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Abstract To solve large consistent linear systems, a weighted average fast
block Kaczmarz (WAFBK) method is proposed, which is based on the ideas of
greedy distance and weighted average. This method does not require the cal-
culation of pseudoinverse of submatrices. Furthermore, we provide a detailed
analysis of the convergence properties of various methods, corresponding to
four different weights used in the selection probability criterion. And it has
been proven that WAFBK-type methods converge to the unique least-norm
solutions of linear systems. Numerical results confirm the effectiveness of the
WAFBK-type methods and demonstrate their ability to accelerate the conver-
gence rate of the fast deterministic block Kaczmarz method.
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sistent systems.
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1. Introduction

In the fields of scientific and engineering computing such as artificial intelligence,
big data analysis and data mining, the efficient solution of large-scale linear systems
remains one of the core concerns of researchers. In this paper, we consider solving
large consistent linear systems in the following form

Ax = b, (1.1)

where A ∈ Rm×n and b ∈ Rm. Stefan Kaczmarz [12] proposed the Kaczmarz
method for solving linear systems (1.1) in 1937, which is a classic and representa-
tive row projection iteration method. Due to its advantages of simple operation,
low computational cost, and easy implementation, the theory of this method has
rapidly developed and been widely applied in image processing [11,20], distributed
computing [8, 19] and computed tomography [13, 14]. In 2009, Strohmer and Ver-
shynin [21] combined the idea of randomly selecting the target row of the coefficient
matrix with the Kaczmarz method to present the Randomized Kaczmarz (RK)
method, and demonstrated that it had linear convergence speed. In order to speed
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up the convergence of RK method, Bai and Wu [2] established greedy randomized
Kaczmarz (GRK) method by utilizing a novel and beneficial probability criterion.
In recent years, there have been a large number of extensions and variations of RK
and GRK methods, and we can refer to works [3, 4, 25, 26]. It is not difficult to
see that the above-mentioned methods only use one row to project in each itera-
tion. Considering that using multiple work rows in each iteration can accelerate the
convergence speed of single row projection methods, block-type methods have been
proposed successively.

The idea of block Kaczmarz method can date back to Elfving’s research [9],
which utilizes a great many of equations simultaneously at each iteration. The
iterative format of the block method is defined as follows

xk+1 = xk +A†Ik(bIk −AIkxk), k = 0, 1, 2, . . . ,

where A†Ik represents the Moore-Penrose pseudoinverse of the submatrix AIk and
Ik ∈ [m]. By observing the above iterative format, it is evident that the structure
and properties of the blocks AIk have played a significant role in the convergence
speed of this method. Needell et al. [16,17] presented a randomized block Kaczmarz
(RBK) method and demonstrated that if the submatrix AIk is well conditioned, in
other words, given a great row paving, then this method can be extremely efficient.
And they also extended it to solve inconsistent systems. Furthermore, a greedy
block Kaczmarz method [18] was presented, which combined GRK and RBK meth-
ods. Obviously, this type of block method requires calculating the Moore-Penrose
pseudoinverse of submatrix and a great row paving, which is quite time-consuming
and generally difficult to satisfy. Necoara [15] came up with a unified framework
for the random average block Kaczmarz (RaBK) method by using a convex combi-
nation of several updatings as the search direction to avoid these issues. Moreover,
Necoara explored various types of step size and conducted the expected linear con-
vergence rate. Regarding the improvement and expansion of this method, we can
read [7, 22]. However, RaBK method requires pre-partitioning the row indices of
the coefficient matrix A , and it will only be highly effective when it has a good
sampling of the rows into well-conditioned blocks. Therefore, with the inspiration of
Gaussian Kaczmarz [10] method, Chen and Huang [5] constructed a fast determin-
istic block Kaczmarz (FDBK) method so as to further accelerate the convergence
of the block method. The iterative format is defined as

xk+1 = xk +
dTk (b−Axk)

‖AT dk‖22
AT dk, dk =

∑
i∈Ik

(
b(i) −A(i)xk

)
ei.

The FDBK method only needs to compute a linear combination of all columns of
submatrices AIk as search direction. On the one hand, this method eliminates the
demand for the calculation of the Moore-Penrose pseudoinverse of submatrix, and
on the other hand, it updates the index set through a greedy criterion during each
iteration, which means it does not involve pre-determining the row indices. It is
obvious that this method greatly reduces the complexity of operations and saves
a lot of computation time. Numerical experiments also showed that the conver-
gence performance of this method is quite significant. Afterwards, Xiao et al. [24]
constructed a fast greedy block Kaczmarz (FGBK) method by adopting different
probability criterion for selecting work rows.

In this paper, we build a weighted average fast block Kaczmarz (WAFBK)
method with the goal to further improve the convergence speed of FDBK method,
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which constructs a new probability criterion for selecting rows by combining the ad-
vantages of greedy distance and weighted average. Added to that, we list four types
of weights in the probability criterion for this method. According to the different
weights, we name them as WAFBK U, WAFBK NU, WAFBK R and WAFBK D
methods respectively. The WAFBK-type methods not only do not need to spend a
lot of time to calculate the Moore-Penrose pseudoinverse of submatrix in each step,
but have the probability criteria for selecting rows that are also different from those
in FDBK and FGBK methods. And theoretical analyses of WAFBK-type meth-
ods corresponding to different weights are provided. Numerical experiments also
demonstrate that the WAFBK-type methods outperform both FDBK and FGBK
methods in terms of iteration steps and computing time.

