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Abstract A new Newton-based matrix splitting iterative method is proposed
for solving generalized absolute value equation with nonlinear term. We give
the global convergence of this method. Further some new convergence condi-
tions are proposed when A = M −N is an H-compatible splitting. Numerical
results indicate that the new Newton-based matrix splitting iterative method
for solving generalized absolute value equation with nonlinear term is effective.
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1. Introduction

In this paper, we consider the following generalized absolute value equation with
nonlinear term (NGAVE):

Ax−B|x|+ f(x) = b, (1.1)

where A,B ∈ Rn×n, b ∈ Rn, f : Rn 7→ Rn are known, x ∈ Rn is unknown.
Here, |x| = (|x1|, |x2|, · · · , |xn|)T . While f(x) = c ∈ Rn in (1.1), NGAVE becomes
generalized absolute value equation (GAVE)

Ax−B|x| = e, (1.2)

where e ∈ Rn. When f(x) = c ∈ Rn, B = I in (1.1), NGAVE becomes to absolute
value equation (AVE)

Ax− |x| = f, (1.3)
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in [16] where f ∈ Rn. Absolute value equation may arise in diverse fields, including
complementarity problem, programming problem, and so on, see [1, 3, 4, 11–13, 17].
For instance, on the basis of the equivalence of a ⩾ 0, b ⩾ 0, ab = 0 and a+b = |a−b|,
we known that NGAVE (1.1) also can be reformulated as a generalized nonlinear
complementarity problems (GNCP):

H(x)TZ(x) = 0, H(x) = Hx+ b
′
+ f

′
(x) ⩾ 0, Z(x) = Zx− b

′
+ f

′
(x) ⩾ 0, (1.4)

where H = B−1A+I
2 , Z = B−1A−I

2 , b
′
= B−1b

2 , f
′
(x) = B−1f(x)

2 .
Recently, in [10], AVE (1.3) is expressed as the nonlinear equation

F (x) = Ax− |x| − b = 0, (1.5)

and using the Newton iterative method x(k+1) = x(k) − F
′
(x(k))

−1
F (x(k)), then

generalized Newton method (GN)

x(k+1) = x(k) − (A−D(x(k)))−1(Ax(k) − |x(k)| − b) (1.6)

is obtained, where F
′
(x(k)) denote the Jacobin of F at x(k) and D(x(k)) =

diag(sign(x(k))). In the calculation, due to the change of matrix A − D(x(k)) in
the GN method, the computations of the generalized Newton method may be very
expensive. To avoid changing the Jacobian, Wang, Cao and Chen utilize A+ Ω as
the approximation of F

′
(x(k)) and then get the modified Newton method (MN):

x(k+1) = x(k) − (A+Ω)−1(Ax(k) − |x(k)| − b), (1.7)

Ω is positive semi-definite here.
This method does not need to recalculate F

′
(x(k)) at every step, thus reducing

the amount of calculation.
But if A + Ω is ill-conditioned, the MN method may be expensive in practical

calculations. Furthermore, in [23], the author proposes a Newton-basedd matrix
splitting method

x(k+1) = x(k) − (M +Ω)−1(Ax(k) − |x(k)| − b), (1.8)

where A = M −N.
Besides, a block matrix splitting method is proposed to solve the absolute value

equation in [6]. The AVE (1.3) is equivalent to the block system A −I

−D(x) I

x

y

 =

 b

0

 , (1.9)

where D(x) = diag(sign(x)). When A is invertible, from (1.9), it is hold thatx(k+1) = A−1(y(k) + b),

y(k+1) = (1− τ)y(k) + τ |x(k+1)|.
(1.10)

Based on the above methods, a new iterative scheme is constructed in this paper
by using the characteristics of NGAVE with nonlinear term f(x) to solve NGAVE
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(1.1). We give a sufficient condition for the existence of a unique solution to NGAVE
and several cases in which the new iterative method converges. Some sufficient con-
ditions for convergence of the method are given when the splitting is H-compatible
splitting.

