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LIE SYMMETRY AND EXACT SOLUTIONS
FOR THE POROUS MEDIUM EQUATION
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Abstract This paper aims to study a (2+1)-dimensional Biological popu-
lation model with the porous medium by Lie symmetry method. By using
commutation tables, the one-dimensional optimal subalgebras for the porous
medium equation is given. Group invariant solutions of this model are con-
structed by the reduction equations. Further, the dynamic behavior of the
model graphically is presented.
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1. Introduction

Nonlinear partial differential equations(NPDEs) are studied by many scholars in
various fields such as plasma physics, chemical physics, applied mathematics, me-
chanical systems, ocean waves, optics, quantum mechanics, biological mathematics
and so on [2,5,14,16,24,37,38]. Because the solutions of NPDEs can describe differ-
ent complicated physical phenomena, there are a variety of mathematical methods
to construct the exact solutions, such as the bi-factor method [11], the inverse
scattering method [39], Lagrange characteristic method [9], extended transformed
rational function method [40], the first integral method [22], the modified extended
tanh-function method [1], the modified simple equation method [12, p11], the ex-
tended F-expansion method [21] and so on. Recently, Silem et al [35] studied the
vc-nNLS equation by the Hirota method. The authors [20, p11] studied the Mixed
Integer Linear Programming models with strong relaxations for the shallow water
waves. Lie symmetry analysis [28] plays a significant role in obtaining exact so-
lutions, linearization and conservation laws of nonlinear PDEs. A number of the
literatures have referred to the method [4, 6, 13,17–19,29,30].

The dispersal or emigration is a key factor in the regulation of population of
the species. Gurtin and MacCamy [8] gave a special transformation and confirmed
existence and uniqueness for the one-dimensional initial-value problem as well as the
solution for an initial point source, which could be applied to the above equation.

d

dt

∫
Γ

udV +

∫
∂Γ

uν⃗ · n̂dV =

∫
Γ

gdV,
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where Γ represents any regular subregion, u is the population density, ν⃗ is the
diffusion velocity and n̂ is the outward unit normal to the ∂Γ of Γ, g stands for
the population supply due to births and deaths. Denote ν⃗ = −F (u) △ u and
g = g(u) [7], the degenerate parabolic equations are given by

ut = F (u)xx + F (u)yy + g(u), t ≥ 0, x, y ∈ R. (1.1)

When g(u) = αu and α is an constant, it satisfies Malthusian Law [8]. When
g(u) = α1u − α2u

2 and α1, α2 are constants, it satisfies Verhulst model [8]. When
g(u) = αuk, α > 0, 0 < k ≤ 1, it is a porous media model [3, 27]. Different
graphical representations generated by (1.1) show the specific spread. It is very
helpful in demonstrating the enlargement of viruses, parasites and diseases, finding
the greatest harvest for farmers, working and controlling the delicate species and
many other fields [10,25].

To consider a walk through a rectangular mesh, in which individuals may either
stay at their present location or may move in a direction of the lowest population
density, a model leads to the normal biological population model

ut = u2xx + u2yy + g(u), (1.2)

which means F (u) = u2 in Eq. (1.1). In [23], Lu investigated the Hölder estimates
of solutions of Eq. (1.2). Shakeri and Dehghan [33] used the variational iteration
method and Adomian decomposition method to study numerical solution of a more
general form of g as g(u) = hua(1− rub). Liew et al [41, p11] considered numerical
modeling of the biological population problems by using an improved element-free
Galerkin method. Shagolshem et al [32, p11] constructed exact solutions for biolog-
ical population model with Malthusian law by using Lie point symmetry method,
furthermore, the conservation laws were analysed. Arora et al [34] considered in-
variant solutions of a Verhulst biological population model by using Lie symmetry
analysis and conservation laws for this model by the multiplier method. However,
Lie symmetry analysis of Eq. (1.2) with porous media law is still open.

