − 9

2
xy2 +

7

6
A1y

3 + 15x4

+3x2y2 +
7

3
A1xy

3 + (3 +A2)y4 + 10x5

+11x3y2 +
7

6
A1x

2y3 + (6 +A2)xy4 − 1

6
A1y

5

+
1

2
(7x2 + y2)(x2 + y2)2 +

1

2
x(x2 + y2)3,

(y > 0),
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dx

dt
= −y − 5xy +

1

2
B1y

2 − 21

2
x2y +

3

2
B1xy

2 +
1

2
(6 +B2)y3

−12x3y +
3

2
B1x

2y2 + (3 +B2)xy3 − 5

6
B1y

4 − 8x4y

+
1

2
B1x

3y2 − 1

2
(9−B2)x2y3 − 5

6
B1xy

4 − 1

2
(3 +B2)y5

−3xy(x2 + y2)2 − 1

2
y(x2 + y2)3,

dy

dt
= x+

11

2
x2 − 5

2
y2 +

25

2
x3 − 9

2
xy2 +

7

6
B1y

3 + 15x4

+3x2y2 +
7

3
B1xy

3 + (3 +B2)y4 + 10x5

+11x3y2 +
7

6
B1x

2y3 + (6 +B2)xy4 − 1

6
B1y

5

+
1

2
(7x2 + y2)(x2 + y2)2 +

1

2
x(x2 + y2)3,

(y < 0). (3.20)

With the complex substitution (3.16), system (3.20) can be written in the form:

dz

dT
=

1

48
(1 + z)2[48z + 6(10 + iA1)z2 + 12(6− iA1)zw

+6(6 + iA1)w2 + (15 + 4iA1 + 3A2)z3

+3(21− 2iA1 − 3A2)z2w + 9(13 +A2)zw2

+(21 + 2iA1 − 3A2)w3 + 72z2w2

+48zw3 + 24z2w3],

dw

dT
= − 1

48
(1 + w)2[48w + 6(10− iA1)w2

+12(6 + iA1)wz + 6(6− iA1)z2

+(15− 4iA1 + 3A2)w3 + 3(21 + 2iA1 − 3A2)w2z

+9(13 +A2)wz2 + (21− 2iA1 − 3A2)z3

+72w2z2 + 48wz3 + 24w2z3],

(Im(z) = Im(w) > 0),

(3.21)

dz

dT
=

1

48
(1 + z)2[48z + 6(10 + iB1)z2 + 12(6− iB1)zw

+6(6 + iB1)w2 + (15 + 4iB1 + 3B2)z3

+3(21− 2iB1 − 3B2)z2w + 9(13 +B2)zw2

+(21 + 2iB1 − 3B2)w3 + 72z2w2

+48zw3 + 24z2w3],

dw

dT
= − 1

48
(1 + w)2[48w + 6(10− iB1)w2

+12(6 + iB1)wz + 6(6− iB1)z2

+(15− 4iB1 + 3B2)w3 + 3(21 + 2iB1 − 3B2)w2z

+9(13 +B2)wz2 + (21− 2iB1 − 3B2)z3

+72w2z2 + 48wz3 + 24w2z3],

(Im(z) = Im(w) < 0),
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whose upper system and lower system have the following first integrals

H+
2 (z, w)

= − 1

192(1 + z)4(1 + w)4
[48 + 192(z + w) + 288(z + w)2 + 8(18 + iA1)z3

+24(30− iA1)z2w + 24(30 + iA1)zw2 + 8(18− iA1)w3 + (15 + 4iA1 + 3A2)z4

+4(69− 2iA1 − 3A2)z3w + 18(45 +A2)z2w2 + 4(69 + 2iA1 − 3A2)zw3

+(15− 4iA1 + 3A2)w4 + 288(z + w)z2w2 + 96z3w3],

H−2 (z, w)