The rest of the paper is organized as follows: In the remainder of this section,
some definitions and notations are given, which are suitable for the later discussion.
In section 2, sufficient conditions for the existence of the unique solution of NGAVE
(1.1) are given. In Section 3, we propose the algorithm for solving NGAVE (1.1).
In Section 4, the convergence of this iterative method is discussed. In Section 5,
the numerical results of proposed method is reported. In Section 6, we summarize
the work done in this paper.

Next, we provide some definitions and notations to conclude this section.
Let A = (aij) ∈ Rn×n. A is called as a Z-matrix if aij ⩽ 0 for i ̸= j. A is a Z-

matrix and A−1 ⩾ 0 then it is called a nonsingular M -matrix. Further, A is called
an H-matrix when its comparison matrix ⟨A⟩ = (⟨a⟩ij) ∈ Rn×n is a nonsingular
M -matrix where ⟨a⟩ii = |aii| and ⟨a⟩ij = −|aij | for i ̸= j. A is an H+-matrix which
is an H-matrix with diag(A) > 0, see [2]. The strictly diagonally dominant (SDD)
matrix is defined as |aii| >

∑
j ̸=i |aij |, i = 1, 2, · · · , n. ρ(A) and ∥A∥ denote the

spectral radius and the 2-norm of the matrix A, respectively.

2. Unique solvability of the generalized absolute
value equation with nonlinear term

NGAVE (1.1) can be reformulated as a fixed point equation

x = A−1(B|x| − f(x) + b) := G(x), (2.1)

where A is nonsingular.
First, the following definition and assumption are given

Definition 2.1. [5] There is a constant L ̸= 0 that satisfy

∥F (x)− F (y)∥ ⩽ L∥x− y∥,

then F is called Lipschitz continuous.

Assumption 2.1. [7] The nonlinear term f(x) in the NGAVE (1.1) is Lipschitz
continuous.

Definition 2.2. [7] Let G : D ⊂ Rn 7→ Rn. If there is α ∈ (0, 1) that satisfy
∥G(x) − G(y)∥ ⩽ α∥x − y∥ for any x, y ∈ D0 ⊂ D, G is called a contractive
mapping in D0 and α is called a compression coefficient.

Lemma 2.1. [7] (Contraction Mapping Principle) Let G : D ⊂ Rn 7→ Rn is a
contractive mapping in closed set D0 ⊂ D and G(D0) ⊂ D0, then G has a unique
fixed point in D0.

Lemma 2.2. For any vectors x ∈ Rn, y ∈ Rn, it holds that ∥|x| − |y|∥ ⩽ ∥x− y∥.

Proof. According to the definition of vector norm and inequation ||α| − |β|| ⩽
|α− β|, this conclusion can be directly obtained.
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Theorem 2.1. Under the condition of Assumption 2.1, if ∥A−1∥(∥B∥ + L) < 1,
then NGAVE (1.1) has a unique solution.

Proof. According to Assumption 2.1, it can be seen that there is a constant L ̸= 0
which satisfies ∥f(x)− f(y)∥ ⩽ L∥x− y∥.

For any x, y ∈ Rn, we have

∥G(x)−G(y)∥ = ∥A−1B|x| −A−1f(x)−A−1B|y|+A−1f(y)∥

= ∥A−1B(|x| − |y|)−A−1(f(x)− f(y))∥

⩽ ∥A−1∥(∥B∥+ L)∥x− y∥.

(2.2)

The last inequality holds according to the Lemma 2.2. Let ∥A−1∥(∥B∥+ L) = α0.
Then by Definition 2.2, it follows that G is a contractive mapping in Rn. According
to Lemma 2.1, G(x) has a unique fixed point. Thus NGAVE (1.1) has a unique
solution.

3. Solve generalized absolute value equations with
nonlinear term

In this section, we first propose a new iterative method to solve absolute value
equation with nonlinear term.

We express the matrix A as A = M −N. Using matrix M + Ω to approximate
the Jacobi matrix F

′
(xk), we have the following iteration form.

Algorithm 3.1. (A new Newton-based Matrix Splitting Iterative Method)

Step 1. Give initial point x(0), y(0) ∈ Rn and the parameter ε > 0. Assume the
split of the matrix A is A = M − N. Given Ω ∈ Rn×n which satisfies M + Ω is
invertible. Set k = 0.