Next, we will explore the organizational structure of this article. In the remain-
ing part of this section, we elucidate the symbols and notation employed throughout
this article. In Section 2, we first provide a succinct overview of the FDBK and
FGBK methods, followed by the construction of the WAFBK-type methods and an
in-depth discussion of their convergences on different weights in probability crite-
ria. Following that, the numerical results of six methods are provided in Section 3.
Finally, Section 4 serves as an epilogue, encapsulating the conclusion of the entire
paper.

For any vector q ∈ Rn, q(j) is used to denote its jth entry. Let ej be the column
vector of n dimensions whose jth item is 1 and the rest items are 0. For a matrix

Q = (aij) ∈ Rm×n, Q(i), ‖Q‖2 := max
x6=0

‖Qx‖2
‖x‖2

, ‖Q‖F :=

√
m∑
i=1

n∑
j=1

|qij |2 and R(Q)

represent its ith row, Euclidean norm, Frobenius norm and the range space of the
matrix Q, respectively. Then, let σmin(Q) and σmax(Q) denote the smallest nonzero
and the largest singular value of the matrix Q, respectively. We use [t] to denote
the set of positive integers [1, 2, . . . , t]. For any index set η, we make use of Qη and
|η| to represent the row submatrix of Q indexed by η and the cardinality of the set
η, respectively.

2. Weighted average fast block Kaczmarz method

Initially, we conduct a brief review of FDBK and FGBK methods. Subsequently,
based on the ideas of greedy distance and weighted average, we construct a new
probability criterion to derive the WAFBK-type methods.

In FDBK [5] method, the indicator set is defined as follows

Ik =

{
i|
∣∣∣b(i) −A(i)xk

∣∣∣2 ≥ εk ‖b−Axk‖22 ∥∥∥A(i)
∥∥∥2

2

}
and

εk =
1

2

(
1

‖b−Axk‖22
max

1≤i≤m

{∣∣b(i) −A(i)xk
∣∣2∥∥A(i)

∥∥2

2

}
+

1

‖A‖2F

)
.

On the basis of FDBK method, Xiao et al. [24] further innovated by constructing
a different indicator set and taking into account the utilization of different norm
standards to determine the working rows. They proposed FGBK method, whose
indicator set is

Ik =

{
i|
∣∣∣b(i) −A(i)xk

∣∣∣p ≥ εk ∥∥∥A(i)
∥∥∥p
p

}
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and

εk = θ · max
1≤i≤m

{∣∣b(i) −A(i)xk
∣∣p∥∥A(i)

∥∥p
p

}
, θ ∈ (0, 1] and p ∈ [1,+∞) .

One drawback of this method lies in the necessity of calculating

max
1≤i≤m

{
|b(i)−A(i)xk|p
‖A(i)‖p

p

}
in each iteration, which will consume a lot of time. Based

on this, we combine the advantages of greedy distance and weighted average to
construct a new indicator set, as shown in Method 1. This approach to determine
the indicator set can more accurately describe the distribution of distance between
the current iteration solution and the corresponding hyperplane for each row. Addi-
tionally, we introduce a relaxation parameter θ, which can control the size of set Ik
by adjusting its value. The proposed method not only avoids calculating the value

of max
1≤i≤m

{
|b(i)−A(i)xk|2
‖A(i)‖2

2

}
in each iteration but also has no direct correlation with

the Frobenius norm of A. Next, we will discuss the possible selection of weights in
εk and ensure that the weights satisfy ωki ∈ [0, 1] and

∑
1≤i≤m

ωki = 1. In this paper,

we provide the following four selection rules with regard to the weights in εk.

Method 1 The WAFBK method

Input: A, b, x0 = 0, k = 0, θ ∈ [0, 1];
Output: xK+1;
1: while k ≤ K
2: Compute

εk = θ
∑

1≤i≤m

ωki

∣∣b(i) −A(i)xk
∣∣2∥∥A(i)

∥∥2

2

;

3: Determine the index set

Ik =

{
ik|
∣∣∣b(i) −A(i)xk

∣∣∣2 ≥ εk ∥∥∥A(i)
∥∥∥2

2

}
;

4: Compute

ξk =
∑
i∈Ik

r
(i)
k ei; (2.1)

5: Update

xk+1 = xk +
ξTk rk

‖AT ξk‖22
AT ξk;

6: k = k + 1;
7: end while

• The uniform selection: ωki = 1
m , which can be referred to as WAFBK U

method.

• The non-uniform selection ωki =
‖A(i)‖2

2

‖A‖2F
, which can be referred to as

WAFBK NU method.
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• The residual selection: ωki =

∣∣∣r(i)k

∣∣∣2
‖rk‖22

=
|b(i)−A(i)xk|2
‖b−Axk‖22

, which can be referred to

as WAFBK R method.

• The distance selection: ωki =

(
d
(i)
k

)2

∑
1≤i≤m

(
d
(i)
k

)2 , d
(i)
k =

|r(i)k |
‖A(i)‖

2

which can be referred

to as WAFBK D method.

We provide some remarks and lemmas for the sake of analyzing the convergence
of the WAFBK method more conveniently and clearly.