= − 1

192(1 + z)4(1 + w)4
[48 + 192(z + w) + 288(z + w)2 + 8(18 + iB1)z3

+24(30− iB1)z2w + 24(30 + iB1)zw2 + 8(18− iB1)w3 + (15 + 4iB1 + 3B2)z4

+4(69− 2iB1 − 3B2)z3w + 18(45 +B2)z2w2 + 4(69 + 2iB1 − 3B2)zw3

+(15− 4iB1 + 3B2)w4 + 288(z + w)z2w2 + 96z3w3],

(3.22)
respectively. Moreover,

H+
2 (z, z) = H−2 (z, z) = −1 + 4z + 2z2

4(1 + z)4
. (3.23)

Naturally, we have the following result.

Corollary 3.1. The equilibria (±1, 0) of system (1.2) become centers if and only
if one of the three conditions in Theorem 3.2 is satisfied.

4. Bifurcation of limit cycles

In this section, we will employ the computation method of Lyapunov constants
as presented in Section 2 to demonstrate that system (1.2) can exhibit 14 small
amplitude limit cycles bifurcating from (±1, 0) and one large amplitude limit cycle
bifurcating from the infinity.

Theorem 4.1. For system (3.2), the origin is a 7th order weak focus if and only
if either

B3 = A3,

B4 =
(A1 +B1)(2−A3)− 3A4

3
,

B2 =
2A2

1(A3 − 2) + 2A1(3A4 − 2B1 +A3B1) + 3A2(A3 − 3) + 6A4B1

3(A3 − 3)
,

A2 = − 864+5A2
1(A3−2)(A3−9)−5A1[3(5A3−3)A4−(A3−2)(A3−3)B1]−3A3(84+40A3−12A2

3−5A4B1)−45A4(6A4+B1)
60(A3−3)2 ,

A4 =
5A2

1(2−A3)(A1+2B1)+A1[18(A3−3)(A3−5)−5(A3−2)B2
1 ]+18(A3−3)(1+A3)B1

3[108−36A3+5(A1+B1)2]
,

f6 = 0,
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{36A3 − [108 + 5(A1 +B1)2]}(A1 −B1)(A1 +B1)(1 +A3)(A3 − 3)(3A3 − 13) 6= 0,
(4.1)

or

B1 = A1,

B3 = A3 =
27 + 5A2

1

9
,

B4 = −18A1 + 10A3
1 + 27A4

27
,

B2 =
A2

1(243− 60A2
1 + 125A4

1) + 27A4(54A1 + 50A3
1 + 81A4)

150A4
1

,

A2 =
A2

1(81− 140A2
1 − 25A4

1) + 9A4(54A1 + 10A3
1 + 81A4)

50A4
1

,

g6 = 0,

A1(5A2
1 − 12)(9A1 + 5A3

1 + 27A4) 6= 0, (4.2)

holds.

Proof. In subcase (Ia), it is easy to verify that the equation f7 = 0 has no real
solution. Then, setting {V1 = V2 = V3 = V4 = V5 = V6 = 0, V7 6= 0} gives the
desired condition (4.1).

In subcase (Ib), the fifth Lyapunov constant is simplified as

V5 =
1

51030
(A1 −B1)(A1 +B1)3[144 + 5(A1 +B1)2].

We solve V5 = 0 to get A1 + B1 = 0 or A1 − B1 = 0. However, the latter is
impossible. Otherwise, we get A3 = 3, which is contradictory with case (I). Then,
solving {V1 = V2 = V3 = V4 = V6 = 0, V7 6= 0} yields condition (4.2).