Step 2. If ∥Ax(k)−B|x(k)|+f(x(k))−b∥
∥b∥ < ε, stop;

Step 3. Compute x(k+1) and y(k+1) by
x(k+1) = (M +Ω)−1

(
(N +Ω)x(k) +B|x(k)| − y(k) + b

)
,

y(k+1) =
1

α+ 1
(f(x(k+1)) + αy(k)),

(3.1)

where α is a positive real number.

Step 4. Set k := k + 1 and go to Step 2.

Algorithm 3.1 produces different iterative forms for different ways of splitting.
(1) When M = A,N = 0, Algorithm 3.1 turns into the improvement of the

method in [19] 
x(k+1) = A−1

(
B
∣∣x(k)

∣∣− y(k) + b
)
,

y(k+1) =
1

α+ 1
(f(x(k+1)) + αy(k)),

(3.2)

which can be called an improved Newton-based Method.
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(2) When M = D,N = L+U where D = diag(A), −L,−U represent the strictly
lower-triangular and upper-triangular part of A, respectively, Algorithm 3.1 will be
expressed as

x(k+1) = (D +Ω)−1
(
(L+ U +Ω)x(k) +B

∣∣x(k)
∣∣− y(k) + b

)
,

y(k+1) =
1

α+ 1
(f(x(k+1)) + αy(k)),

(3.3)

which can be called a new Newton-based Jacobi Method (NNJ).
(3) When M = D−L,N = U where D = diag(A), −L,−U represent the strictly

lower-triangular and upper-triangular part of A, respectively, Algorithm 3.1 will be
expressed as

x(k+1) = (D − L+Ω)−1
(
(U +Ω)x(k) +B

∣∣x(k)
∣∣− y(k) + b

)
,

y(k+1) =
1

α+ 1
(f(x(k+1)) + αy(k)),

(3.4)

which can be called a new Newton-based Gauss-Seidel Method (NNGS).
(4) When M = 1

α′ D − L,N = ( 1
α′ − 1)D + U where D = diag(A), −L,−U

represent the strictly lower-triangular and upper-triangular part of A, respectively,
Algorithm 3.1 will be expressed as

x(k+1) = (
1

α′ D − L+Ω)−1

(
((

1

α′ − 1)D + U +Ω)x(k) +B
∣∣∣x(k)

∣∣∣− y(k) + b

)
,

y(k+1) =
1

α+ 1
(f(x(k+1)) + αy(k)),

(3.5)
which can be called a new Newton-based SOR Method (NNSOR).

(5) When M = 1
α′ (D − βL), N = 1

α′ ((1 − α
′
)D + (α

′ − β)L + α
′
U) where

D = diag(A), −L,−U represent the strictly lower-triangular and upper-triangular
part of A, respectively, Algorithm 3.1 will be expressed as

x(k+1) = (D − βL+ α
′
Ω)−1

(
((1− α

′
)D + (α

′ − β)L+ α
′
U + α

′
Ω)xk

+α
′ (
B
∣∣xk

∣∣− y(k) + b
))

,

y(k+1) =
1

α+ 1
(f(x(k+1)) + αy(k)),

(3.6)

which can be called a new Newton-based AOR Method (NNAOR).

4. Global convergence

In this section, we turn to analyze the convergence properties of Algorithm 3.1 and
the following lemmas are required.

Lemma 4.1. [20] Let λ be any root of the quadratic equation x2−bx+c = 0 where
b, c ∈ R. Then |λ| < 1 if and only if |c| < 1 and |b| < 1 + c.

Lemma 4.2. [6] Let x, y ∈ Rn, then ||x| − |y|| ⩽ |x− y|.

Let x∗ is the solution of NGAVE (1.1), y∗ = f(x∗). The iteration errors exk =
x∗ − x(k), eyk = y∗ − y(k) where xk, yk is generated by Algorithm 3.1.
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Theorem 4.1. Let b ∈ Rn, A ∈ Rn×n,M +Ω ∈ Rn×n is nonsingular and f : Rn 7→
Rn. Denote ∥(M + Ω)−1∥ = β, ∥N + Ω∥ = γ, ∥B∥ = δ. Under the Assumption 2.1,
if β(γ + L+ δ) < 1, then the Algorithm 3.1 is convergent.