Remark 2.1. We know that

max
1≤i≤m

{
|b(i) −A(i)xk|2∥∥A(i)

∥∥2

2

}
≥

∑
1≤i≤m

ωki

∣∣b(i) −A(i)xk
∣∣2∥∥A(i)

∥∥2

2

≥ θ
∑

1≤i≤m

ωki

∣∣b(i) −A(i)xk
∣∣2∥∥A(i)

∥∥2

2

, θ ∈ [0, 1] ,

where
|b(i)−A(i)xk|2
‖A(i)‖2

2

indicates the distance between the current solution xk and the

ith hyperplane, which implies the index set Ik cannot be empty. That is to say, the
maximal distance between the current solution xk and the ith hyperplane, that is

max
1≤i≤m

{
|b(i)−A(i)xk|2

‖A(i)‖2
2

}
, must be included in the set Ik.

Lemma 2.1 (Lemma 2.5, [23]). If both α = {α1, α2, . . . , αn} and β = {β1, β2, . . . ,
βn} are two arrays with real components and satisfy αj ≥ 0, βj ≥ 0, j ∈ {1, 2, . . . ,
n}, then it holds that

n∑
j=1

αj
βj
≥

n∑
j=1

αj

n∑
j=1

βj

.

Lemma 2.2 (Theorem 3.1, [2]). For any ν ∈ Rn belonging to the column space of
AT , the following inequality holds that

‖Aν‖22 ≥ σ
2
min(A) ‖ν‖22 .

Lemma 2.3 (Lemma 3.1, [1]). Define m be a prescribed positive integer, {αi}mi=1

be nonnegative reals. Then, it holds that:

m∑
i=1

α2
i ≥

1

m

(
m∑
i=1

αi

)2

.

Theorem 2.1. For A ∈ Rm×n without any zero row and any initial vector x0 ∈
R(AT ), the iteration sequence {xk}∞k=0 generated by the WAFBK method converges
to the least norm solution x∗ = A†b of the consistent linear system (1.1). Further-
more, the error estimate obeys

(i) For the WAFBK U method,

‖xk+1 − x∗‖22 ≤ (1− θσ
2
min(A)

m ‖A‖2F

‖AIk‖
2
F

σ2
max (AIk)

)‖xk − x∗‖22, k = 0, 1, 2, . . . .



920 H.-Y. Li & X.-H. Shao

(ii) For the WAFBK NU method,

‖xk+1 − x∗‖22 ≤ (1− θσ
2
min(A)

‖A‖2F

‖AIk‖
2
F

σ2
max (AIk)

)‖xk − x∗‖22, k = 0, 1, 2, . . . .

(iii) For the WAFBK R method,

‖xk+1 − x∗‖22 ≤ (1− θσ
2
min(A)

‖A‖2F

‖AIk‖
2
F

σ2
max (AIk)

)‖xk − x∗‖22, k = 0, 1, 2, . . . .

(iv) For the WAFBK D method,

‖xk+1 − x∗‖22 ≤ (1− θσ
2
min(A)

m ‖A‖2F

‖AIk‖
2
F

σ2
max (AIk)

)‖xk − x∗‖22, k = 0, 1, 2, . . . .

Proof. From step 5 of WAFBK method, we get

xk+1 − x∗ = xk − x∗ +
ξTk (b−Axk)

‖AT ξk‖22
AT ξk

= xk − x∗ −
ξTk A (xk − x∗)
‖AT ξk‖22

AT ξk

= xk − x∗ −
AT ξkξ

T
k A

‖AT ξk‖22
(xk − x∗) .

According to the Pythagorean theorem, it can be concluded that

‖xk+1 − x∗‖22 = ‖xk − x∗‖22 −

∥∥∥∥∥ξTk A (xk − x∗)
‖AT ξk‖22

AT ξk

∥∥∥∥∥
2

2

= ‖xk − x∗‖22 −
|ξTk (b−Axk)|2

‖AT ξk‖22
. (2.2)

Let Ek ∈ Rm × |Ik| be a matrix whose columns are composed of all the unit
vector ei with i ∈ Ik, AIk = ETk A, ξ̂k = ETk ξk, then∥∥∥ξ̂k∥∥∥2

2
= ξTk EkE

T
k ξk = ‖ξk‖22 =

∑
i∈Ik

∣∣∣b(i) −A(i)xk

∣∣∣2 (2.3)

and ∥∥AT ξk∥∥2

2
= ξTk AA

T ξk = ξ̂Tk E
T
k AA

TEk ξ̂k = ξ̂Tk AIkA
T
Ik ξ̂k =

∥∥∥ATIk ξ̂k∥∥∥2

2
.

Further, we see that∥∥∥ATIk ξ̂k∥∥∥2

2
= ξ̂Tk AIkA

T
Ik ξ̂k ≤ σ

2
max (AIk)

∥∥∥ξ̂k∥∥∥2

2
.

By combining (2.1) and (2.3), it can be obtained that

ξTk (b−Axk) =

(∑
i∈Ik

(
b(i) −A(i)xk

)
eTi

)
(b−Axk)
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=
∑
i∈Ik

((
b(i) −A(i)xk

)
eTi (b−Axk)

)
=
∑
i∈Ik

∣∣∣b(i) −A(i)xk

∣∣∣2
=
∥∥∥ξ̂k∥∥∥2

2
.

