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ON BANACH’S FIXED POINT THEOREM IN
PERTURBED METRIC SPACES∗
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Abstract The measurement of the distance between two points is always
tainted by errors. The causes of such errors are varied. For instance, the
imperfection in the adjustment of instruments affects the accuracy of mea-
surements. These errors are generally “small”, however their accumulations
can become significant. Motivated by this fact, in this paper, we introduce the
notion of perturbed metric spaces and establish an interesting generalization
of Banach’s fixed point theorem in such spaces.
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1. Introduction

The most existence results in nonlinear analysis have been established making use
of Banach’s fixed point theorem [1]. For instance, the existence of local solutions to
evolution equations, the existence of solutions to integral equations and the existence
of solutions to matrix equations, see, e.g., [7,9,19,22]. The literature includes several
extensions and generalizations of Banach’s fixed point theorem. We can classify
such extensions or generalizations in two categories: the first one is concerned with
the study of new classes of mappings satisfying generalized contractions, see, e.g.,
[2, 4, 10, 12, 16–18, 20, 23]; the second one is concerned with study of contraction
mappings, whereX is equipped with a generalized metric, see, e.g., [3,5,11,14,15,21].

Banach’s fixed point theorem asserts that, if (X, d) is a complete metric space
and T : X → X is a contraction mapping, that is,

d(Tu, Tv) ≤ λd(u, v), u, v ∈ X (1.1)

for some constant λ ∈ (0, 1), then T admits one and only one fixed point. On the
other hand, due to the possible errors made in the measurement of the distance
between two points, a natural question arises. Namely, if instead (1.1), one has

D(Tu, Tv) ≤ λD(u, v), u, v ∈ X,

where D(u, v) is the experimental measurement of d(u, v), what we can say in this
case? Namely, the Banach fixed point result will be affected by the experimental
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measurements? Notice that D is not necessarily a metric on X. In this paper, we
study the above question by introducing the concept of perturbed metric spaces.
Next, an interesting generalization of Banach’s fixed point theorem is obtained in
the setting of perturbed metric spaces.

The rest of the paper is organized as follows. In Section 2, we introduce the
notion of perturbed metric spaces and some topological concepts related to such
spaces. Our main result and its proof are given in Section 3. An interesting example
is also provided to illustrate our obtained result.

2. Perturbed metric spaces

Throughout this paper, X denotes an arbitrary non-empty set. The set of nonneg-
ative integers is denoted by N.

We introduce below the notion of a perturbed metric space.

Definition 2.1. Let D,P : X ×X → [0,∞) be two given mappings. We say that
D is a perturbed metric on X with respect to P , if

D − P : X ×X → R,
(x, y) 7→ D(x, y)− P (x, y)

is a metric on X, i.e., for all x, y, z ∈ X,

(i) (D − P )(x, y) ≥ 0;

(ii) (D − P )(x, y) = 0 if and only if x = y;

(iii) (D − P )(x, y) = (D − P )(y, x);

(iv) (D − P )(x, y) ≤ (D − P )(x, z) + (D − P )(z, y).

We call P a perturbed mapping, d = D − P an exact metric, and (X,D,P ) a
perturbed metric space.

Notice that a perturbed metric on X is not necessarily a metric on X. Some
examples are provided below to illustrate this fact.

Example 2.1. Let D : R× R→ [0,∞) be the mapping defined by

D(x, y) = |x− y|+ x2y4, x, y ∈ R.

Then D is a perturbed metric on R with respect to the perturbed mapping

P : R× R→ [0,∞)

given by

P (x, y) = x2y4, x, y ∈ R.

In this case, the exact metric is the mapping d : R× R→ [0,∞) defined by

d(x, y) = |x− y|, x, y ∈ R.

