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EXISTENCE AND CONCENTRATION OF
SOLUTIONS FOR DISCONTINUOUS ELLIPTIC

PROBLEMS WITH CRITICAL GROWTH∗

Ziqing Yuan†

Abstract This paper concerns the following elliptical problem with discon-
tinuous nonlinearity{

−ε2∆u+ V (x)u = f(u) + |u|2
∗−2u, x ∈ RN ,

u > 0,

where N ≥ 3, ε > 0 and f(u) is a discontinuous function. We obtain the exis-
tence and concentration results of this problem. Our results generalize some
recent results on this kind of problems. In order to obtain these results, a suit-
able truncation, concentration compactness principle, new analytic technique
and variational method are used.

Keywords Elliptic problem, concentration, variational method, discontinu-
ous nonlinearity.
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1. Introduction

In this paper, we will concern the existence and concentration behavior of positive
solutions for the following problem{

−ε2∆u+ V (x)u = f(u) + |u|2∗−2u, x ∈ RN ,
u > 0,

(1.1)

where ε > 0, N ≥ 3 and f(x) is defined by

f(u) =

{
g(u), u ∈ [0, a],

(1 + δ)g(u), u ∈ [a,+∞),

g(u) ∈ C(R,R), which can be rewritten as{
−∆u+ V (εx)u = f(u) + |u|2∗−2u, x ∈ RN ,
u > 0.

(1.2)
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Assume that V (x) and g(u) satisfy the following basic assumptions:

(V1) there exists an open and bounded set Ω compactly contained in RN such that
0<%= infx∈RN V (x)≤ V0 = infx∈Ω V (x)<minx∈∂Ω V (x)< lim inf |x|→∞ V (x)
= V∞;

(g1) for all t ∈ R, there exist C > 0 and s ∈ (2, 2∗) such that |g(t)| ≤ C(1+ |t|s−1);

(g2) for all t ∈ R, there is ζ ∈ (2, 2∗) such that

0 < ζG(t) = ζ

∫ t

0

g(s)ds ≤ tg(t),

where 2∗ =

{
2N
N−2 , if N > 2,

+∞, if N ≤ 2.

(g3) there is $ > 0, which will be fixed later, such that g(t) ≥ $ for all t ≥ 2a;

(g4) lim supt→0
g(t)
t = 0;

(g5) g(t)
t is increasing for t > 0.

It is easy to see that there exist lots of functions verifying (g1)-(g5), for example,

set g(t) =
∑k
i=1

$|t|qi−1

(2a)qi−1 if t ≥ 0 and g(t) = 0 if t ≤ 0. Then g(t) satisfies (g1)-(g5).

We say that u is a weak solution of problem (1.2), if u ∈ H1(RN ) and

−∆u+ V (εx)u ∈ [f
δ
(u(x)) + |u|2

∗−2u, fδ(u(x)) + |u|2
∗−2u] a.e. in RN ,

where f
δ
(t) = limδ→0+ f(t− δ) and fδ(t) = limδ→0+ f(t+ δ).

Our main result is the following:

Theorem 1.1. If (V 1) and (g1) − (g6) hold, then there exist ε∗, δ∗, a∗ > 0 such
that problem (1.2) has a positive solution uε,δ,a for ε ∈ (0, ε∗), δ ∈ (0, δ∗), and
a ∈ (0, a∗). Furthermore, if θε,δ,a ∈ RN denotes a maximum point of uε,δ,a, then
lim(ε,δ,a)→(0,0,0) V (εθε,δ,a) = V0.

We would like to point out that this kind of equation in (1.1) arises from the
problem of deriving standing waves solutions of the nonlinear Schrödinger equation

iε
∂Ψ

∂t
= −ε2∆Ψ + (V (x) + E)− |Ψ|−1h(|Ψ|)Ψ in RN , (1.3)

where h(s) = f(s) + s2∗−1. A standing wave solution to problem (1.3) is one in
the form where Ψ(x, t) = exp(−iε−1Et)u(x). In this case u is a solution of (1.2).
For the case where δ = 0, the right-hand side function is a continuous function
with critical term. Then its energy functional is differentiable and there exist many
results on discussing this type of problem (1.2), see [4, 10, 12, 19, 21, 22, 26, 27, 31]
and references therein.

However, in this paper, the parameter δ is stipulated to be non-zero, thereby
rendering the right-hand side nonlinearity of equation (1.2) discontinuous and its
associated energy functional non-differentiable. This characteristic presents a signif-
icant challenge in the pursuit of understanding the solutions to equation (1.2). The
academic interest in nonlinear partial differential equations featuring discontinuous
nonlinearities has burgeoned, as numerous free boundary problems in mathematical
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physics can be articulated in this framework. Prominent examples include the seep-
age surface problem, the obstacle problem, and the Elenbass equation, as detailed
in references [5–7]. A plethora of scholarly contributions have addressed problems of
discontinuity. Notably, Corvellec et. al. [11], Alves et. al. [1–3], Grossi et. al. [17],
Yuan and Yu [29], Yuan and Wang [28], Liu et. al. [24], Chang et. al. [8], Yue
et. al. [30], Iannizzotto and Papageorgiou [18], and their respective bibliographies,
have all made significant strides. These studies have harnessed a variety of method-
ologies, including variational methods for non-differentiable functionals, fixed point
theory, global branching, lower and upper solution techniques, and the theory of
multivalued mappings. These diverse approaches collectively enrich our analytical
toolkit and deepen our comprehension of these complex mathematical phenomena.