From this, the second part of equation (2.2) can be further written as

∣∣ξTk (b−Axk)
∣∣2

‖AT ξk‖22
=

( ∑
i∈Ik

∣∣b(i) −A(i)xk
∣∣2)∥∥∥ξ̂k∥∥∥2

2∥∥∥ATIk ξ̂k∥∥∥2

2

≥

∑
i∈Ik

∣∣b(i) −A(i)xk
∣∣2

σ2
max (AIk)

≥

∑
i∈Ik

(
εk
∥∥A(i)

∥∥2

2

)
σ2

max (AIk)

=

εk
∑
i∈Ik

∥∥A(i)
∥∥2

2

σ2
max (AIk)

=
εk ‖AIk‖

2
F

σ2
max (AIk)

. (2.4)

Based on that, we will discuss the value of εk with various weights.

(1) For the WAFBK U method, ωi = 1
m , k = 0, 1, 2, . . . , and from Lemma 2.1 and

2.2, we have

εk = θ
∑

1≤i≤m

1

m

∣∣b(i) −A(i)xk
∣∣2∥∥A(i)

∥∥2

2

≥ θ

m

∑
1≤i≤m

∣∣b(i) −A(i)xk
∣∣2

∑
1≤i≤m

∥∥A(i)
∥∥2

2

=
θ

m

‖b−Axk‖22
‖A‖2F

≥ θσ
2
min(A)

m ‖A‖2F
‖x∗ − xk‖22 . (2.5)

(2) For the WAFBK NU method, ωi =
‖A(i)‖2

2

‖A‖2F
, k = 0, 1, 2, . . . , and from Lemma

2.2, we have

εk = θ
∑

1≤i≤m

∥∥A(i)
∥∥2

2

‖A‖2F

∣∣b(i) −A(i)xk
∣∣2∥∥A(i)

∥∥2

2
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= θ
‖b−Axk‖22
‖A‖2F

≥ θσ
2
min(A)

‖A‖2F
‖x∗ − xk‖22 . (2.6)

(3) For the WAFBK R method, ωki =

∣∣∣r(i)k

∣∣∣2
‖rk‖22

=
|b(i)−A(i)xk|2
‖b−Axk‖22

, k = 0, 1, 2, . . ., we have

εk = θ
∑

1≤i≤m

∣∣b(i) −A(i)xk
∣∣2

‖b−Axk‖22

∣∣b(i) −A(i)xk
∣∣2∥∥A(i)

∥∥2

2

=
θ

‖b−Axk‖22

∑
1≤i≤m

∣∣b(i) −A(i)xk
∣∣4∥∥A(i)

∥∥2

2

.

Through the application of the Cauchy-Schwarz inequality, it is straightforward
to deduce that

∑
1≤i≤m

∥∥∥A(i)
∥∥∥2

2
·
∑

1≤i≤m

∣∣b(i) −A(i)xk
∣∣4∥∥A(i)

∥∥2

2

≥

 ∑
1≤i≤m

∥∥∥A(i)
∥∥∥

2
·
∣∣b(i) −A(i)xk

∣∣2∥∥A(i)
∥∥

2

2

=

 ∑
1≤i≤m

∣∣∣b(i) −A(i)xk

∣∣∣2
2

= ‖b−Axk‖42 .

Hence, from Lemma 2.2, we have

εk ≥
θ

‖b−Axk‖22

‖b−Axk‖42∑
1≤i≤m

∥∥A(i)
∥∥2

2

≥
θ ‖b−Axk‖22
‖A‖2F

≥ θσ2
min(A)

‖A‖2F
‖x∗ − xk‖22 . (2.7)

(4) For the WAFBK D method, ωki =

(
d
(i)
k

)2

∑
1≤i≤m

(
d
(i)
k

)2 , k = 0, 1, 2, . . ., and from Lemma

2.1 - 2.3, we have

εk = θ
∑

1≤i≤m

(
d

(i)
k

)2

∑
1≤i≤m

(
d

(i)
k

)2

∣∣b(i) −A(i)xk
∣∣2∥∥A(i)

∥∥2

2

= θ

∑
1≤i≤m

(
d

(i)
k

)4

∑
1≤i≤m

(
d

(i)
k

)2
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≥ θ

m

( ∑
1≤i≤m

(
d

(i)
k

)2
)

∑
1≤i≤m

(
d

(i)
k

)2

2

=
θ

m

∑
1≤i≤m

∣∣b(i) −A(i)xk
∣∣2∥∥A(i)

∥∥2

2

≥ θ

m

‖b−Axk‖22
‖A‖2F

≥ θσ
2
min(A)

m ‖A‖2F
‖x∗ − xk‖22 . (2.8)

So far, by substituting the estimates in (2.4)-(2.8) into (2.2) and performing
recursive operations on the iteration index k, it can be obtained the upper bound
in (i)-(iv) of Theorem 2.1.

Based on the above discussion, the convergence factors of these four methods
can be written as

ρWAFBK NU = ρWAFBK R = 1− θσ
2
min(A)

‖A‖2F

‖AIk‖
2
F

σ2
max (AIk)

and

ρWAFBK U = ρWAFBK D = 1− θσ
2
min(A)

m ‖A‖2F

‖AIk‖
2
F

σ2
max (AIk)

.