Some authors tackled the time fractional-order biological population model

∂θt u = u2xx + u2yy + g(u). 0 < θ < 1. (1.3)

For example, Srivastava et al [36, p11] found the analytical solution of two-dimen-
sional time fractional-order biological population model. Zhang et al [42] firstly
studied exact solutions of Eq. (1.3) by Lie symmetry analysis and the F -expansion
method. Khater [15] considered the nonlinear fractional biology population model

∂θt u = ∂2θxxu
2 + ∂2θyyu

2 + c(u2 − s), 0 < θ ≤ 1, (1.4)

in which θ, c and s are random constants, the exact solutions are constructed by
using the generalized Khater (GK) technique and utilizing Atangana’s conformable
fractional derivative operator. Various forms of solutions of the biological popu-
lation model with a novel beta−time derivative operators were obtained via the
extended Sinh−Gordon equation expansion method and the Expa function method
by Nisar et al [26, p11]. Sarwar [31, p11] studied the fractional-order biological pop-
ulation models with Malthusian, Verhulst, and porous media laws by the optimal
homotopy asymptotic method.



936 J. Zhang & Z. Wang

Motivated by the above nonlinear population system, in this paper, we per-
form Lie symmetry analysis method for the (2+1)-dimensional Biological popula-
tion model with porous media law

ut − (u2)xx − (u2)yy + α
√
u = 0. (1.5)

In Section 2, Lie symmetry analysis and the one-dimensional optimal system of
infinitesimal generators by commutator table are considered. Section 3 constructs
several exact solutions of Eq. (1.5) by the reduction equations based on the optimal
subalgebras. In Section 4, physical analysis of some exact solutions are discussed.
Finally we conclude the results in Section 5.

2. Lie point symmetry and optimal system

In this Section, Lie point symmetries [43, p11] can be analyzed and an optimal
system is derived. Consider the Lie group of point transformations

t = t+ ϵτ(t, x, y, u) +O(ε2),

x = x+ ϵζ(t, x, y, u) +O(ε2),

y = y + ϵχ(t, x, y, u) +O(ε2),

u = u+ ϵψ(t, x, y, u) +O(ε2), (2.1)

in which ε is a parameter, the functions τ, ζ, η, ψ are the infinitesimals generators.
Then the vector field associated with Lie algebra of Eq. (1.5) is

ℜ = τ(t, x, y, u)∂t+ ζ(t, x, y, u)∂x+ χ(t, x, y, u)∂y + ψ∂u.

By applying the second prolongation Pr2ℜ to Eq. (1.5), and solving the determined
equations, we obtain

τ = c1t+ c2,

ζ = −c3y +
3

2
c1x+ c5,

χ =
3

2
c1y + c3x+ c4,

ψ = 2c1u, (2.2)

in which c1, · · · , c5 are arbitrary constants. Then ℜ can be rewritten as

ℜ = (−c3y +
3

2
c1x+ c5)∂x+ (

3

2
c1y + c3x+ c4)∂y + (c1t+ c2)∂t+ 2c1u∂u.

Furthermore, corresponding to the vector field ℜi,

ℜ1 = t∂t+
3

2
x∂x+

3

2
y∂y + 2u∂u,

ℜ2 = ∂t,

ℜ3 = −y∂x+ x∂y,

ℜ4 = ∂y,
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ℜ5 = ∂x. (2.3)

We get the symmetry groups Gi : (t, x, y, u) → (t, x, y, u):

G1 : (t, x, y, u) → (teϵ, xe
3
2 ϵ, ye

3
2 ϵ, ue2ϵ),

G2 : (t, x, y, u) → (t+ ϵ, x, y, u),

G3 : (t, x, y, u) → (t, x cos ϵ− y sin ϵ, x sin ϵ+ y cos ϵ, u),

G4 : (t, x, y, u) → (t, x, y + ϵ, u),

G5 : (t, x, y, u) → (t, x+ ϵ, y, u). (2.4)