Theorem 4.2. Suppose that the origin is a 7th order weak focus, then 7 small
amplitude limit cycles can bifurcate from the perturbed system of (3.2):

dx

dt
= δ+x− y − 5xy +

1

2
A1y

2 − 21

2
x2y +

3

2
A1xy

2

+
1

2
(A2 + 2A3)y3 − 12x3y − (3−A2 − 2A3)xy3

−1

2
(A1 − 2A4)y4 − 8x4y +

1

2
A1x

3y2

−1

2
(15−A2 − 2A3)x2y3 − 1

2
(A1 − 2A4)xy4 − 1

2
(3 +A2)y5

−3xy(x2 + y2)2 − 1

2
y(x2 + y2)3,

dy

dt
= x+ δ+y +

11

2
x2 − 1

2
(2 +A3)y2 +

25

2
x3 − 3

2
A3xy

2

+
1

2
(2A1 −A4)y3 + 15x4 +

3

2
(5−A3)x2y2

+(2A1 −A4)xy3 +
1

2
(3 + 2A2 +A3)y4 + 10x5

+
1

2
(25−A3)x3y2 +

1

2
(2A1 −A4)x2y3 +

1

2
(9 + 2A2 +A3)xy4

+
1

2
(7x2 + y2)(x2 + y2)2 +

1

2
x(x2 + y2)3,

(y > 0),



Centers and limit cycle bifurcations 891

dx

dt
= δ−x− y − 5xy +

1

2
B1y

2 − 21

2
x2y +

3

2
B1xy

2

+
1

2
(B2 + 2B3)y3 − 12x3y − (3−B2 − 2B3)xy3

−1

2
(B1 − 2B4)y4 − 8x4y +

1

2
B1x

3y2

−1

2
(15−B2 − 2B3)x2y3 − 1

2
(B1 − 2B4)xy4 − 1

2
(3 +B2)y5

−3xy(x2 + y2)2 − 1

2
y(x2 + y2)3,

dy

dt
= x+ δ−y +

11

2
x2 − 1

2
(2 +B3)y2 +

25

2
x3 − 3

2
B3xy

2

+
1

2
(2B1 −B4)y3 + 15x4 +

3

2
(5−B3)x2y2

+(2B1 −B4)xy3 +
1

2
(3 + 2B2 +B3)y4 + 10x5

+
1

2
(25−B3)x3y2 +

1

2
(2B1 −B4)x2y3 +

1

2
(9 + 2B2 +B3)xy4

+
1

2
(7x2 + y2)(x2 + y2)2 +

1

2
x(x2 + y2)3,

(y < 0),

(4.3)

where 0 < δ± � 1.

Proof. When the origin of system (3.2) is a 7th order weak focus, i.e., condition
(4.1) or (4.2) holds, after computing the determinant of the Jacobian matrix, we
arrive at

det

(
∂(V1, V2, V3, V4, V5, V6)

∂(B3, B4, B2, A2, A4, A3)

) ∣∣
(4.1)

=

(
∂V1
∂B3

· ∂V2
∂B4

· ∂V3
∂B2

· ∂V4
∂A2

· ∂V5
∂A4

· ∂V6
∂A3

) ∣∣
(4.1)

=
1

1003290624000[108− 36A3 + 5(A1 +B1)2]2
(A3 − 3)2(A1 +B1)3π3f

6= 0,

(4.4)

or

det

(
∂(V1, V2, V3, V4, V5, V6)

∂(B3, B4, B2, A2, B1, A4)

) ∣∣
(4.2)

=

(
∂V1
∂B3

· ∂V2
∂B4

· ∂V3
∂B2

· ∂V4
∂A2

· ∂V5
∂B1

· ∂V6
∂A4

) ∣∣
(4.2)

=
1

13060694016
A7

1(5A2
1 − 12)(36 + 5A2

1)(9A1 + 5A3
1 + 27A4)π3

6= 0,

(4.5)