To the best of our knowledge, there exist few papers involving the existence of
solution for elliptic problems with discontinuous nonlinearity and critical growth
by variational methods for non-differentiable energy functional. Noting that the
classical critical points theory and variational methods for C1 functional are not
suitable for problem (1.2), inspired by the methods used in [5–7], we need to use
variational methods and nonsmooth analysis for non-differentiable functionals. On
the other hand, unlike [13], their solutions found are C2, while in this paper, we
don’t have this regularity, since the nonlinearity is discontinuous. Then, some new
arguments are needed to overcome the without of regularity of solutions. Further-
more, in order to obtain some estimates involving the mountain levels, the authors
in [13] used a characterization of the Mountain Pass level involving infimum of en-
ergy functional on Nehari Manifolds. But the Nehari Manifolds is not well known
yet for non-differentiable functionals, and so, we need to develop some some new
arguments to derive good estimates involving the Mountain Pass levels. Also, in [13]
del Pino and Felmer obtained the complete treatment (concentration and existence
behavior of solutions) under condition (V1) with δ = 0. They derived bound state
solutions, but not ground state solutions. Of course, it is reasonable, since under
condition (V1) some problems don’t have any ground state solution. For this reason,
we cannot find minimax critical points of the energy functional of problem (1.2).
In order to solve this difficulty, we modify the nonlinearity to apply the Mountain
Pass Lemma. Then we establish the existence of positive solutions. Finally, since
the energy functional of (1.2) contains critical growth term, and the working space
H1(RN ) ↪→ Lp(RN ), p ∈ [2, 2∗], is not compact, we adapt a penalization method
and the concentration compactness principle by Lions [20, Lemma 2.1] to overcome
these difficulties.

This paper is organized as follows. In Section 2, some results involving locally
Lipschitz continuous functionals are provided. In Section 3, the existence of solu-
tions for an auxiliary problem are proved. In Section 4, based on Theorem 3.1,
Theorem 1.1 is proved.

2. Preliminaries

We firstly give some notations. (X, ‖·‖) denotes a (real) Banach space and (X∗, ‖·‖∗)
denotes its topological dual. C and Ci(i = 1, 2, ...) denote estimated constant(the
concrete values may be different from line to line). ‘→’ means the stronger conver-
gence in X and ‘⇀’ stands for the weak convergence in X. |u|p denotes the norm
of Lp(RN ).
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Definition 2.1. ( [15]) A function J : X → R is locally Lipschitz if for every v ∈ X
there exist a neighborhood U of v and L > 0 such that for every ν, η ∈ U

|J(ν)− J(η)| ≤ L‖ν − η‖.

Definition 2.2. ( [15]) Let J : X → R be a locally Lipschitz function. The
generalized derivative of J in v along the direction ν is defined by

J0(v; ν) = lim sup
η→u,τ→0+

J(η + τν)− J(η)

τ
,

where v, ν ∈ X.

It is easy to see that the function ν 7→ J0(v; ν) is sublinear, continuous and so
is the support function of a nonempty, convex and w∗-compact set ∂J(v) ⊂ X∗,
defined by

∂J(v) = {v∗ ∈ X∗ : 〈v∗, ν〉X ≤ J0(v; ν) for all ν ∈ X},

m(vn) = infv∗n∈∂J(vn) ‖v∗n‖X∗ . If J ∈ C1(X), then

∂J(v) = {J ′(v)}.

Clearly, these definitions extend those of the Gâteaux directional derivative and
gradient. A critical point of J is an element v0 ∈ E such that 0 ∈ ∂J(v0) and a
critical value of J is a real number c such that J(v0) = c for some critical point
v0 ∈ E.

Proposition 2.1. ( [6, 9]) Let {vn} ⊂ X and {v∗n} ⊂ X∗ with v∗n ∈ ∂J(vn). If
vn → v in X and v∗n ⇀ v∗ in X∗, then v∗ ∈ ∂J(v).

Proposition 2.2. ( [6, 9]) Let Ψ(v) =
∫
RN G(v)dx, where G(t) =

∫ t
0
g(s)ds. Then,

Ψ ∈ Liploc(Lp+1(RN ),R), ∂Ψ(v) ⊂ L
p+1
p (RN ) and if ρ ∈ ∂Ψ(v), it satisfies

ρ(x) ∈ [g(v(x)), ḡ(v(x))] a.e. in RN .

3. An auxiliary problem

Let H1(RN ) be the usual Sobolev space and

E =

{
u ∈ H1(RN ) :

∫
RN

(|∇u|2 + V (x)|u|2)dx < +∞
}
,

equipped with the inner product and norm

〈u, v〉 :=

∫
RN

(∇u∇v + V (x)uv)dx, ‖u‖ = 〈u, u〉 12 .

It follows from (g4) and (g5) that

lim
t→0

[
f(t)

t
+ t2

∗−2

]
= 0 and lim

t→+∞

[
f(t)

t
+ t2

∗−2

]
= +∞,
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which means that for a small enough, there exists b > a > 0 such that

(1 + δ)g(b)

b
+ b2

∗−2 =
V0

k
(k > 1),

where V0 is defined by (V1) and k > 1 + δ. By (g3) we can choose b > 0 such that
a < b < 2a. Based on the above facts, we define the function

f̂(t) =


0, if t < 0,

f(t) + t2
∗−1, if 0 < t < b,

V0

k
t, if t ≥ b.

Fixing Ω ⊂ RN be a bounded domain and using the function f̂ , we give the function

h(x, t) = χΩ(x)(f(t) + t2
∗−1) + (1− χΩ(x))f̂(t), (3.1)

where χΩ is the characteristic function related to Ω, and consider the auxiliary
problem {

−∆u+ V (εx)u = h(εx, u),

u ∈ H1(RN ), u(x) > 0,∀x ∈ RN .
(3.2)

From hypotheses (g1)− (g4), h satisfies the following conditions for x ∈ RN .

(h1) h(x, t) = 0 for all t < 0 and lim sup|t|→0
h(x,t)
|t| = 0;

(h2) h(x, t) = f(t) + t2
∗−1 for all x ∈ Ω, t > 0, or x ∈ Ωc and t ∈ [0, b];

(h3) h(x, t) ≤ (1 + δ)g(t) + t2
∗−1 for all x ∈ RN , t ∈ R;

(h4) 0 < ζH(x, t) = ζ
∫ t

0
h(x, s)dx ≤ h(x, t)t for all x ∈ Ω, t > 0 and 0 < 2H(x, t) ≤

h(x, t)t ≤ h(x, t)t ≤ 1
kV0t

2 for all x 6∈ Ω, t ≥ 0.

Set

Iε(u) := Iε,a,δ(u) =
1

2

∫
RN

(|∇u|2 + V (εx)u2)−
∫
RN

H(εx, u),

Qε(u) := 1
2

∫
RN (|∇u|2 + V (εx)u2), and Ψε(u) :=

∫
RN H(εx, u).