Theorem 2.1. If u = f(t, x, y) satisfies Eq. (1.5), the new solutions ui, (i = 1, · · · ,
5) can be given by

u1 = e2ϵf(te−ϵ, xe−
3
2 ϵ, ye−

3
2 ϵ),

u2 = f(t− ϵ, x, y),

u3 = f(t, x cos ϵ+ y sin ϵ, y cos ϵ− x sin ϵ),

u4 = f(t, x, y − ϵ),

u5 = f(t, x− ϵ, y). (2.5)

For (2.3), by the definition of Lie brackets [ℜi,ℜj ] = ℜiℜj −ℜjℜi, the following
Table can be obtained.

Table 1. Commutator Table of Lie algebra for Eq. (1.5).

∗ ℜ1 ℜ2 ℜ3 ℜ4 ℜ5

ℜ1 0 −ℜ2 0 − 3
2
ℜ4 − 3

2
ℜ5

ℜ2 ℜ2 0 0 0 0

ℜ3 0 0 0 ℜ5 −ℜ4

ℜ4
3
2
ℜ4 0 −ℜ5 0 0

ℜ5
3
2
ℜ5 0 ℜ4 0 0

Generators ℜ1, · · · ,ℜ5 are linearly independent so that any infinitesimal of Eq.
(1.5) can be expressed by

ℜ = l1ℜ1 + l2ℜ2 + l3ℜ3 + l4ℜ4 + l5ℜ5.

Next, for constructing the one-dimensional optimal system, l = (l1, l2, l3, l4, l5),
for i,= 1, · · · , 5, we have

Ei = ckij lj∂lk

in which ckij can be derived by [ℜi,ℜj ] = ckijℜk. Then E1, E2, E3, E4, E5 are given
by

E1 = c212l2∂l2 + c414l4∂l4 + c515l5∂l5 = −l2∂l2 −
3

2
l4∂l4 −

3

2
l5∂l5 ,

E2 = c221l1∂l2 = l1∂l2 ,

E3 = c534l4∂l5 + c435l5∂l4 = l4∂l5 − l5∂l4 ,

E4 = c441l1∂l4 + c543l3∂l5 =
3

2
l1∂l4 − l3∂l5 ,
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E5 = c551l1∂l5 + c453l3∂l4 =
3

2
l1∂l5 + l3∂l4 . (2.6)

With the parameters aj and l |aj=0= l, j = 1, · · · , 5, Lie equations can be
expressed as

dl1
da1

= 0,
dl2
da1

= −l2,
dl3
da1

= 0,
dl4
da1

= −3

2
l4,

dl5
da1

= −3

2
l5,

dl1
da2

= 0,
dl2
da2

= l1,
dl3
da2

= 0,
dl4
da2

= 0,
dl5
da2

= 0,

dl1
da3

= 0,
dl2
da3

= 0,
dl3
da3

= 0,
dl4
da3

= −l5,
dl5
da3

= l4,

dl1
da4

= 0,
dl2
da4

= 0,
dl3
da4

= 0,
dl4
da4

=
3

2
l1,

dl5
da2

= −l3,

dl1
da5

= 0,
dl2
da5

= 0,
dl3
da5

= 0,
dl4
da5

= l3,
dl5
da2

=
3

2
l1. (2.7)

By solving Eqs. (2.7), we obtain the linear transformations

T1 : (l1, l2, l3, l4, l5) =
(
l1, e

−a1 l2, l3, e
− 3

2a1 l4, e
− 3

2a1 l5

)
,

T2 : (l1, l2, l3, l4, l5) = (l1, a2l1 + l2, l3, l4, l5),

T3 : (l1, l2, l3, l4, l5) = (l1, l2, l3,−l5 sin a3 + l4 cos a3, l4 sin a3 + l5 cos a3),

T4 : (l1, l2, l3, l4, l5) =
(
l1, l2, l3,

3

2
l1a4 + l4,−l3a4 + l5

)
,

T5 : (l1, l2, l3, l4, l5) =
(
l1, l2, l3, l3a5 + l4,

3

2
l1a5 + l5

)
. (2.8)

Simplify the vector l through the transformation T1 − T5 in (2.8).