Obviously, it holds that

ρWAFBK NU = ρWAFBK R ≤ ρWAFBK D = ρWAFBK U .

Therefore, from a theoretical perspective, WAFBK NU and WAFBK R methods
will exhibit significantly better convergence performance compared to WAFBK U
and WAFBK D methods. However, in practical applications, all four methods
demonstrate comparably outstanding convergence properties, surpassing the upper
bounds prescribed by current theoretical frameworks.

3. Numerical experiments

We will perform extensive numerical experiments and compare them with FDBK [5]
and FGBK [24] methods in order to visually demonstrate the excellent convergence
of the proposed methods. And numerical experiments in [24] show that the FGBK
method with p = 2 converges in the least computing time. Therefore, we only
consider the FGBK method with p = 2 in this paper. As for the values of θ in
FGBK method and our proposed methods, we will provide them in each table title
and discuss them in detail in 3.3.

The performances of above methods are expressed in terms of the number of
iteration steps (labeled as “IT”) and computing time in seconds (labeled as “CPU”).
For each randomized method, IT and CPU represent the average numerical value
of the results that are obtained by repeating the corresponding method 50 times.
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We will test two types of matrices of the consistent linear systems, one is the
dense matrix generated by the function randn in MATLAB, and the other is the
matrix from Florida sparse matrix set [6]. The detailed information of the matrices
is explained in Tables 3 and 6, where the definition of density is provided here, as
shown below

density =
number of nonzero elements in m× n

m× n
.

In addition, to ensure that the coefficient matrix A is consistent, we first generate
a vector x ∈ Rn and b = Ax through the function randn. For all methods, the
iterations are commenced from x0 = 0 and terminated when the relative solution
error (RSE) falls below a threshold of

RSE =
‖xk − x∗‖22
‖x∗‖22

≤ 10−6,

or the value of IT is beyond 200,000. Additionally, the symbol “--” indicates that
a certain method did not meet our prescribed accuracy within 200,000 steps.

Furthermore, the CPU acceleration ratios of the proposed methods relative to
FDBK methods are given for the sake of demonstrating intuitively the improvement
of the methods we presented, which are respectively set as follows

speed-up U =
CPUFDBK

CPUWAFBK U
,

speed-up NU =
CPUFDBK

CPUWAFBK NU
,

speed-up R =
CPUFDBK

CPUWAFBK R

and

speed-up U=
CPUFDBK

CPUWAFBK D
.

It can be seen from the definition of acceleration ratio that when these methods
reach the same accuracy and the values of speed-up are greater than 1, which means
that the computational efficiencies of these new methods are even better than that
of FDBK method.

The numerical experiments are completed by making use of a computer with
2.30GHz central processor (Intel (R) Core (TM) i5-8300H CPU 2.30GHz), 64 bit
Windows 10 operating system and 8.00GB memory by using MATLAB (R2018a
version).

3.1. Underdetermined case

We test two types matrix with m < n, the numerical results of the six iterative
methods are shown in Tables 1 and 2 for random matrices and in Table 3 for
sparse matrices. To more intuitively demonstrate the outstanding convergence per-
formance of our proposed methods, we have plotted the RSE in base-10 logarithm
versus CPU, as shown in Figures 1 and 2 below.

By comparing the values of CPU and IT in these tables, we can definitely con-
clude that the proposed methods have an evident promotion at the aspect of CPU
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time and iteration, which are faster than the other two methods regardless of the
size of the coefficient matrix. And it is intuitively observed that these four methods
have excellent convergence performance from Figures 1 and 2. Besides, it should
be noted that the convergence rates of the four methods we propose are very close
and difficult to distinguish between each other especially for solving dense matrices,
which is also reflected in Figure 1 below. From this picture, we can easily observe
that the curves of four methods are very close to each other. For solving sparse ma-
trices, it can be seen from the results in Figure 2 and Table 3 that WAFBK U and
WAFBK NU methods are the two fastest among these six methods in all cases. In
a word, the difference in convergence performance between WAFBK-type methods
is not significant.

In particular, by comparing the proposed methods and FDBK methods, we
conclude that when we solve the random matrices, the smallest value of CPU speed-
up is 3.2551, the largest is 7.4397; When we solve the sparse matrices, the smallest
value of CPU speed-up is 1.4113, the largest is 4.6022. The above data results
demonstrate the effectiveness and advantages of our methods.

Table 1. Numerical results of six methods for random matrices with m = 500 and θ = 0.5.

n 1000 2000 3000 4000 5000

FDBK IT 378 106 73 56 51

CPU 0.0872 0.0873 0.1038 0.1091 0.1258

FGBK IT 254 77 53 44 38

CPU 0.0607 0.0644 0.0764 0.0863 0.0946

WAFBK U IT 80 22 15 12 10

CPU 0.0243 0.0222 0.0245 0.0263 0.0272

WAFBK NU IT 81 22 15 12 10

CPU 0.0245 0.0222 0.0242 0.0266 0.0269

WAFBK R IT 89 26 19 16 15

CPU 0.0241 0.0249 0.0288 0.0326 0.0387

WAFBK D IT 88 26 19 16 15

CPU 0.0241 0.0252 0.0292 0.0326 0.0384

Speed-up U 3.5859 3.9329 4.2330 4.1431 4.6259

Speed-up NU 3.5529 3.9329 4.2836 4.1007 4.6757

Speed-up R 3.6150 3.5057 3.6026 3.3444 3.2551

Speed-up D 3.6195 3.4609 3.5518 3.3446 3.2725

3.2. Overdetermined case

We test two types matrix with m > n, the numerical results of the six iterative
methods are shown in Tables 4 and 5 for random matrices and in Table 6 for sparse
matrices. In order to more intuitively demonstrate the outstanding convergence
performance of our proposed methods, we have plotted the RSE in base-10 logarithm
versus CPU, as shown in Figures 3 and 4 below.