Lemma 3.1. Let {un} be a (PS)c sequence for Iε. Then {un} is bounded in Hε.

Proof. Set {u∗n} ⊂ H−1(RN ) be such that Iε(un) → c, m(un) = ‖u∗n‖∗ = on(1).
Due to u∗n ∈ ∂Iε(un), there exists ξ∗n ∈ ∂Ψε(un) satisfying

〈u∗n, η〉 = 〈Q′ε(un), η〉 − 〈ξ∗n, η〉 (3.3)

for all η ∈ H1(RN ). From (h4) and k > 1, we have

c+ on(1) = Iε(un)− 1

ς
〈u∗n, η〉

=

(
1

2
− 1

ς

)
‖un‖2 +

∫
Ωcε

(
1

ς
ξnun −H(εx, un)

)
≥
(

1

2
− 1

ς

)
‖un‖2 +

2− ς
ς

∫
Ωcε

G(εx, un)|un|2
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≥
(

1

2
− 1

ς

)
‖un‖2 +

2− ς
2kς

∫
Ωcε

V (εx)|un|2

=
ς − 2

2ς

∫
RN

[
|∇un|2 +

(
1− 1

k

)
V (εx)u2

n

]
≥ C‖un‖2,

where ξn ∈ [h(εx, un), h(εx, un)], which deduces that {un} is bounded in H1(RN ).

Lemma 3.2. Let {un} be a (PS)c sequence for Iε. Then for each σ > 0, there is
ρ = ρ(σ) > 0 such that

lim sup
n→∞

∫
RN\Bρ(0)

[|∇un|2 + V (εx)|un|2] < σ.

Proof. Put u∗n, ξ∗n and ξn be the same as that used in the proof of Lemma 3.1,
and ϕR ∈ C∞(RN , [0, 1]) such that ϕR(x) = 0 in BR(0), ϕR(x) = 1 in B2R(0)c

and |∇ϕR(x)| ≤ C
R in RN , where C is a constant independent on R. Recalling that

{un} is bounded in H1(RN ) and 〈u∗n, ϕRun〉 = on(1), by (3.3), we have∫
RN

ϕR[|∇un|2 + V (εx)|un|2] ≤
∫
RN

ξnϕRun −
∫
RN

un∇ϕR∇un + on(1).

Fixed ρ > 0 such that Ωε ⊂ B ρ
2
(0), by ξn ∈ [h(εx, un), h(εx, un)], (h4), and∫

RN
ξnϕRun ≤

1

k

∫
RN

ϕRV (εx)|un|2,

we obtain(
1− 1

k

)∫
RN

ϕR[|∇un|2 + V (εx)|un|2] ≤ C

R
|un|2|∇un|2 + on(1) < σ

for some R sufficiently large.
Denote by D1,2(RN ) the closure of C∞0 (RN ) under the norm ‖u‖2 =(∫

RN |∇u|
2
) 1

2 and set S be the best constant for Sobolev embedding D1,2(RN ) ↪→
L2∗(RN ).

Lemma 3.3. If (V1) and (g1)-(g4) hold, then Iε satisfies the (PS)c condition in

H1(RN ) for c <
(

1
2 −

1
ς

)
S
N
2 .

Proof. According to Lemma 3.1, {un} is bounded in H1(RN ). Choosing a sub-
sequence, we may suppose that un ⇀ u in H1(RN ), un(x)→ u(x) a.e. in RN ,

|∇un|2 ⇀ |∇u|2 + µ and |un|2
∗
⇀ |u|2

∗
+ ν (weak∗ − sense of measure).

Thanks to the concentration compactness principle by Lions [23, Lemma 2.1], we
derive at most countable index set i, and sequences {xi} ⊂ RN , {µi}, {νi} ⊂ [0,∞),
such that

ν =
∑
i∈i

νiδxi , µ ≥
∑
i∈i

µiδxi and Sν
2
2∗
i ≤ µi (3.4)

for all i ∈ i, where δxi is the Dirac mass at xi.
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We claim that i = ∅. Proceeding by contradiction, suppose that i 6= ∅ and
fix i ∈ i. Set u∗n, ξn and ξ∗n be the same as that used in the proof of Lemma 3.1.
Consider η ∈ C∞0 (RN , [0, 1]), such that η ≡ 1 in B1(0); η ≡ 0 in RN \ B2(0) and
|∇η|L∞ ≤ 2. Defining ηR(x) = η(x−xiR ), where R > 0, we obtain that {ηRun} is
bounded in H1(RN ), which means that∫

RN
(∇un∇(ηRun) + V (εx)ηRu

2
n) =

∫
Ωε

ξnηRun +

∫
Ωcε

ξnηRun + on(1).

From (h3) and (h4), we obtain∫
RN

ηR|∇un|2 ≤C
∫
RN
|un|qηR +

∫
RN
|un|2

∗
ηR + C

∫
RN
|un|2ηR

−
∫
RN

(un∇un∇ηR + V (εx)ηRu
2
n).

(3.5)

Since {un} is bounded in H1(RN ), the support of ηR is contained in B2R(xi),

lim
R→0

lim
n→∞

∫
RN

(un∇un∇ηR + V (εx)ηRu
2
n) = 0,

lim
R→0

lim
n→∞

∫
RN
|un|2ηR = 0 and lim

R→0
lim
n→∞

∫
RN
|un|qηRun = 0,

which follows from (3.5) that∫
RN

ηRdµ ≤
∫
RN

ηRdν + oR(1).