Case 1. l1 ̸= 0. Let a2 = − l2
l1
, a4 = −2

3

l4
l1
, a5 = −2

3

l5
l1

in T2, T4 and T5, the

simplified vector is

(l1, 0, l3, 0, 0),

we get the representatives as follows

ℜ1,ℜ1 ±ℜ3.

Case 2. l1 = 0, l3 ̸= 0. The vector reduces to

(0, l2, l3, l4, l5).

Let a4 = l5
l3
, a5 = − l4

l3
in T4 and T5, we let l4 = 0, l5 = 0. Thus we can get the

vector

(0, l2, l3, 0, 0).

The representatives can be given by

ℜ3,ℜ3 ±ℜ2.
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Case 3. l1 = 0, l3 = 0 and l4 ̸= 0. The vector is

(0, l2, 0, l4, l5).

Let a3 = − arctan
l5
l4

in T3 and get l5 = 0. The simplified vector is

(0, l2, 0, l4, 0),

which means
ℜ4,ℜ4 ±ℜ2.

Case 4. l1 = l3 = l4 = 0. Then the vector is

(0, l2, 0, 0, l5).

The representatives should be

ℜ2,ℜ5,ℜ2 ±ℜ5.

Theorem 2.2. ℜ1,ℜ2,ℜ3,ℜ4,ℜ5 generate the one-dimensional optimal system S :
generated by

ℜ1,ℜ1 ±ℜ3,ℜ3,ℜ3 ±ℜ2,ℜ4,ℜ4 ±ℜ2,ℜ2,ℜ5,ℜ2 ±ℜ5.

3. Symmetry reductions and exact solutions

In this section, symmetry reductions and exact solutions of Eq. (1.5) will be dis-
cussed.

3.1. ℜ1 = t∂t+ 3
2
x∂x+ 3

2
y∂y + 2u∂u

The corresponding characteristic equation for ℜ1 is

dx
3
2x

=
dy
3
2y

=
dt

t
=
du

2u
,

which generates
u(t, x, y) = t2ϕ(ξ, η),

where ξ = x

t
3
2
and η = y

t
3
2
are the invariants. Then Eq. (1.5) reduces to

−3

2
ϕξξ +

−3

2
ϕηη + 2ϕ− 2ϕ2ξ − 2ϕϕξξ − 2ϕ2η − 2ϕϕηη + α

√
ϕ = 0. (3.1)

The symmetry group of Eq. (3.1) is spanned by

ψϕ = 0, ζξ = −C1η, ζη = C1ξ,

where C1 is a constant. Then we can get the characteristic equation

dξ

−C1η
=

dη

C1ξ
=
dϕ

0
,
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which means Eq. (3.1) has a solution given by

ϕ(ξ, η) = ρ(τ),

where τ = ξ2 + η2. Then the reduction equation is

8τρρ′′ + (8ρ+ 8τρ′ + 3τ)ρ′ − (α+ 2
√
ρ)
√
ρ = 0, (3.2)

which can be rewritten as

(8τρρ′ + 3τρ)′ = (α
√
ρ+ 5ρ). (3.3)

Integrate (3.3) once, we obtain

8ρρ′ + 3ρ =
1

τ

∫ τ

0

(α
√
ρ+ 5ρ)dω. (3.4)

Then we can get an implicit solution

ρ(τ) = ρ(0)− 3τ +

∫ τ

0

∫ χ
0
(α

√
ρ+ 5ρ)dω

8χρ(χ)
dχ, (3.5)

and a special solution

ρ =
α2

4
.