By observing the results in Tables 4 - 6, we can draw conclusions similar to
those of testing underdetermined matrices. The WAFBK-type methods use fewer
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Table 2. Numerical results of six methods for random matrices with n = 10000 and θ = 0.3.

m 1000 2000 3000 4000 5000

FDBK IT 54 101 174 310 547

CPU 0.6050 2.0386 5.4412 12.9731 27.8898

FGBK IT 22 36 58 90 148

CPU 0.2426 0.7327 1.8148 3.8071 7.6540

WAFBK U IT 10 17 27 43 72

CPU 0.1117 0.3454 0.8693 1.8238 3.8442

WAFBK NU IT 10 17 27 43 71

CPU 0.1111 0.3473 0.8724 1.8250 3.7488

WAFBK R IT 12 18 27 44 73

CPU 0.1355 0.3661 0.8754 1.8416 3.7821

WAFBK D IT 11 18 28 44 73

CPU 0.1229 0.3677 0.9099 1.8526 3.7644

Speed-up U 5.4160 5.9025 6.2593 7.1131 7.2550

Speed-up NU 5.4472 5.8693 6.2371 7.1087 7.4397

Speed-up R 4.4657 5.5692 6.2154 7.0444 7.3742

Speed-up D 4.9231 5.5445 5.9800 7.0025 7.4088

Table 3. Numerical results of six methods for sparse matrices with θ = 0.5.

Name bibd 16 8 bibd 17 8 lp grow15 df2177 lp qap12

m× n 120×12870 136×24310 300×645 630×10358 3192×8856

Density 23.33% 20.59% 2.90% 0.34% 0.14%

Cond(A) 9.54 9.04 5.66 2.01 1016

FDBK IT 287 258 358 43 112

CPU 0.2990 0.4857 0.0059 0.0064 0.0251

FGBK IT 280 256 242 34 81

CPU 0.2822 0.4784 0.0040 0.0049 0.0164

WAFBK U IT 168 151 66 11 22

CPU 0.1862 0.2981 0.0013 0.0019 0.0063

WAFBK NU IT 168 151 67. 11 22

CPU 0.1862 0.2940 0.0013 0.0019 0.0066

WAFBK R IT 209 181 85 14 30

CPU 0.2119 0.3408 0.0017 0.0024 0.0080

WAFBK D IT 209 181 85 14 30

CPU 0.2111 0.3402 0.0016 0.0022 0.0085

Speed-up U 1.6058 1.6291 4.5598 3.3403 3.9816

Speed-up NU 1.6062 1.6521 4.6022 3.2885 3.7740

Speed-up R 1.4113 1.4251 3.6036 2.7041 3.1245

Speed-up D 1.4166 1.4276 3.7396 2.8623 2.9431
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Figure 1. Pictures of six methods for random matrices with m = 500, n = 3000 (left) and m =
3000, n = 10000 (right): log10(RSE) versus CPU.

Figure 2. Pictures of six methods for sparse matrices with bibd 17 8 (left) and lp grow15 (right):
log10(RSE) versus CPU.

IT and CPU time than the other two methods regardless of the size of the matrix or
condition number. Furthermore, considering the similarity in convergence results
among the four methods we proposed, especially when dealing with random matri-
ces, it becomes quite difficult to compare the convergence performance of these four
methods. For solving sparse matrices, we may select the optimal method based on
the properties and structural characteristics of matrix A. For example, for solving
the well1850 matrix, WAFBK U method is the fastest method among the newly
proposed methods, and for the abb313 matrix, WAFBK NU or WAFBK R meth-
ods may be more suitable for solving. In general, the four methods we propose
perform nearly identically in terms of accelerating convergence.

Compared to FDBK method, when we solve the random matrices, the range
of CPU acceleration ratio of WAFBK-type methods is 3.0093 to 6.7306; When we
solve sparse matrices, the range of CPU acceleration ratio of WAFBK-type methods
is 1.6394 to 5.0802. These numerical results directly reflect the availability and
efficiency of WAFBK-type methods in solving these overdetermined matrices.