Remark that D is not a metric on X. This can be easily seen observing that
D(1, 1) = 1 6= 0.
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Example 2.2. Let D : C([0, 1])× C([0, 1])→ [0,∞) be the mapping defined by

D(f, g) =

∫ 1

0

|f(t)− g(t)| dt+ (f(0)− g(0))2, f, g ∈ C([0, 1]),

where C([0, 1)) = {f : [0, 1]→ R : f is continuous on [0, 1]}. Then D is a perturbed
metric on C([0, 1]) with respect to the perturbed mapping

P : C([0, 1])× C([0, 1])→ [0,∞)

given by
P (f, g) = (f(0)− g(0))2, f, g ∈ C([0, 1]).

In this case, the exact metric is the mapping d : C([0, 1])×C([0, 1])→ [0,∞) defined
by

d(f, g) =

∫ 1

0

|f(t)− g(t)| dt, f, g ∈ C([0, 1]).

Remark that D is symmetric and D(f, g) = 0 if and only if f = g. However, D is
not a metric on C([0, 1]). Namely, consider three constant functions

f1 ≡ C1, f2 ≡ C2, f3 ≡ C3.

Then

D(f1, f3) = |C1 − C3|+ (C1 − C3)2,

D(f1, f2) = |C1 − C2|+ (C1 − C2)2

and
D(f2, f3) = |C2 − C3|+ (C2 − C3)2.

In particular, for (C1, C2, C3) =
(
0, 12 , 1

)
, we get

D(f1, f3) = 2, D(f1, f2) =
3

4
, D(f2, f3) =

3

4
,

which yields
D(f1, f3) > D(f1, f2) +D(f2, f3).

This shows that the triangle inequality is violated by D.

Example 2.3. Let D : N× N→ [0,∞) be the mapping defined by

D(n,m) = (n−m)2, n,m ∈ N. (2.1)

Then D is a perturbed metric on N, where the perturbed mapping

P : N× N→ [0,∞)

is given by
P (n,m) = (n−m)2 − |n−m|, n,m ∈ N, (2.2)

and the exact metric d : N× N→ [0,∞) is given by

d(n,m) = |n−m|, n,m ∈ N. (2.3)

Remark that D is not a metric on N, but it is a b-metric on N, see, e.g., [5] for more
details about b-metric spaces.
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In the following example, we construct a perturbed metric with respect to dif-
ferent perturbed mappings.

Example 2.4. Let X = 2N be the set of nonnegative even integers, that is,

X = {0, 2, · · · , 2k, · · · }.

Let D : 2N × 2N → [0,∞) be the b-metric on 2N defined by (2.1). From Example
2.3, D is a perturbed metric on 2N with respect to the perturbed mapping

P : 2N× 2N→ [0,∞)

given by (2.2), and the exact metric d : 2N×2N→ [0,∞) is given by (2.3). Consider
now the mapping

Q : 2N× 2N→ [0,∞)

defined by
Q(n,m) = (n−m)2 − 2|n−m|, n,m ∈ 2N.

Then, D is also a perturbed metric on 2N with respect to the perturbed mapping
Q, and the exact metric is 2d.

We provide below some elementary properties of perturbed metric spaces.

Proposition 2.1. Let D,P,Q : X × X → [0,∞) be three given mappings and
α > 0.

(i) If (X,D,P ) and (X,D,Q) are two perturbed metric spaces, then
(
X,D, P+Q

2

)
is a perturbed metric space.

(ii) If (X,D,P ) is a perturbed metric space, then (X,αD,αP ) is a perturbed met-
ric space.

Proof. (i) Since D − P and D −Q are two metrics on X, then

1

2
[(D − P ) + (D −Q)] = D − P +Q

2

is a metric on X, which proves (i).
(ii) Since D − P is a metric on X and α > 0, then

α(D − P ) = αD − αP

is a metric on X, which proves (ii).
We now introduce some topological concepts in perturbed metric spaces.

Definition 2.2. Let (X,D,P ) be a perturbed metric space, {zn} a sequence in X,
and T : X → X.

(i) We say that {zn} is a perturbed convergent sequence in (X,D,P ), if {zn} is
a convergent sequence in the metric space (X, d), where d is the exact metric
(i.e., d = D − P ).

(ii) We say that {zn} is a perturbed Cauchy sequence in (X,D,P ), if {zn} is a
Cauchy sequence in the metric space (X, d).