Letting R → 0 and by the standard theory of Radon measures, we infer that

νi ≥ µi ≥ Sν
2
2∗
i , i.e., νi > S

N
2 . Once that {un} is a sequence of (PS)c, Proceeding

as in the proof of Lemma 3.1, we have that

c = Iε(un)− 1

ς
〈u∗n, un〉+ on(1)

≥
(

1

2
− 1

ς

)∫
RN
|∇un|2ηR + C0

∫
RN

V (εx)|un|2ηR + on(1)

≥
(

1

2
− 1

ς

)
S
N
2 ,

which leads to a contradiction. Hence, it follows that i is empty and un → u in
L2∗

loc(RN ). By (h2), (g1) and (3.1), we derive a constant C = C(a) > 0 such that

|h(εx, t)| ≤ C|t|2
∗−1 (3.6)

for all x ∈ RN , t ∈ R. Since ‖un‖2 =
∫
RN ξnun + on(1), and ξn ∈ [h(εx, un),

h̄(εx, un)], the boundedness of {un} in H1(RN ), infers that {ξn} is bounded in

L
2∗

2∗−1 (RN ). Then, passing to a subsequence if necessary

‖un‖ → λ in R, ξn ⇀ ξ in L
2∗

2∗−1 (RN ) and un ⇀ u in H1(RN ), (3.7)

it follows from (3.3) that

‖u‖2 =

∫
RN

ξu. (3.8)
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Observing that∣∣∣∣ ∫
BR(0)

ξnun −
∫
BR(0)

ξu

∣∣∣∣ ≤ |un − u|L2∗ (BR(0))|ξn|
L

2∗
2∗−1 (RN )

+

∣∣∣∣ ∫
BR(0)

(ξn − ξ)u
∣∣∣∣,

from (3.6), (3.7) and Riesz representation theorem, one has∫
BR(0)

ξnun →
∫
BR(0)

ξu. (3.9)

Lemma 3.2 means that

lim sup
n→∞

∣∣∣∣ ∫
BcR(0)

ξnun

∣∣∣∣ = oR(1). (3.10)

Combining (3.9) and (3.10), we infer that∫
RN

ξnun →
∫
RN

ξu, (3.11)

from which it follows that ‖un‖2 = ‖u‖2 +on(1). Consequence, un → u in H1(RN ).

Lemma 3.4. If hypotheses (V1) and (g1)-(g4) hold, fixed ε∗ > 0, a > 0 small, for
each ε ∈ (0, ε∗), then there exist γ̂0 > 0 and v0 ∈ H1(RN ), which are independent
of ε∗ and a, such that

(i) maxt∈[0,γ̂0] Iε(tv0) <
(

1
2 −

1
ς

)
S
N
2 ;

(ii) there are r, α > 0 such that Iε(u) ≥ α for u ∈ H1(RN ), ‖u‖ = r;

(iii) Iε(γ̂v0) < 0 and γ̂0v0 ∈ Br(0)c.

Proof. Without loss of generality, we may assume that 0 ∈ Ω and V0 = V (0).
Fixed ε∗ ∈ (0, 1), set v0 ∈ C∞0 (RN ) such that

∫
RN (|∇v0|2 + V∞|v0|2) = 1, v0 ≥ 0,

suppv0 ⊂ BR(0) ⊂ Ω. Since V (εx) ≤ V∞, for all x ∈ BR(0) and ε ∈ (0, ε∗), one has
εx ∈ Ω, then, from (h2), we derive

Iε(tv0) ≤ L(t)−
∫
BR(0)

∫ tv0(x)

0

f(s)dsdx ≤ L(t) (3.12)

for all t ≥ 0, where L(t) = t2

2 −
t2
∗

2∗

∫
BR(0)

|v0|2
∗
.

Since the function L(t) is increasing in (0, t∗) for some t∗ > 0 and limt→0 L(t) =
0, there is γ̂ > 0, independent on ε∗ and δ such that γ̂ < t∗ and maxt∈[0,γ̂] Iε(tv0) ≤
L(γ̂0) <

(
1
2 −

1
ς

)
S
N
2 , which proves (i).

Since Iε(0) = 0, from (g1), (h3) and choosing ‖u‖ = r < γ̂0
2 , there is α > 0 such

that Iε(u) ≥ α for u ∈ H1(RN ), ‖u‖ = r. (ii) is proved.
We now prove (iii). It follows from (g3) that∫

BR(0)

∫ γ̂0v0(x)

0

f(s)dsdx ≥
∫
BR(0)

∫ γ̂0v0(x)

0

g(s)dsdx

≥
∫
BR(0)

∫ γ̂0v0(x)

2a

ldsdx

=

∫
BR(0)

(γ̂0v0 − 2a)dx.
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From (3.12) we have

Iε(γ̂0v0) ≤ L(γ̂0)−
∫
BR(0)

(γ̂0v0 − 2a)dx

=
1

2
γ̂2

0 −
γ̂2∗

0

2∗

∫
BR(0)

|v0|2
∗

+ 2aωNR
N − γ̂0

∫
BR(0)

v0dx

< 0

for both γ̂0 > 0 and a > 0 small enough.

Remark 3.1. (i) The above lemma shows the restriction of the constant a given
in (g3).

(ii) From the proof of this lemma, we know that the set {u(x) : u(x) > a} has
positive measure, otherwise, we cannot ensure Iε(γ̂0v0) < 0.

The following result establishes the existence of a ground solution to (3.2), which
means that there exists a function uε such that Iε(uε) = cε := cε,a,δ, and 0 ∈ ∂Iε(uε),
where cε denotes the mountain pass level associated to Iε.

Theorem 3.1. If (g1)-(g4) and (V1) hold, then there exist ε∗, a > 0 small such
that for all ε ∈ (0, ε∗), problem (3.2) has a positive solution uε satisfying

(i) uε is a weak solution of problem (3.2) for all ε ∈ (0, ε∗);

(ii) The set |Λε,a| = {x ∈ RN : uε(x) = a} has null measure;

(iii) The set {x ∈ RN : uε(x) > a} has positive measure.

Proof. (i) Set a, V0 and γ̂0 be the same as that in Lemma 3.4. It follows from
Lemma 3.4 that Iε has the Mountain Pass geometry, and there exist sequences
{un} ⊂ H1(RN ), {u∗n} ⊂ ∂Iε(un) and {ξ∗n} ⊂ ∂Ψε(un) such that u∗n = Q′ε − ξ∗n in
H−1(RN ),

‖u∗n‖∗ = on(1), Iε(un) = cε + on(1),

where cε = infγ∈Γ maxt∈[0,1] Iε(γ(t)) and Γ = {γ ∈ C([0, 1], H1(RN )) : γ(0) =
0 and γ(1) = γ0v0}. Noting that {un} is bounded in H1(RN ) and ξn ∈ [h(εx, un),

h̄(εx, un)]. From (3.6) we derive that {ξn} is bounded in L
2∗

2∗−1 (RN ). According

to Lemma 3.3, it follows that un → uε in H1(RN ) and ξn ⇀ ξε in L
2∗

2∗−1 (RN ).
Therefore, ∫

RN
(∇uε∇η + V (εx)η) =

∫
RN

ξεη (3.13)

for all η ∈ H1(RN ), where ξε ∈ [h(εx, uε), h̄(εx, uε)]. Once that ξε ∈ L
2∗

2∗−1 (RN ), by

the elliptic regularity theory, uε ∈W 2, 2∗
2∗−1 (RN ) and

−∆uε + V (εx)uε ∈ [h(εx, uε), h̄(εx, uε)] a.e. in RN . (3.14)

Taking a test function u−ε , we derive uε = u+
ε ≥ 0. By Harnack inequality [16,

Theorem 8.20], one deduces that uε > 0. Consequently, uε is a positive solution of
(3.2) and (i) is proved.