Proof. From (1.1), we have

Ax∗ −B|x∗|+ f(x∗) = b. (4.1)

Then (4.1) is equivalent to

(M +Ω)x∗ = (N +Ω)x∗ +B|x∗| − f(x∗) + b,

i.e. x∗ = (M +Ω)−1((N +Ω)x∗ +B|x∗| − y∗ + b).
(4.2)

And we know

(α+ 1)f(x∗) = f(x∗) + αf(x∗),

i.e. f(x∗) =
1

α+ 1
(f(x∗) + αy∗).

(4.3)

Form (3.1), (4.2), (4.3), we can get

∥exk+1∥ = ∥(M +Ω)−1((N +Ω)(x∗ − xk) +B(|x∗| − |xk|)− (y∗ − y(k)))∥

= ∥(M +Ω)−1((N +Ω)exk +B(|x∗| − |xk|)− eyk)∥

⩽ ∥(M +Ω)−1∥(∥N +Ω∥∥exk∥+ ∥B∥∥|x∗| − |xk|∥+ ∥eyk∥)

= β(γ + δ)∥exk∥+ β∥eyk∥,

(4.4)

and

∥eyk+1∥ = ∥ 1

α+ 1
((f(x∗)− f(x(k+1))) +

α

α+ 1
(y∗ − y(k)))∥

⩽
1

α+ 1
∥f(x∗)− f(x(k+1))∥+ α

α+ 1
∥y∗ − y(k)∥

⩽
L

α+ 1
∥exk+1∥+

α

α+ 1
∥eyk∥

⩽
L

α+ 1
(β(γ + δ)∥exk∥+ β∥eyk∥) +

α

α+ 1
∥eyk∥

=
Lβ(γ + δ)

α+ 1
∥exk∥+

Lβ + α

α+ 1
∥eyk∥.

(4.5)

Further, ∥exk+1∥

∥eyk+1∥

 ⩽

 β(γ + δ) β

Lβ(γ + δ)

α+ 1

Lβ + α

α+ 1


 ∥exk∥

∥eyk∥



⩽

 β(γ + δ) β

Lβ(γ + δ)

α+ 1

Lβ + α

α+ 1


2  ∥exk−1∥

∥eyk−1∥


...
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⩽

 β(γ + δ) β

Lβ(γ + δ)

α+ 1

Lβ + α

α+ 1


k+1  ∥ex0∥

∥ey0∥

 . (4.6)

Let W =

 β(γ + δ) β

Lβ(γ + δ)

α+ 1

Lβ + α

α+ 1

 , we know that when ρ(W ) < 1, lim
k→∞

W k = 0.

It is shown that lim
k→∞

∥exk∥ = 0, lim
k→∞

∥eyk∥ = 0. In other words, the Algorithm 3.1

converges to the unique solution x∗.
Next, we need to prove ρ(W ) < 1 under Assumption 2.1.
Let λ be the eigenvalue of the matrix W. Then λ satisfies

λ2 − (β(γ + δ) +
Lβ + α

α+ 1
)λ+ (

β(γ + δ)(Lβ + α)

α+ 1
− Lβ2(γ + δ)

α+ 1
) = 0.

After simple calculations, we have

λ2 − (β(γ + δ) +
Lβ + α

α+ 1
)λ+ (

βα(γ + δ)

α+ 1
) = 0. (4.7)

From β(γ+L+δ) < 1, we can get β(γ+δ) < 1−βL. Then αβ(γ+δ) < α−αβL.

Thus βα(γ+δ)−1−α < α−αβL−α−1 = −αβL−1 < 0, i.e. |βα(γ+δ)
α+1 | = βα(γ+δ)

α+1 <

1. By direct calculations, we get β(γ + δ) + Lβ+α
α+1 − βα(γ+δ)

α+1 = β(γ+δ+L)+α
α+1 < 1.