(iii) We say that (X,D,P ) is a complete perturbed metric space, if (X, d) is a
complete metric space, or, equivalently, if every perturbed Cauchy sequence
in (X,D,P ) is a perturbed convergent sequence in (X,D,P ).

(iv) We say that T is a perturbed continuous mapping, if T is continuous with
respect to the exact metric d.
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3. A generalization of Banach’s fixed point theorem

In this section, we extend the Banach fixed point theorem from standard metric
spaces to perturbed metric spaces.

Theorem 3.1. Let (X,D,P ) be a complete perturbed metric space and T : X → X
be a given mapping. Assume that the following conditions hold:

(i) T is a perturbed continuous mapping;

(ii) There exists λ ∈ (0, 1) such that

D(Tu, Tv) ≤ λD(u, v) (3.1)

for all u, v ∈ X.

Then, T admits one and only one fixed point.

Proof. Let z0 ∈ X be fixed. Consider the Picard sequence {zn} ⊂ X defined by

zn+1 = Tzn, n ∈ N.

Taking (u, v) = (z0, z1) in (3.1), we obtain

D(Tz0, T z1) ≤ λD(z0, z1),

thai is,
D(z1, z2) ≤ λD(z0, z1). (3.2)

Similarly, taking (u, v) = (z1, z2) in (3.1), we obtain

D(z2, z3) ≤ λD(z1, z2),

which implies by (3.2) that

D(z2, z3) ≤ λ2D(z0, z1).

Continuing in the same way, by induction, we get

D(zn, zn+1) ≤ λnτ, n ∈ N, (3.3)

where τ = D(z0, z1). Let d = D − P be the exact metric. From (3.3), we deduce
that

d(zn, zn+1) + P (zn, zn+1) ≤ λnτ, n ∈ N.

Since d(zn, zn+1) ≤ d(zn, zn+1) + P (zn, zn+1), it holds that

d(zn, zn+1) ≤ λnτ, n ∈ N.

Following a standard argument, the above inequality implies that {zn} is a Cauchy
sequence in the metric space (X, d), that is, {zn} is a perturbed Cauchy sequence in
the perturbed metric space (X,D,P ). By the completeness of the perturbed metric
space (X,D,P ), we deduce that there exists z∗ ∈ X such that

lim
n→∞

d(zn, z
∗) = 0. (3.4)
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We now show that z∗ is a fixed point of T . Since T is a perturbed continuous
mapping, then (3.4) yields

lim
n→∞

d(Tzn, T z
∗) = 0,

that is,
lim
n→∞

d(zn+1, T z
∗) = 0. (3.5)

Since d = D−P is a metric on X, by the uniqueness of the limit, we get z∗ = Tz∗,
that is, z∗ is a fixed point of T .

We now show that T admits a unique fixed point. We argue by contradiction
supposing that u, v ∈ X are two distinct fixed points of T . By (3.1), we have

D(u, v) = D(Tu, Tv) ≤ λD(u, v),

which yields
d(u, v) + P (u, v) ≤ λ(d(u, v) + P (u, v)).

Since u 6= v, then d(u, v)+P (u, v) 6= 0, and the above inequality yields λ ≥ 1, which
contradicts the condition λ ∈ (0, 1). Consequently, z∗ is the unique fixed point of
T . This completes the proof of Theorem 3.1.

We now show that Theorem 3.1 includes Banach’s fixed point theorem.

Corollary 3.1 (Banach’s fixed point theorem). Let (X, d) be a complete metric
space and T : X → X be a given mapping. Assume that there exists λ ∈ (0, 1) such
that

d(Tu, Tv) ≤ λd(u, v) (3.6)

for all u, v ∈ X. Then T admits one and only one fixed point.

Proof. Let D = d and P ≡ 0 (P (u, v) = 0 for all u, v ∈ X). Then (X,D,P ) is a
perturbed metric space. Furthermore, by (3.6), T is continuous with respect to the
exact metric d, and (3.1) holds. Then Theorem 3.1 applies.