3.3. Choice of parameter θ

Next, we will discuss the optimal range of θ in WAFBK-type methods and FGBK
method, as well as the impact of the value of θ on these methods. Through the
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Table 4. Numerical results of six methods for random matrices with n = 500 and θ = 0.5.

m 1000 2000 3000 4000 5000

FDBK IT 299 76 50 38 37

CPU 0.0922 0.0747 0.0763 0.0827 0.1024

FGBK IT 219 57 43 30 27

CPU 0.0698 0.0554 0.0660 0.0662 0.0752

WAFBK U IT 74 21 15 11 9

CPU 0.0299 0.0228 0.0249 0.0251 0.0260

WAFBK NU IT 75 21 15 11 9

CPU 0.0306 0.0227 0.0243 0.0257 0.0260

WAFBK R IT 78 21 15 11 10

CPU 0.0279 0.0227 0.0245 0.0258 0.0296

WAFBK D IT 77 22 15 11 10

CPU 0.0280 0.0233 0.0250 0.0263 0.0298

Speed-up U 3.0824 3.2811 3.1447 3.2990 3.9361

Speed-up NU 3.0093 3.2906 3.1139 3.2204 3.9440

Speed-up R 3.3042 3.2906 3.0217 3.2014 3.4635

Speed-up D 3.2900 3.2103 3.0509 3.1461 3.4407

Table 5. Numerical results of six methods for random matrices with m = 10000 and θ = 0.3.

n 1000 2000 3000 4000 5000

FDBK IT 42 90 150 272 489

CPU 0.4748 1.8681 5.1027 11.0190 23.7867

FGBK IT 15 29 49 77 136

CPU 0.1718 0.6081 1.6532 3.1420 6.6982

WAFBK U IT 10 17 27 43 72

CPU 0.1109 0.3473 0.8767 1.7469 3.5782

WAFBK NU IT 10 17 27 43 72

CPU 0.1115 0.3467 0.8730 1.7500 3.5691

WAFBK R IT 10 17 27 43 71

CPU 0.1155 0.3578 0.9477 1.7763 3.5341

WAFBK D IT 10 17 27 43 72

CPU 0.1154 0.3584 0.9510 1.7887 3.5516

Speed-up U 4.2812 5.3792 5.8202 6.3077 6.6476

Speed-up NU 4.2567 5.3880 5.8446 6.2967 6.6647

Speed-up R 4.1104 5.2205 5.3842 6.2032 6.7306

Speed-up D 4.1129 5.2118 5.3655 6.1602 6.6975

analysis in the first two sections, we find that the convergence speed of the four
methods we proposed is almost the same. Therefore, this subsection only discusses
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Table 6. Numerical results of six methods for sparse matrices θ = 0.5.

Name flower 5 1 abb313 n4c5-b2 well1033 well1850

m× n 211×201 313×176 455×105 1033×320 1850×712

Density 1.42% 2.83% 2.86% 1.43% 0.66%

Cond(A) 1016 1018 1016 166.13 111.31

FDBK IT 973 20418 22 87634 94786

CPU 0.0082 0.1774 0.0003 1.7419 3.1349

FGBK IT 719 16226 19 75219 69566

CPU 0.0063 0.1364 0.0003 1.4275 2.1792

WAFBK U IT 318 9272 4 41024 15341

CPU 0.0032 0.0962 0.0001 0.9280 0.6171

WAFBK NU IT 314 8068 4 36432 15031

CPU 0.0031 0.0833 0.0001 0.8433 0.6178

WAFBK R IT 348 8392 6 40788 19246

CPU 0.0037 0.0840 0.0001 0.8856 0.7105

WAFBK D IT 354 8463 6 49050 20310

CPU 0.0039 0.0846 0.0001 1.0626 0.7497

Speed-up U 2.5883 1.8431 5.0492 1.8771 5.0802

Speed-up NU 2.6810 2.1296 4.9404 2.0657 5.0747

Speed-up R 2.2140 2.1114 2.6299 1.9669 4.4124

Speed-up D 2.1172 2.0969 2.5904 1.6394 4.1813

Figure 3. Pictures of six methods for random matrices with m = 3000, n = 500 (left) and m =
10000, n = 3000 (right): log10(RSE) versus CPU.

the impact of relaxation parameter θ on FGBK and WAFBK NU methods.

From the results of Tables 7 and 8, on the one hand, it can be seen that ex-
cept for θ = 0.1, the WAFBK NU method converges faster than FGBK method.
On the other hand, we find that for solving the well1850 matrix, when the value
of θ continuously increases, FGBK method cannot converge within 200,000 steps,
indicating that FGBK method heavily relies on the value of θ. To illustrate more
intuitively that WAFBK NU method has better stability than FGBK method, we
plot the IT and CPU values of both methods versus θ when solving random and
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Figure 4. Pictures of six methods for sparse matrices with flower 5 1 (left) and well1850 (right):
log10(RSE) versus CPU.

sparse matrices, as shown in Figures 5 and 6. We see that both the IT and CPU
values of WAFBK NU method do not fluctuate significantly with the increase of
θ, while the IT and CPU values of FGBK method continue to increase. Especially
when the value of θ is greater than 0.7, the convergence rate of FGBK method
becomes extremely slow. This indicates that WAFBK NU method is not highly
dependent on θ and has stronger stability than FGBK method.

Table 7. Numerical results of FGBK, WAFBK NU methods for random matrices with various θ.