Then we get an exact solution of Eq. (1.5)

u(t, x, y) =
α2t2

4
. (3.6)

3.2. ℜ3 = −y∂x+ x∂y

The invariance are t, u, r = x2 + y2, which means the invariant solution is

u(t, x, y) = ϕ(t, r).

Then Eq. (1.5) can be transformed to

−4ϕ2rr − 4ϕϕrrr − 4ϕϕr + α
√
ϕ+ ϕt = 0. (3.7)

The infinitesimals generators are given by

ψϕ = 2C1ϕ, ζt = C1t+ C2, ζr = 3C1r.

The characteristic equations is

dr

3C1r
=

dt

C1t+ C2
=

dϕ

2C1ϕ
.

Let C1 = 1, C2 = 0, thus the solution of (3.7) is

ϕ(t, r) = ρ(τ)t2,

in which τ = r
t3 can be obtained. The reduced equation of Eq. (3.7) is

−4τρ′2 − 4τρρ′′ − 4ρρ′ − 3τρ′ + α
√
ρ+ 2ρ = 0, (3.8)
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which can be rewritten as

(4τρρ′ + 3τρ)′ = (α
√
ρ+ 5ρ). (3.9)

Integrate (3.9) once,

4ρρ′ + 3ρ =
1

τ

∫ τ

0

(α
√
ρ+ 5ρ)dω, (3.10)

then we can get an implicit solution

ρ(τ) = ρ(0)− 3τ +

∫ τ

0

∫ χ
0
(α

√
ρ+ 5ρ)dω

4χρ(χ)
dχ, (3.11)

and a special solution

ρ =
α2

4
.

Then we get the same exact solutions as (3.6).

3.3. ℜ4 = ∂y

The invariant solution of Eq. (1.5) is

u(x, y, t) = ϕ(x, t).

Then Eq. (1.5) can be written as

ϕt − 2ϕ2x − 2ϕϕxx + α
√
ϕ = 0. (3.12)

The infinitesimal generators of Eq. (3.12) are

ψϕ = 2C1ϕ, ζt = C1t+ C2, ζx =
3

2
C1x+ C3,

where Ci, i = 1, 2, 3 are arbitrary constants. Then we have

dx
3
2C1x+ C3

=
dt

C1t+ C2
=

dϕ

2C1ϕ
.

By making C3 = 1, C1 = C2 = 0, ϕ is given as

ϕ(x, t) = ρ(t).

Eq. (3.12) reduces to
ρ′ + α

√
ρ = 0.

The solution is

ρ =
(c− αt

2

)2

.

Then we obtain invariant solution of Eq. (1.5)

u(t, x, y) =
c2

4
− αct

2
+
α2t2

4
. (3.13)

Considering C1 = 0, C2 = C3 = 1, thus we can obtain

ϕ(x, t) = ρ(W ),
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where W = x− t. Eq. (3.12) reduces to

−2ρρ′′ − (1 + 2ρ′)ρ′ + α
√
ρ = 0. (3.14)

The implicit solution of Eq. (3.14) is

ρ2 + ρ = c0 −
∫ W

0

α
√
ρdω. (3.15)

If α = 0, we have

ρ = 2c1

[
LambertW

( 1

2c1e
e−

W+c2
4c1

)
+ 1

]
and

ρ =
1

2
W + c.

Hence we get the invariant solutions

u(t, x, y) = ρ = 2c1

[
LambertW

( 1

2c1e
e−

x−t+c2
4c1

)
+ 1

]
(3.16)

and

u(x, y, t) =
1

2
(x− t) + c.

When C1 = 1, C2 = C3 = 0, we have

ϕ(x, t) = ρ(W )t2,

where W = x

t
3
2
. Eq. (3.12) can be reduced to

−2ρρ′′ +
(
− 3

2
W − 2ρ′

)
ρ′ + α

√
ρ+ 2ρ = 0, (3.17)

which can be rewritten as(
2ρρ′ +

3

2
Wρ

)′
=

(
α
√
ρ+

7

2
ρ
)
. (3.18)

Integrate (3.18) once,

2ρρ′ +
3

2
Wρ =

∫ W

0

(
α
√
ρ+

7

2
ρ
)
dω, (3.19)

then we can get an implicit solution

ρ(τ) = ρ(0)− 3

8
W 2 +

∫ W

0

∫ χ
0

(
α
√
ρ+ 7

2ρ
)
dω

2ρ(χ)
dχ, (3.20)

and a special solution

ρ =
α2

4
.