We now assume that |Λε,a| := {x ∈ RN : uε(x) = a} has positive measure. It
follows from Stampachia Theorem [25] that −∆uε(x) = 0 a.e. in Λε,a. (3.14) infers
that

V (εx)a ∈ [h(εx, uε(x)), h̄(εx, uε(x))] a.e. in Λε,a. (3.15)
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Once that a < b and

|h(x, t)| ≤ V0t

k
(3.16)

for all x ∈ RN , t ∈ [0, a], it follows from (3.15) that 1 ≤ 1
k , which contradicts to

k > 1. Hence |Λε,a| = 0, which shows (ii).
Next, we prove (iii). If the conclusion was false, i.e., |{x ∈ RN : uε(x) > a}| = 0,

then
uε(x) ≤ a (3.17)

a.e. in RN . This, combining (3.13), (3.16), infers that
(
1− 1

k

)
‖uε‖2 ≤ 0, which is

a contradiction to Iε(uε) = cε > 0. Hence uε ≥ 0.

4. Proof of Theorem 1.1

The following Lemma is very important to show that the solution proved in Theorem
3.1 is a solution of the original problem (1.2) for a small enough.

Lemma 4.1. If uε is the solution found in Theorem 3.1 for ε ∈ (0, ε∗), then
maxt≥0 Iε(tuε) = Iε(uε).

Proof. We firstly give A : [0,+∞)→ R the locally Lipschitz continuous function
defined by

A(t) = Iε(tuε), ∀t ≥ 0.

It is straightforward to prove that there exist σ, t0 > 0 such that

A(t) > 0, ∀t ∈ (0, σ) and A(t) < 0 ∀t ≥ t0,

from which it follows that A has a maximum value. Hereafter, set t∗ > 0 be a
number where A attains its maximum, i.e.,

A(t∗) = max
t≥0

A(t).

We now claim that the number t∗ is equal to 1. Indeed, noting that A is locally
Lipschitz continuous function, we have that A is a.e. differentiable. Write Ω̃ be the
set of these points, where A′ does’t exist, then we derive |Ω̃| = 0. Now it needs to
prove that

(i) A′(t) > 0, ∀t ∈ (0, 1) ∩ Ω̃c;

(ii) A′(t) < 0, ∀t ∈ (1,+∞) ∩ Ω̃c.

From (i) and (ii) we know that A has a global maximum value at t = 1. Furthermore,
t = 1 is the unique point where the global maximum is attained.

In the following, we firstly prove (i). Without loss of generality, we assume that
b < 1. By the Chain Rule for locally Lipschitz continuous function, we obtain that
there exists u∗t ∈ ∂Iε(tu) such that

A′(t) = 〈u∗t , u〉,

or equivalently, there exists ξt ∈ ∂Ψε(tu) verifying

A′(t) = t

∫
RN

(|∇u|2 + V (εx)|u|2)−
∫
RN

ξtu.
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Thanks to 0 ∈ ∂Iε(uε) and |Λε,a| = 0, it follows that∫
RN

(|∇u|2 + V (εx)|u|2) =

∫
RN

h(εx, u)u,

and so

A′(t) = t

∫
RN

h(εx, u)u−
∫
RN

ξtu.

According to Proposition 2.1 and Proposition 2.2, one has

ξt(x) ∈ [h(εx, tu), h̄(εx, tu)] a.e. in RN ,

thus, from |Λε,a| = 0, (g5) and the boundedness of h̄(εx, u) at u = a, we have

A′(t) ≥ t
(∫

RN
h(εx, u)u−

∫
RN

h̄(εx, tu)

t
u

)
≥ t
(∫
{u≤a}

(
g(u)

u
− g(tu)

tu

)
u2 + (1 + δ)

∫
{a<u<b}

(
g(u)

u
− g(tu)

tu

)
u2

+

∫
{u≤b}

(
u2∗−2 − t2

∗−2u2∗−2
)
u2 +

V0

k

∫
{b<u<1}

(u− tu)

)
> 0, ∀t ∈ (0, 1),

which deduces that
A′(t) > 0,∀t ∈ (0, 1) ∩ Ω̃c.

(ii) can be proved by the same method as that employed in (i). It follows from (i)
and (ii) that Lemma 4.1 is proved.

As we know, it is crucial to discuss the problem{
−∆u+ V0u = (1 + δ)g(u) + u2∗−1, x ∈ RN ,
u ∈ H1(RN ), u(x) > 0, ∀x ∈ RN .

(4.1)

The energy functional associated to problem (4.1) is defined by

IV0
(u) =

1

2

∫
RN

(|∇u|2 + V0u
2)− (1 + δ)

∫
RN

G(u+)− 1

2∗

∫
RN

u2∗

+ ,

where u+ = max{u, 0}. Then I0 ∈ C1(H1(RN ,R)) and

I ′V0
(u)v =

∫
RN

(∇u∇v + V0uv)− (1 + δ)

∫
RN

g(u+)v

−
∫
RN

u2∗−1
+ v, ∀u, v ∈ H1(RN ).

There exists a positive function u0 ∈ H1(RN ) such that I ′V0
(u0) = 0 and IV0

(u0) =
cV0

, where cV0
is the Mountain Pass level. Define the Nehari manifold corresponding

to IV0

NV0 = {u ∈ H1(RN ) \ {0} : I ′V0
(u)u = 0},

then cV0 = infu∈NV0
IV0(u).