Hence |β(γ + δ) + Lβ+α
α+1 | = β(γ + δ) + Lβ+α

α+1 < 1 + βα(γ+δ)
α+1 . According to Lemma

4.1, ρ(W ) < 1. This completes the proof.

Corollary 4.1. Set Ω = ε0I. Assume that M,N are symmetric positive defi-
nite matrices. Under the Assumption 2.1, if λmax(N) + L + δ < λmin(M) where
λmin(M), λmax(N) are the smallest eigenvalue of matrix M and the largest eigen-
value of matrix N , respectively, then the Algorithm 3.1 is convergent.

Proof. By simple calculations, we obtain

β(γ + L+ δ) = ∥(M + ε0I)
−1∥(∥N + ε0I∥+ L+ δ)

=
λmax(N) + ε0 + L+ δ

λmin(M) + ε0
.

(4.8)

If λmax(N) + L+ δ < λmin(M), then β(γ + L+ δ) < 1. Thus the Algorithm 3.1 is
convergent.

Corollary 4.2. Under the Assumption 2.1, if ∥M∥ < 1
∥Ω∥ − (γ + L+ δ), then the

Algorithm 3.1 is convergent.

Proof. Set Â = Ω, B̂ = M + Ω. Then ∥Â − B̂∥ = ∥M∥ ⩽ 1
∥Ω∥ − (γ + L + δ).

Further, ∥Ω∥( 1
∥Ω∥ −(γ+L+δ)) = 1−∥Ω∥(γ+L+δ) < 1. Based on the perturbation

lemma in [15], we get

β = ∥(M +Ω)−1∥

⩽
∥Ω∥

1− ∥Ω∥∥M∥
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<
∥Ω∥

1− ∥Ω∥( 1
∥Ω∥ − (γ + L+ δ))

=
1

γ + L+ δ
. (4.9)

Therefore, β(γ + L+ δ) < 1. From Theorem 2.1, Algorithm 3.1 is convergent.

Lemma 4.3. [21] Let A ∈ Rn×n, B ∈ Rn×n. If |A| ⩽ B, then ρ(A) ⩽ ρ(B).

Proposition 4.1. Let A ∈ Rn×n, B ∈ Rn×n. If |A| ⩽ B, then ∥A∥ ⩽ ∥B∥.

Proof. From |A| ⩽ B, it is following that |ATA| ⩽ |AT ||A| ⩽ BTB. By the Lemma
4.3, ρ(ATA) ⩽ ρ(BTB). Therefore, ∥A∥ ⩽ ∥B∥.

Next, in order to obtain Theorems 4.2 and 4.3, we introduce the definition of
H-compatible splitting and some useful lemmas.

Definition 4.1. Let A = M − N with det(M) ̸= 0. Then it is named an H-
compatible splitting if ⟨A⟩ = ⟨M⟩−|N | is a nonsingular M-matrix with |N | = (|nij |).

Lemma 4.4. [16] If A ⩽ B, where A,B are M-matrix and Z-matrix, respectively,
then B is M-matrix.

Lemma 4.5. [9] Let A ∈ Rn×n, then the following properties hold:

(1) If A is a H-matrix, then |A−1| ⩽ ⟨A⟩−1
;

(2) Strictly diagonally dominant or irreducible diagonally dominant matrix is H-
matrix.

Lemma 4.6. [9] Let A,B ∈ Rn×n are nonsingular M-matrices, and A ⩽ B,
then A−1 ⩾ B−1.

Theorem 4.2. Let A = M − N is an H-compatible splitting of H+−matrix A
and Ω is a positive diagonal matrix. When ∥(Ω+ ⟨M⟩)−1∥ < 1

γ+L+δ , Algorithm 3.1
is convergent.

Proof. Since A = M−N is anH-compatible splitting of matrix A, we obtain ⟨A⟩ ⩽
⟨M⟩. Because A is an H-matrix, ⟨A⟩ is a M -matrix. This shows that ⟨M⟩ is M -
matrix according to Lemma 4.4.