Then an exact solution of Eq. (1.5) is the same as (3.6).
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3.4. ℜ5 = ∂x

The invariant solution of Eq. (1.5) is

u(x, y, t) = ϕ(y, t).

We can get

ϕt − 2ϕ2y − 2ϕϕyy + α
√
ϕ = 0. (3.21)

Furthermore, Eq. (3.21) yields

ψϕ = 2C1ϕ, ζt = C1t+ C2, ζy =
3

2
C1t+ C3,

where C1, C2, C3 are the arbitrary constants. So that the characteristic equations
is

dy
3
2C1y + C3

=
dt

C1t+ C2
=

dϕ

2C1ϕ
.

If C1 = 0, C2 = C3 = 1, ϕ is given by

ϕ(y, t) = ρ(W ),

where W = y − t. The reduced equation is

−2ρρ′′ − (1 + 2ρ′)ρ′ + α
√
ρ = 0. (3.22)

Similar to Eq. (3.14), we can get the implicit solution of Eq. (3.22) is

ρ2 + ρ = c0 −
∫ W

0

α
√
ρdω. (3.23)

If α = 0, the invariant solutions of Eq. (1.5) are given by

u(t, x, y) = ρ = 2c1

[
LambertW

( 1

2c1e
e−

y−t+c2
4c1

)
+ 1

]
(3.24)

and

u(x, y, t) =
1

2
(y − t) + c.

When C1 = 1, C2 = C3 = 0, ϕ can be given by

ϕ(y, t) = ρ(W )t2, where W =
y

t
3
2

.

Then we get the equation as follow

−2ρρ′′ +
(
− 3

2
W − 2ρ′

)
ρ′ + α

√
ρ+ 2ρ = 0, (3.25)

which is similar to Eq. (3.17).
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3.5. ℜ4 + ℜ2 = ∂y + ∂t

The characteristic equation for ℜ2 + ℜ4 is

dy

1
=
dt

1
.

Then corresponding invariant solution is

u(t, x, y) = ϕ(x, z)

where z = y − t. Substituting u into Eq. (1.5),

−ϕz − 2ϕ2z − 2ϕϕzz − 2ϕ2x − 2ϕϕxx + α
√
ϕ = 0. (3.26)

Correspondingly we have

ηϕ = 0, ζz = C2, ζx = C1.

Therefore, the characteristic equation is

dx

C1
=
dz

C2
=
dϕ

0
.

Choosing C1 = 1, C2 = −1, ϕ could be given as

ϕ(x, z) = ρ(ω),

where ω = z + x = y + x− t. Then

−4ρρ′′ − ρ′ − 4ρ′2 + α
√
ρ = 0 (3.27)

is obtained. One special solution is given by

ρ = 4c1

[
LambertW

[
1

4c1
e−

ω+c2
16c1

−1

]
+ 1

]
.

So the invariant solutions of Eq. (1.5) can be given by

u(t, x, y) = 4c1

[
LambertW

[
1

4c1
e−

y+x−t+c2
16c1

−1

]
+ 1

]
. (3.28)

3.6. ℜ5 + ℜ2 = ∂x+ ∂t

The process is similar to that when ℜ4 + ℜ2. First, we can get

dx

1
=
dt

1
.

Then the invariant solution of Eq. (1.5) is

u(t, x, y) = ϕ(y, z)

where z = x− t. Substituting u into Eq. (1.5),

−ϕz − 2ϕ2z − 2ϕϕzz − 2ϕ2y − 2ϕϕyy + α
√
ϕ = 0. (3.29)
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Correspondingly we have

ηϕ = 0, ζy = C2, ζz = C1.