Lemma 4.2. limεn,an,δn→0 cεn = cV0 .
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Proof. Firstly, for simplicity, we denote by un = uεn,an,δn , In = Iεn,an,δn and
cn = cεn,an,δn where cn denotes the Mountain Pass level associated to In. Take
εn, an, δn → 0 as n → ∞. For any ρ > 0, set η ∈ C∞0 (Ω) satisfying 0 ≤ η(x) ≤ 1,
η(x) = 1 for all x ∈ B1(0), and η(x) = 0 for all x ∈ Bc2(0) ⊂⊂ Ω. Moreover,
for each ρ > 1. We denote by ηρ and by uρ the functions, ηρ(x) = η(xρ ) and

uρ(x) = ηρ(x)u0(x). It is not difficult to show that uρ → u0 in H1(RN ) as ρ→ +∞.
For each R > 0, there is tρ > 0 such that

IV0
(tρuρ) = max

t≥0
IV0

(tuρ),

hence I ′V0
(tρuρ) = 0 and

1

tρ

∫
RN

(|∇uρ|2 + V0u
2
ρ) = (1 + δ)

∫
RN

g(tρuρ)

tρ
uρ + t2

∗−3
ρ

∫
RN

u2∗

ρ ,

which means by I ′V0
(u0) = 0 that tρ → 1 as ρ→∞. Then, we can see that tρuρ → u0

in H1(RN ) and IV0
(tρuρ) → IV0

(u0) as ρ → ∞. From a simple computation it
follows that there exists t∗ > 0 such that Iε(t∗tρuρ) < 0 uniformly for ε, a > 0 small
enough. Taking γ(t) = tt∗tρuρ for t ∈ [0, 1], and from the definition of cε, we derive

cε ≤ max
t∈[0,1]

Iε(γ̂(t)) ≤ max
t≥0

Iε(γ̂(t)) = Iε(t̂tρuρ)

for some t̂ = t̂(ε, a, ρ) > 0. A straightforward computation means that for each
given ρ > 0, there exist positive constants C1 and C2 such that C1 < t̂ < C2 for
ε, a > 0 small enough. Once that V (0) = V0, For any ν > 0, there exists ε0 > 0
such that 0 < V (εnx)− V0 < ν for εn ∈ (0, ε0) and x ∈ B2R(0). Consequently,∫

RN
V (εnx)t2ρu

2
ρ <

∫
RN

(V0 + ν)t2ρu
2
ρ.

Then,

cn ≤ In(t̂tρuρ) ≤ IV0
(t̂tρuρ) +

t̂

2
ν

∫
B2R(0)

t2ρu
2
ρ + δ

∫
RN

G(t̂tρuρ),

which leads to

lim sup
n→0

cn ≤ cV0
. (4.2)

We now verify

lim inf
n→∞

cn ≥ cV0 . (4.3)

Indeed, we proceed by contradiction, and assume that there is an integer N large
and σ > 0 small such that

cn ≤ cV0
− σ for all n > N.

By Theorem 3.1 and the definition of cεn , we derive

cn = In(un) = max
t>0

In(tun) < cV0
− σ
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for any fixed n > N . From the definition of cV0
one has that cV0

≤ maxt>0 IV0
(tuεn).

Then, from the fact that, for all given n > N, x ∈ RN , V0 ≤ V (εnx), (1 +
δ)
∫
RN G(u) + 1

2∗

∫
RN u

2∗ ≥
∫
RN H(εx, u), it follows that

cV0
− σ > max

t>0
In(tun) ≥ max

t>0
IV0

(tun) ≥ cV0
,

which derives a contradiction. Then (4.3) is true. Finally, (4.2) and (4.3) deduce
this lemma.

Lemma 4.3. Assume the same hypotheses of Theorem 3.1. Let {zn} ⊂ NV0 be
such that IV0(zn) → cV0 and zn → z in H1(RN ). Then, there exists a sequence
{ỹn} ⊂ RN such that zn(· + ỹn) → z0 ∈ NV0

with IV0
(z0) = cV0

. Furthermore,
if z 6= 0, then {ỹn} can be taken identically zero, thus , for this case, zn → z in
H1(RN ).

Proof. Similar as the method used in Lemma 3.1, we obtain that the sequence
{zn} is bounded in H1(RN ), thus passing to a subsequence if necessary, still denoted
by {zn}, we can suppose that there is z ∈ H1(RN ) satisfying

zn ⇀ z in H1(RN ).

From the Ekeland’s Variational Principle [14], we can suppose that {zn} satisfying
the following result

IV0
(zn)→ cV0

and I ′V0
(zn)→ 0. (4.4)

Based on (4.4), we divide our proof into two cases: z 6= 0 and z = 0.

Case 1. z 6= 0. Using the same argument as in the proof of Lemmas 3.3 and 3.4,
we can also derive that

∇zn(x)→ ∇z(x) a.e. in RN ,

z2∗

n (x)→ z2∗(x) a.e. in RN .
(4.5)

From the fact that 〈I ′V0
(zn), zn〉 = 0, (4.4), it follows that 〈I ′V0

(z), z〉 = 0, hence

cV0
≤ IV0

(z) = IV0
(z)− 1

ς
〈I ′V0

(z), z〉,

which infers that

cV0
≤
(

1

2
− 1

ς

)∫
RN

(|∇z|2 + z2) + (1 + δ)

∫
RN

[
1

ς
g(z)z −G(z)

]
+

(
1

ς
− 1

2∗

)∫
RN

z2∗

:=D.

Then, by Fatou’s Lemma

cV0 ≤ D

≤ lim inf
n→∞

(
1

2
− 1

ς

)∫
RN

(|∇zn|2 + z2
n) + (1 + δ)

∫
RN

[
1

ς
g(zn)zn −G(zn)

]
+

(
1

ς
− 1

2∗

)∫
RN

z2∗

n

≤ cV0
.
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Consequently,

lim
n→∞

∫
RN

(|∇zn|2 + z2
n)→

∫
RN

(|∇z|2 + z2). (4.6)

It follows from (4.5) and (4.6) that zn → z in H1(RN ).

Case 2. z = 0. For this case, there are ρ, β > 0 and {yn} ⊂ RN such that

lim sup
n→∞

∫
Bρ(yn)

|zn|2 ≥ β.