We provide below an example to illustrate Theorem 3.1.

Example 3.1. Let X = {A1, A2, A3, A4} ⊂ R3, where Ai, i = 1, 2, 3, 4, are the
vertices of a regular tetrahedron (see Figure 1) with

‖Ai −Aj‖ = 1, i 6= j.

Here, ‖ · ‖ denotes the Euclidean norm in R3.

Figure 1. The set X.
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We consider the mapping T : X → X defined by

TA1 = A1, TA2 = A3, TA3 = A4, TA4 = A1.

We introduce the mapping P : X ×X → [0,∞) defined by

P (A1, A2) = P (A2, A1) = 4,

P (A1, A3) = P (A3, A1) = 3,

P (A1, A4) = P (A4, A1) = 2,

P (A2, A3) = P (A3, A2) = 4,

P (A2, A4) = P (A4, A2) = 9,

P (A3, A4) = P (A4, A3) = 3,

P (Ai, Ai) = 0, i = 1, 2, 3, 4.

We also consider the mapping D : X ×X → [0,∞) defined by

D(Ai, Aj) = ‖Ai −Aj‖+ P (Ai, Aj), i, j ∈ {1, 2, 3, 4}.

Observe that (X,D,P ) is a perturbed metric space. In this case, the exact metric
is the discrete metric d : X ×X → [0,∞) defined by

d(Ai, Aj) = ‖Ai −Aj‖, i, j ∈ {1, 2, 3, 4},

that is,

d(Ai, Aj) =

1 if i 6= j,

0 if i = j.
(3.7)

Remark also that D is not a metric on X. Namely, we have

D(A2, A4) = 1 + P (A2, A4) = 1 + 9 = 10,

D(A2, A3) = 1 + P (A2, A3) = 1 + 4 = 5,

D(A3, A4) = 1 + P (A3, A4) = 1 + 3 = 4,

which shows that D(A2, A4) > D(A2, A3) +D(A3, A4).
We now show that the mapping T satisfies conditions (i) and (ii) of Theorem

3.1. It is clear that T is a perturbed continuous mapping, that is, (i) is satisfied.
On the other hand, (3.1) is equivalent to

‖TAi − TAj‖+ P (TAi, TAj) ≤ λ (‖Ai −Aj‖+ P (Ai, Aj)) (3.8)

for every i, j ∈ {1, 2, 3, 4}. Observe that, if i = j, by the definition of the perturbed
mapping P , we have

‖TAi − TAi‖+ P (TAi, TAi) = 0,

which shows that (3.8) is satisfied for all λ > 0. Assume now that i 6= j. Table
1 provides the values of ‖TAi − TAj‖+ P (TAi, TAj) and ‖Ai − Aj‖+ P (Ai, Aj).
From Table 1, we deduce that

max
1≤i<j≤4

‖TAi − TAj‖+ P (TAi, TAj)

‖Ai −Aj‖+ P (Ai, Aj)
≤ 4

5
,
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Table 1. The values of ‖TAi − TAj‖+ P (TAi, TAj) & ‖Ai − Aj‖+ P (Ai, Aj).

(i, j) ‖TAi − TAj‖+ P (TAi, TAj) ‖Ai −Aj‖+ P (Ai, Aj)

(1, 2) 4 5

(1, 3) 3 4

(1, 4) 0 3

(2, 3) 4 5

(2, 4) 4 10

(3, 4) 3 4

Then, by symmetry (notice that P is a symmetric mapping), we deduce that (3.8)
holds for all λ ∈

[
4
5 , 1
)
, which shows that condition (ii) of Theorem 3.1 is satisfied.

Observe that the only fixed point of T is the point A1, which confirms the result
provided by Theorem 3.1.

We point out that the Banach fixed point theorem (see Corollary 3.1) is not
applicable in the metric space (X, d), where d is the exact metric defined by (3.7).
This can be easily seen observing for instance that

d(TA1, TA2)

d(A1, A2)
=
d(A1, A3)

d(A1, A2)
= 1.
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