Therefore, the characteristic equation is

dy

C2
=
dz

C1
=
dϕ

0
.

Choosing C2 = 1, C1 = −1, ϕ could be given as

ϕ(y, z) = ρ(ω),

where ω = z + y = y + x− t. Then

−4ρρ′′ − ρ′ − 4ρ′2 + α
√
ρ = 0 (3.30)

is obtained. Hence the invariant solutions are the same as Eq. (3.28).

3.7. ℜ2 + ℜ3 = ∂t− y∂x+ x∂y

The similarity variables are ψ = x sin t+ y cos t and ς = x cos t− y sin t. The group
invariant solution of Eq. (1.5) is u = ϕ(ψ, ς). Then Eq. (1.5) can be rewritten as

−2ϕ2ψ − 2ϕ2ς − 2ϕϕψψ − 2ϕϕςς − ψϕς + ϕψς + α
√
ϕ = 0. (3.31)

Correspondingly we have

ηϕ = 0, ζψ = −C1ς, ζς = C1ψ.

Therefore, the characteristic equation is

dψ

−C1ς
=

dψ

C1ψ
=
dϕ

0
.

Then ϕ could be given as
ϕ(ψ, ς) = ρ(ω),

where ω = ψ2 + ς2 = x2 + y2. Obviously, we can get

−8ωρ′2 − 8ρρ′ − 8ωρρ′′ + α
√
ρ = 0 (3.32)

is obtained. Thus one special solution of Eq. (1.5) is

u(x, y, t) =
√

2c1 ln(x2 + y2) + 2c2.

4. Results and discussion

It’s better to use graphical analysis to express mathematical expressions and under-
stand the dynamical behavior physically. In this section, we provide the solutions
with the physical presentations. The solutions include arbitrary constants and func-
tions. So we can take the appropriate values. The solution (3.24) in the form of
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LambertW function. In Figure 1(c), the population density u rises over t but de-
creases with increasing y. This phenomenon occurs only when the population dcline
or migrate out a region. For the solution (3.28) in the form of LambertW function,
when we take a fixed time, the population density can be visually represented in
Figure 2. The population density u is increasing over time, decreasing with both x
and y. One of the key factor to this phenomenon is an expand in the birth rate.

Zhang et al [41, p11] applied an improved element-free Galerkin method for nu-
merical modeling of the biological population problems and our model is a special
case studied in this article. The results of this paper can provide theoretical knowl-
edge for numerical simulation in [41, p11]. Compared with [34], the exact solutions
of Eq. (1.5) show some different phenomenon from a Verhulst biological population
model.

(a) (b)

(c)

Figure 1. The solution (3.24) at c1 = 1, c2 = 10 : (a). 3D profile; (b). the density of the solution; (c).
2D profile of the solution with respect to y at t = 5, t = 7, t = 8.

5. Conclusion

This paper constructs group invariant solutions of the (2 + 1) dimensional Biolog-
ical population model with porous media law by exploring Lie symmetry analysis
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(a) (b)

(c)

Figure 2. The solution (3.28) at c1 = 2, c2 = 3 : (a). 3D profile with t = 1; (b). 2D sketch of (3.28)
for t at x = 5, x = 10, x = 20 and y = 0; (c). 2D profile of (3.28) with respect to x at t = 5, t = 7, t = 8
and y = 1.

method. Lie point symmetries of Eq. (1.5) are analysed and the optimal system
with the help of commutator table is obtained. Furthermore, we find group invariant
solutions of this model according to the corresponding reduced nonlinear ordinary
differential equations, which are related to the population density and affect the
population control. Finally we present the discussion and dynamical analysis by
the graphical representations. In the future, numerical simulations and machine
learning for the biological population model will overcome the paper’s drawbacks
and advance the population dynamics study.
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