Indeed, if this case is not true, we have

lim sup
n→∞

sup
y∈RN

∫
Bρ(y)

|zn|2 = 0,

and by Lions result [23]

lim
n→∞

∫
RN
|zn|q = 0 ∀s ∈ (2, 2∗).

By the above result and the fact that {zn} ⊂ NV0 , we have∫
RN

(|∇zn|2 + V0z
2
n) =

∫
RN

z2∗

n . (4.7)

Suppose that
∫
RN z

2∗

n → l as n → ∞. Using the definition of the constant S, we
obtain

S

(∫
RN

z2∗

n

) 2
2∗

≤
∫
RN
|∇zn|2 ≤

∫
RN

(|∇zn|2 + V0z
2
n) =

∫
RN

z2∗

n ,

which implies that l ≥ Sl
2
2∗ , i.e., l > S

N
2 , which is a contradiction to cV0 <(

1
2 −

1
ς

)
S
N
2 . According to the Sobolev embedding, we have that |yn| → ∞. Defin-

ing vn = zn(x+ yn), one derives

IV0(vn)→ cV0 and I ′V0
(vn)→ 0.

It is obvious to see that {vn} is bounded in H1(RN ), and there is a v ∈ H1(RN )
with v 6= 0 such that vn ⇀ v in H1(RN ). Proceeding the same argument as in Case
1, we derive that vn → v in H1(RN ).

We now verify (4.4). From Ekeland’s Variational Principle, it follows that there
is a sequence {zn} ⊂ NV0

verifying

zn = un + on(1), IV0
(zn)→ cV0

and I ′V0
(zn)− γnJ ′V0

(zn) = on(1),

where γn is a real number and JV0
(z) = I ′V0

(z)z, ∀z ∈ H1(RN ). Then there exists
σ > 0 such that

|〈J ′V0
(zn), zn〉| ≥ σ, ∀n ∈ N.

Indeed, by the definition of JV0
and (g5), one has

−〈J ′V0
(zn), zn〉 = (1 + δ)

∫
RN

(g′(zn)z2
n − g(zn)zn) + (2∗ − 2)

∫
RN

z2∗

n

≥ (2∗ − 2)

∫
RN

z2∗

n

> 0.
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Since I ′V0
(zn)zn = on(1), we have J ′V0

(zn)zn = on(1), which derives γn = on(1).
Therefore,

IV0(zn)→ cV0 and I ′V0
(zn)→ 0.

Consequently, we have

IV0
(zn)→ cV0

and I ′V0
(zn)→ 0.

Thus the proof is proved.

Lemma 4.4. Let {un} ⊂ H1(RN ) be a sequence with 0 ∈ ∂Jεn(un) and IV0(un)→
cV0 , where εn, an, δn → 0+. Then, there is a sequence {ỹn} ⊂ RN such that wn(x) :=
un(x + ỹn) has a convergent subsequence in H1(RN ,R). Furthermore, up to a
subsequence εnỹn → y0 ∈ Λ̃, where Λ̃ = {x ∈ Ω : V (x) = V0}.

Proof. Lemma 3.1 means that {un} is bounded in H1(RN ). We claim that there
exists a sequence {ỹn} ⊂ RN and constants ρ, σ > 0 such that

lim inf
n→∞

∫
Bρ(ỹn)

|un|2 ≥ σ > 0. (4.8)

Indeed, suppose that (4.8) were false. Then, from Lion’s result (see [23]), it follows
that ∫

RN
|un|q = on(1)

as n→∞, for all 2 < q < 2∗, which infers that∫
RN

G(un) =

∫
RN

ung(un) = on(1).

Thus ∫
RN

H(εx, un) ≤ 1

2∗

∫
Ω∪{un≤a}

(u+
n )2∗ +

V0

2k

∫
Ωc∩{un≤a}

u2
n + on(1) (4.9)

and ∫
RN

unh(εx, un) ≤
∫

Ω∪{un≤a}
(u+
n )2∗ +

V0

k

∫
Ωc∩{un≤a}

u2
n + on(1). (4.10)

This, combining 0 ∈ ∂Iεn(un), we conclude that

‖un‖2 −
V0

k

∫
Ωc∩{un≤a}

u2
n + on(1) =

∫
Ω∪{un≤a}

(u+
n )2∗ . (4.11)

Set m ≥ 0 be such that

‖un‖2 −
V0

k

∫
Ωc∩{un≤a}

u2
n → m.

It is easily seen that m > 0. Otherwise, we can derive un → 0, which is a contra-
diction to cV0 > 0. By (4.11), it follows that∫

Ω∪{un≤a}
(u+
n )2∗ → m.
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From the fact that Iε(un)→ cV0
and (4.9), one has

m ≤ NcV0

and thus m > 0. Since

‖un‖2 −
V0

k

∫
Ωc∩{un≤a}

u2
n ≥ S

(∫
Ω∪{un≤a}

(u+
n )2∗

) 2
2∗

,

passing to the limit in the above inequality, it follows that

m ≥ Sm 2
2∗ ,

which deduces that

cV0 ≥
1

N
S
N
2 ,

which is impossible. Hence (4.8) is true, and along to a subseuence

vn := un(·+ ỹn) ⇀ v 6= 0 in H1(RN ).

In the following, we take tn > 0 such that tnvn ∈ NV0
. It follows from Lemma 4.1

that
cV0 ≤ IV0(tnvn) ≤ max

t≥0
Iεn(tun) = Iεn(un) = cV0 + on(1),

which means IV0
(tnvn)→ cV0

, thus tnvn 6→ 0 in H1(RN ). Because {vn} and {tnvn}
are bounded in H1(RN ) and tnvn 6→ 0 in H1(RN ), the suquence {tn} is bounded.
Passing to a subsequence if necessary, tn → t0 ≥ 0, for some t0 independent of ε, a
and δ. For ε, a and δ small enough, if t0 = 0, we have tnvn → 0 in H1(RN ), which
cannot occur. Therefore t0 > 0, and {tnvn} verifies

IV0
(tnvn)→ cV0

, tnvn ⇀ t0v 6= 0 in H1(RN ).