Obviously, ⟨M+Ω⟩ is a nonsingular M -matrix, so M+Ω is an H-matrix. Based
on Lemma 4.5, we can get |(M + Ω)−1| ⩽ ⟨M + Ω⟩−1 = (⟨M⟩ + Ω)−1. According
to Proposition 4.1, ∥(M +Ω)−1∥ ⩽ ∥(⟨M⟩+Ω)−1∥ ⩽ 1

γ+L+δ . Therefore, Algorithm
3.1 is convergent.

Theorem 4.3. Let A = M −N is an H-compatible splitting of H-matrix A, M is
an H+-matrix and Ω is a strictly diagonally dominant H+-matrix. When ∥(⟨Ω⟩ +
⟨M⟩)−1∥ < 1

γ+L+δ , Algorithm 3.1 is convergent.

Proof. Since A = M − N is an H-compatible splitting of matrix A, it is hold
that ⟨A⟩ = ⟨M⟩ − |N |. And M is an H+-matrix, therefore, ⟨A⟩ ⩽ ⟨M⟩ ⩽ diag(M).
We know that A is an H-matrix, then ⟨A⟩ is a M -matrix. From Lemma 4.4, ⟨M⟩
is a M -matrix.

According to Assumption, Ω is a strictly diagonally dominant H+-matrix, then
⟨Ω⟩ is a M -matrix. Therefore, ⟨Ω⟩+ ⟨M⟩ is a M -matrix.
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⟨M +Ω⟩ ⩾ ⟨M⟩ + ⟨Ω⟩ holds where off-diagonal part is based on inequal-
ity −|mij+ωij | ⩾ −|mij |−|ωij | and diagonal part holds naturally. Then ⟨M +Ω⟩ is
aM -matrix, i.e., M+Ω isH+-matrix. Further, we have |(M+Ω)−1| ⩽ ⟨M+Ω⟩−1 ⩽
(⟨M⟩+ ⟨Ω⟩)−1, where the second inequality follows from lemma 4.6. From Propo-
sition 4.1, ∥(M +Ω)−1∥ ⩽ ∥(⟨M⟩+ ⟨Ω⟩)−1∥ ⩽ 1

γ+L+δ . Therefore, Algorithm 3.1 is
convergent.

5. Numerical results

In this section, we use the following two examples to verify the feasibility of the
algorithm we proposed. And we intuitively analyze the effect of the algorithm from
the iteration count (indicated as ‘IT’), the relative residual error (indicated as ‘RES’)
and the elapsed CPU time (indicated as ‘CPU’) where RES is defined as RES =
∥Axk−B|xk|+f(xk)−b∥

∥b∥ . While RES < 10−4 or the prescribed iteration count kmax =

500 is surpassed, all iterations are terminated. The programming language used
was MATLAB R2018a.

Example 5.1. Let

S =



4 −0.5 0 0 0

−1.5 4 −0.5 0 0

0
. . .

. . .
. . . 0

0 0 −1.5 4 −0.5

0 0 0 −1.5 4


∈ Rm×m,

M1 =



S −0.5I0 0 0 0

−1.5I0 S −0.5I0 0 0

0
. . .

. . .
. . . 0

0 0 −1.5I0 S −0.5I0

0 0 0 −1.5I0 S


∈ Rn×n,

where I0 ∈ Rm×m is an identity matrix. Consider the NGAVE Ax−B|x|+f(x) = b
where A = M + I, B = M − I, b = Ax∗ −B|x∗|+ f(x∗), f(·) = sin(·). Here, x∗ =
(−0.6,−0.6, · · · ,−0.6)T and M = M1 + µI. I ∈ Rn×n is an identity matrices with
n dimensions, n = m2.

For Example 5.1, to improve the convergence speed of all the tested methods,
the choice of Ω is Ω = 1.2M1. we take the parameter µ = 4, α = 0.5. The initial
iteration points x(0), y(0) are

x(0) = y(0) = (1, 0, 1, 0, · · · , 1, 0)T ∈ Rn.

In the implementation of the algorithm, inverse matrices of D−L+Ω, 1
α′ D−L+

Ω, 1
α′ (D−βL)+Ω, can be determined by the sparse LU factorization or the sparse

Cholesky factorization. And according to Figure 1, we choose the parameter value
to be α

′
= 0.9, β = 0.6.
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Figure 1. Selection of optimal parameters α
′
, β of the NNAOR method for Example 5.1.
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Table 1. Numerical comparisons about the mentioned algorithms for Example 5.1.