θ 1000× 10000 10000× 1000

FGBK WAFBK NU FGBK WAFBK NU

IT CPU IT CPU IT CPU IT CPU

0.1 12 0.1293 10 0.1094 10 0.1053 9 0.0991

0.2 16 0.1684 10 0.1088 12 0.1337 9 0.1009

0.3 22 0.2320 10 0.1105 15 0.1568 10 0.1092

0.4 30 0.3161 10 0.1101 22 0.2290 10 0.1094

0.5 41 0.4267 10 0.1105 35 0.3813 10 0.1099

0.6 58 0.6055 10 0.1087 50 0.5578 10 0.0979

0.7 88 0.9178 11 0.1196 97 1.0546 10 0.1098

0.8 150 1.6432 11 0.1204 180 1.9479 10 0.1093

0.9 359 3.7271 12 0.1319 396 4.1421 10 0.1067

1.0 3157 32.8879 12 0.1328 1704 17.4264 10 0.1115

4. Conclusions

For solving large linear consistent systems, combining the greedy distance criterion
and the advantages of weighted average to construct a new set of indicators, we pro-
pose the WAFBK-type methods and provide their convergence analysis. Numerical
experiments have shown that our proposed methods are superior to the FDBK
and FGBK methods in terms of convergence performance, whether dealing with
overdetermined or underdetermined, dense or sparse linear systems. In addition,
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Table 8. Numerical results of FGBK, WAFBK NU methods for sparse matrices with various θ.

θ bibd 17 8 well1850

FGBK WAFBK NU FGBK WAFBK NU

IT CPU IT CPU IT CPU IT CPU

0.1 155 0.3213 245 0.4911 21807 0.7488 13612 0.6280

0.2 208 0.4136 151 0.2998 27358 0.9044 14054 0.6263

0.3 250 0.4829 190 0.3792 37776 1.2123 14458 0.6347

0.4 256 0.4980 166 0.3337 48546 1.5406 14735 0.6286

0.5 256 0.5287 151 0.3018 69566 2.1934 15031 0.6390

0.6 261 0.5222 135 0.2746 104046 3.3133 15255 0.6334

0.7 276 0.5495 118 0.2412 156766 4.8684 15550 0.6391

0.8 502 1.0014 111 0.2224 -- -- 15835 0.6457

0.9 708 1.4028 107 0.2174 -- -- 15699 0.6329

1.0 1131 2.1942 117 0.2300 -- -- 15929 0.6445

Figure 5. CPU (left) and IT (right) versus θ of FGBK and WAFBK NU methods for 10000 × 1000
matrix.

Figure 6. CPU (left) and IT (right) versus θ of FGBK and WAFBK NU methods for bibd 17 8 matrix.

the relaxation parameter θ in FGBK and WAFBK-type methods is discussed, and
numerical experimental results show that FGBK method has a strong dependence
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on parameter θ, while WAFBK-type methods are more robust and efficient except
for θ = 0.1.
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[12] S. Kaczmarz, Angenäherte Auflösung von systemen linearer Gleichungen, Bull.
Int. Acad. Pol. Sci. Lett. A, 1937, 35, 355–357.

[13] S. Lee and H. J. Kim, Noise properties of reconstructed images in a kilo-voltage
on-board imaging system with iterative reconstruction techniques: A phantom
study, Phys. Med., 2014, 30(3), 365–373.

[14] F. Natterer, The Mathematics of Computerized Tomography, SIAM, Philadel-
phia, PA, 2001.

[15] I. Necoara, Faster randomized block Kaczmarz algorithms, SIAM J. Matrix
Anal. Appl., 2019, 40(4), 1425–1452.



On weighted average fast block Kaczmarz... 933

[16] D. Needell and J. A. Tropp, Paved with good intentions: Analysis of a random-
ized block Kaczmarz method, Linear Algebra Appl., 2014, 441, 199–221.

[17] D. Needell, R. Zhao and A. Zouzias, Randomized block Kaczmarz method with
projection for solving least squares, Linear Algebra Appl., 2015, 484, 322–343.

[18] Y. Niu and B. Zheng, A greedy block Kaczmarz algorithm for solving large-scale
linear systems, Appl. Math. Lett., 2020, 104, 106294.

[19] F. Pasqualetti, R. Carli and F. Bullo, Distributed estimation via iterative pro-
jections with application to power network monitoring, Automatica J. IFAC,
2012, 48(5), 747–758.

[20] C. Popa and R. Zdunek, Kaczmarz extended algorithm for tomographic image
reconstruction from limited data, Math. Comput. Simulation, 2004, 65(6), 579–
598.

[21] T. Strohmer and R. Vershynin, A randomized Kaczmarz algorithm with expo-
nential convergence, J. Fourier Anal. Appl., 2009, 15(2), 262–278.

[22] L. Tondji and D. A. Lorenz, Faster randomized block sparse Kaczmarz by av-
eraging, Numer. Algorithms, 2023, 93(4), 1417–1451.

[23] Q. Wang, W. Li and W. Bao, Nonlinear Kaczmarz algorithms and their con-
vergence, J. Comput. Appl. Math., 2022, 399, 113720.

[24] A. Xiao, J. Yin and N. Zheng, On fast greedy block Kaczmarz methods for
solving large consistent linear systems, Comput. Appl. Math., 2023, 42(3), 119.

[25] J. Zhang, A new greedy Kaczmarz algorithm for the solution of very large linear
systems, Appl. Math. Lett., 2019, 91, 207–212.

[26] A. Zouzias and N. M. Freris, Randomized extended Kaczmarz for solving least
squares, SIAM J. Matrix Anal. Appl., 2013, 34(2), 773–793.


	Introduction
	Weighted average fast block Kaczmarz method
	Numerical experiments
	Underdetermined case
	Overdetermined case
	Choice of parameter theta

	Conclusions