It follows from Lemma 4.3 that tnvn → t0v, or equivalently, vn → v in H1(RN ),
with v 6= 0, which shows the first part results of this lemma. What is left is to show
εnỹn → y0 ∈ Λ̃. Set yn := εnỹn and we assert that {yn} has a bounded subsequence.
Indeed, if this were false, then {yn} → ∞. Take R > 0 such that Ω ⊂ BR(0). We
assume that |yn| > 2R, for any x̂ ∈ BR/εn(0), then |εnx̂ + yn| ≥ |yn| − |εnx̂| > R.
Put

ηR(x) =

{
0, if |x| ≤ R,
1, if |x| ≤ 2R,

and |∇ηρ(x)| ≤ CR−1 for all x ∈ RN . Applying 0 ∈ ∂Iεn(un), we have

V0

(
1− 1

k

)∫
RN

v2
nηR ≤

∫
RN

[
|∇vn|2 +

(
V (x)− V0

k

)
v2
n

]
ηR

= −
∫
RN

vn∇ηR∇vn +

∫
RN

h(εx̂+ yn, vn)ηR + on(1).

It follows from (h4) that

V0

(
1− 1

k

)∫
RN

v2
nηR ≤

C

R
‖vn‖2 + on(1),
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which is impossible as R sufficiently large. This means that {yn} has a bounded
subsequence. Hence, up to a subsequence we derive

yn → y0 ∈ RN .

If y0 6∈ Ω̄, we can proceed as above and infer that vn → 0. Therefore, y0 ∈ Ω̄.
In order to show that V (y0) = V0, we proceed by contradiction, and assume

that V (y0) > V0. Once that tnvn → t0v in H1(RN ,R), from Fatou’s Lemma and
the invariance of RN , we have

cV0 = IV0(t0v)

<
1

2

∫
RN

(|∇(t0v)|2 + V (y0)|t0v|2)− (1 + δ)

∫
RN

G(t0v)− 1

2∗

∫
RN

(t0v)2∗

≤ lim inf
n→∞

[
1

2

∫
RN

(|∇(tnvn)|2 + V (εnx̂+ ỹn)|tnvn|2)

∫
RN

G(tnvn)

− 1

2∗

∫
RN

(tnvn)2∗
]

≤ lim inf
n→∞

Iεn(tnun)

≤ lim inf
n→∞

Iεn(un)

= cV0 ,

which is absurd. Hence V (y0) = V0 and y0 ∈ Ω̄. The condition (V1) means that
y0 6∈ ∂Ω, which deduces that y0 ∈ Λ̃. The proof is completed.

The following Lemma comes from Lemma 3.7 in [1] and it can show that uε
obtained in Theorem 3.1 is a solution of the original problem (1.2).

Lemma 4.5. Let εn → 0+, δn → 0+, un := uεn,an,δn be a solution of (3.2) with
Iεn(un) → cV0

. Then un ∈ L∞(RN ) and given τ > 0, there are R > 0 and n0 ∈ N
such that

|un|L∞(BR(ỹn)c) < τ for all n ≥ n0,

where {ỹn} is the sequence given in Lemma 4.4.

Proof of Theorem 1.1. Our first goal is to show that there exist ε̂ > 0, δ̂ > 0
and â > 0 such that for all ε ∈ (0, ε̂), δ ∈ (0, δ̂), and a ∈ (0, â), the solution uε,δ,a of
problem (3.2), given by Theorem 3.1, satisfies the inequality

|uε,δ,a|L∞(RN\Ωε) < b. (4.12)

Assume that (4.12) were false, then for some sequence εn → 0+, δn → 0+ and
an → 0+, the sequence un = uεn,δn,an satisfies

|un|L∞(RN\Ωεn ) ≥ b. (4.13)

From Lemmas 4.4-4.5 and Iεn(un) → cV0
, it follows that there exists a sequence

{ỹn} ⊂ RN such that εnỹn → y0 ∈ Λ̃. Putting r > 0 such that Br(y0) ⊂ B2r(y0) ⊂
Ω, one has

Br/εn(y0/εn) =
1

εn
Br(y0) ⊂ Ωεn .
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Furthermore, for any x̂ ∈ Br/εn(ỹn), there holds

|x̂− y0

εn
| ≤ |x̂− ỹn|+ |ỹn −

y0

εn
| < 1

εn
(r + on(1)) <

2r

εn

for n large enough. For these values of n, Br/εn(ỹn) ⊂ Ωεn , from which it follows
that RN \ Ωεn ⊂ RN \ Br/εn(ỹn). On the other hand, applying Lemma 4.5 with
τ = b, there exists n0 such that r/εn > R and

|un|L∞(RN\Ωεn ) ≤ |un|L∞(RN\Br/εn (ỹn)) ≤ |un|L∞(RN\BR(ỹn)) < b, ∀n ≥ n0,

which contradicts to (4.13) and this proves (4.12).
Then from the definition of h and (4.12), we derive that h(εx, u(x)) ≡ f(u(x))+

u2∗−1, which proves that u = uε,δ,a is a solution of problem (1.2). In order to study
the behavior of the maximum points of {un}, it follows from (H1) that there is
τ > 0 such that

h(εx, t)t2 ≤ V0

2
t2 (4.14)

for all x ∈ RN and t ≤ τ . According to Lemma 4.5, there exist R > 0 and
{ỹn} ⊂ RN such that

|un|L∞(BR(ỹn))c < τ. (4.15)

Passing to a subsequence if necessary, we may suppose that

|un|L∞(BR(ỹn))c ≥ τ. (4.16)

Otherwise, we can choose a subsequence such that |un|L∞(RN ) < τ . Therefore,
recalling the fact that un is a solution of (1.2) and (4.14), one derives∫

RN
(|∇un|2 + V0|un|2) ≤ ‖un‖2εn ≤

∫
RN

h(εnx, un)u2
n ≤

V0

2

∫
RN
|un|2,

which means that ‖un‖ = 0, and this makes no sense. Consequently, (4.16) holds.
From (4.15) and (4.16), it follows that the maximum point ŷn ∈ RN of un

belongs to BR(ỹn), thus, ŷn = ỹn + x̃n with |x̃n| ≤ R. This means that

εnŷn = εnỹn + εnx̃n → y0 ∈ Λ̂.

Consequently,
lim
n→∞

V (εnŷn) = V (y0) = V0,

which completes our proof.
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