Algorithm n 400 900 1600 2500 3600

IT 14 14 14 13 13

GUASS −NEWTON RES 9.1499e-07 6.2024e-07 4.6938e-07 8.3176e-07 6.9674e-07

CPU 0.207728 1.122682 5.436864 15.670527 40.725230

IT 11 11 11 11 11

NNJ RES 4.7816e-07 4.7522e-07 4.7350e-07 4.7238e-07 4.7160e-07

CPU 0.029603 0.108098 0.379684 1.007731 2.621176

IT 12 12 12 12 12

NNGS RES 8.4979e-07 8.6476e-07 8.5153e-07 8.3644e-07 8.2313e-07

CPU 0.031724 0.113848 0.391762 0.984423 2.536378

IT 11 11 11 11 11

NNSOR RES 4.1578e-07 4.1491e-07 4.1450e-07 4.1426e-07 4.1411e-07

α
′
= 0.9 CPU 0.029993 0.105045 0.346909 1.085007 2.780677

IT 11 11 11 11 11

NNAOR RES 4.5987e-07 4.5975e-07 4.5968e-07 4.5964e-07 4.5961e-07

(α
′
= 0.9;β = 0.6) CPU 0.031198 0.114716 0.421824 1.064167 2.751035

Table 2. Numerical comparisons about the mentioned algorithms for Example 5.2 (q=1, p=2).

Algorithm n 400 900 1600 2500 3600

IT 4 4 5 4 4

GUASS −NEWTON RES 3.4774e-05 5.4918e-05 4.0280e-07 8.4068e-05 9.3288e-05

CPU 0.104606 0.349643 1.872097 4.493567 12.157909

IT 5 5 5 5 5

NNJ RES 5.9439e-05 5.1951e-05 5.2414e-05 5.2997e-05 5.1496e-05

CPU 0.023763 0.061204 0.173787 0.431277 1.222827

IT 4 4 5 4 4

NNGS RES 3.8730e-05 2.5590e-05 2.2263e-05 2.1313e-05 1.7856e-05

CPU 0.025634 0.060369 0.151556 0.467179 1.055523

IT 3 3 3 3 3

NNSOR RES 3.8850e-05 2.3745e-05 1.7794e-05 1.4794e-05 1.2391e-05

α
′
= 1.1 CPU 0.021410 0.059269 0.162472 0.461926 1.020736

IT 3 3 3 2 2

NNAOR RES 3.5429e-05 2.0486e-05 1.5043e-05 9.4872e-05 8.4616e-05

(α
′
= 1.1;β = 0.9) CPU 0.024318 0.060364 0.147851 0.412287 1.147714

According to the numerical results given in Table 1 and Figure 2, the Guass-
Newton method and the four methods presented in this paper can converge to the
solution x∗ quickly for different problem sizes. Moreover, the performance of the five
methods in Example 5.1 is relatively stable. It can be seen intuitively from Table 1
that CPU time of the NNJ method, the NNGS method, the NNSOR method and
the NNAOR method is obviously less than the Guass-Newton method. Because
the Guass-Newton method needs to calculate the Jacobian matrix of F (x(k)) at
each step, it brings a huge amount of computation. However, the method proposed
in this paper only needs to calculate the inverse of M + Ω once and correct the
nonlinear part f(x(k)) in each update, thus the calculation time of the NNJ method,
the NNGS method, the NNSOR method and the NNAOR method are much less
than that of Guass-Newton method.

Example 5.2. We consider the NGAVE (1.1) such that

A = Tx ⊗ Im + Im ⊗ Ty + pIn, B = In,
(
n = m2

)
(5.1)
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Figure 2. Convergence effect for Example 5.1.
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Table 3. Numerical comparisons about the mentioned algorithms for Example 5.2 (q=2, p=4).