where

f = 483729408 + 890196480A2
1 + 30326400A4

1 − 141000A6
1 − 4375A8

1

− 967458816A3 − 974177280A2
1A3 − 85795200A4

1A3 − 1749000A6
1A3

+ 4375A8
1A3 + 644972544A2

3 + 522547200A2
1A

2
3 + 39139200A4

1A
2
3



892 X. Zhang, Y. Wu & F. Li

+ 756000A6
1A

2
3 − 179159040A3

3 − 138101760A2
1A

3
3 − 5443200A4

1A
3
3

+ 17915904A4
3 + 13063680A2

1A
4
3 − 100776960A1B1 + 208396800A3

1B1

+ 8982000A5
1B1 + 122500A7

1B1 − 1321297920A1A3B1

− 343180800A3
1A3B1 − 15786000A5

1A3B1 − 122500A7
1A3B1

+ 1045094400A1A
2
3B1 + 156556800A3

1A
2
3B1 + 4536000A5

1A
2
3B1

− 276203520A1A
3
3B1 − 21772800A3

1A
3
3B1 + 26127360A1A

4
3B1

+ 890196480B2
1 + 356140800A2

1B
2
1 + 37197000A4

1B
2
1 + 822500A6

1B
2
1

− 974177280A3B
2
1 − 514771200A2

1A3B
2
1 − 47403000A4

1A3B
2
1

− 822500A6
1A3B

2
1 + 522547200A2

3B
2
1 + 234835200A2

1A
2
3B

2
1

+ 11340000A4
1A

2
3B

2
1 − 138101760A3

3B
2
1 − 32659200A2

1A
3
3B

2
1

+ 13063680A4
3B

2
1 + 208396800A1B

3
1 + 56148000A3

1B
3
1 + 2117500A5

1B
3
1

− 343180800A1A3B
3
1 − 66732000A3

1A3B
3
1 − 2117500A5

1A3B
3
1

+ 156556800A1A
2
3B

3
1 + 15120000A3

1A
2
3B

3
1 − 21772800A1A

3
3B

3
1

+ 30326400B4
1 + 37197000A2

1B
4
1 + 2843750A4

1B
4
1 − 85795200A3B

4
1

− 47403000A2
1A3B

4
1 − 2843750A4

1A3B
4
1 + 39139200A2

3B
4
1

+ 11340000A2
1A

2
3B

4
1 − 5443200A3

3B
4
1 + 8982000A1B

5
1 + 2117500A3

1B
5
1

− 15786000A1A3B
5
1 − 2117500A3

1A3B
5
1 + 4536000A1A

2
3B

5
1

− 141000B6
1 + 822500A2

1B
6
1 − 1749000A3B

6
1 − 822500A2

1A3B
6
1

+ 756000A2
3B

6
1 + 122500A1B

7
1 − 122500A1A3B

7
1 − 4375B8

1 + 4375A3B
8
1 ,

due to

Resultant[f, f6, B1]

=2020106459808291802264671279503410498791014400000000000000000000000000(12 + 35A2
1)2

× (27 + 5A2
1 − 9A3)4(A3 − 3)6(1 +A3)10(3A3 − 13)4

6=0,

which means f and f6 do not have common solutions. Therefore, for 0 < δ± � 1, 7
small amplitude limit cycles can bifurcate from the origin of the perturbed system
(4.3).

By employing the aforementioned theorem, we are able to establish the following
result.

Theorem 4.3. For system (1.2), 15 limit cycles can appear near (±1, 0) and the
infinity under small perturbation. The distribution is that, 7 small amplitude limit
cycles around (−1, 0), one large amplitude limit cycle around the infinity, and 7
small amplitude limit cycles around (1, 0).

Proof. The first Lyapunov constant at the infinity of system (1.2) can be com-
puted as

V∞1 = −1

8
[(A1 +B1) + 3(A4 +B4)].

It follows from Theorem 4.2 that 7 small amplitude limit cycles can bifurcate from
each of (±1, 0) of system (1.2) because of its equivariance. At the same time, we
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have

V∞1
∣∣
(4.1) =

1

8
(A3 − 3)(A1 +B1)π 6= 0,

or

V∞1
∣∣
(4.2) =

5

36
A3

1π 6= 0,

which shows that when (±1, 0) are 7th order weak foci, the infinity is a first order
weak focus.
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