Algorithm n 400 900 1600 2500 3600

IT 4 4 4 4 4

GUASS −NEWTON RES 2.8344e-05 3.3656e-05 6.7496e-05 6.2878e-05 6.7983e-05

CPU 0.061057 0.308713 1.111980 3.351973 8.938422

IT 5 5 5 5 5

NNJ RES 3.8659e-05 3.2595e-05 3.1079e-05 3.1558e-05 3.0674e-05

CPU 0.022322 0.059627 0.151547 0.465858 1.131326

IT 4 3 3 3 3

NNGS RES 3.0823e-05 8.8911e-05 8.9703e-05 9.0955e-05 9.1514e-05

CPU 0.023348 0.063185 0.149682 0.464332 0.998092

IT 3 3 3 3 3

NNSOR RES 3.2762e-05 2.0298e-05 1.6252e-05 1.3458e-05 1.1597e-05

α
′
= 1.1 CPU 0.032953 0.058465 0.144290 0.463707 1.075843

IT 3 3 3 2 2

NNAOR RES 3.1594e-05 1.7208e-05 1.2959e-05 8.8250e-05 7.8590e-05

(α
′
= 1.1;β = 0.9) CPU 0.026301 0.058266 0.170766 0.459618 1.065003

where Tx = tridiag(−1 − r, 4,−1 + r), Ty = tridiag(−1 − r, 0,−1 + r), r = (qh)/2
and h = 1/(m + 1) for given real number p and nonnegative constant q. The
right-hand side of NGAVE (1.1) is constructed such that x∗ = (1, 2, · · · , n)T satis-
fies Ax∗ − |x∗|+ f(x∗) = b where f(·) = cos(·).

For Example 5.2, the choice of Ω is Ω = δIn, δ = −0.9, and α = 0.5. We take
the parameter q = 1, p = 2 and q = 2, p = 4, respectively. In this experiment, the
initial iteration points x(0), y(0) are

x(0) = y(0) = (0, 0, · · · , 0, 0)T ∈ Rn. (5.2)

And according to Figure 3 and 5, we choose the parameter value to be α
′
= 1.1, β =

0.9.
It can be seen from Figure 4 and 6 that all the six methods can effectively and

steadily converge to the solution x∗ when q = 1, p = 2 or q = 2, p = 4. The
numerical results in Tables 2 and 3 show that the Guass-Newton method and the
NNJ method, the NNGS method have little difference in iteration counts and resid-
uals in both cases (q = 1, p = 2 and q = 2, p = 4). However, the CPU time of the
NNJ method, the NNGS method is significantly less than that of the Guass-Newton
method. When setting the appropriate values for α′ and β, the NNSOR method
and the NNAOR method also performed better than the Newton method and the
Guass-Newton method in terms of CPU time.

Examples 5.1 and 5.2 show that the new Newton-based matrix splitting itera-
tive method is effective and the convergence effect is superior to the Guass-Newton
method. Through direct calculation, the NNJ method, the NNGS method, the
NNSOR method and the NNAOR method in Example 5.2 meet the condition pro-
posed in Theorem 4.1 but the condition do not be satisfied in Example 5.1, indicat-
ing that the conditions proposed in Theorem 4.1 are sufficient conditions rather than
necessary conditions for the new Newton-based matrix splitting iterative method
to converge.
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Figure 3. Selection of optimal parameters α
′
, β of the NNAOR method for Example 5.2 (q=1;p=2).
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Figure 4. Convergence effect for Example 5.2 (q=1;p=2).
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Figure 5. Selection of optimal parameters α
′
, β of the NNAOR method for Example 5.2 (q=2;p=4).
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Figure 6. Convergence effect for Example 5.2 (q=2;p=4).
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6. Conclusions

In this paper, we come up with the generalized absolute value equation with non-
linear term and a new Newton-based matrix splitting iterative method is proposed
for solving generalized absolute value equation with nonlinear term. We give the
global convergence of this method and show that some new convergence conditions
are proposed for certain splitting or properties of matrix A. Numerical results
indicate that the new Newton-based matrix splitting iterative method for solving
generalized absolute value equation with nonlinear term is effective. However, as
there are three parameters in the NNAOR method, it is very difficult to determine
the optimal value for these parameters and it needs further study.
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