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MODELING THE EFFECTS OF VACCINATING
STRATEGIES AND PERIODIC OUTBREAKS

ON DENGUE IN SINGAPORE∗

Chong-Yang Yin1,2, Xin-You Meng1,† and Jia-Ming Zuo1

Abstract Effective vaccination strategies can significantly reduce virus trans-
mission, while periodic outbreaks require model prediction and early interven-
tion to mitigate their impact. A novel dengue epidemic model with periodicity
and vaccination is introduced in this paper. First, the positivity of solutions
and the invariant set are given, and the basic reproduction number is obtained.
Then, the disease-free periodic solution is globally asymptotically stable when
the basic reproduction number is less than one, and periodic solution is consis-
tent persistence when the basic reproduction number is more than one. Actual
data are used to develop more scientific and reasonable prevention and control
measures, reducing the transmission risk of dengue fever. Next, based on the
dengue fever data in Singapore from 2014 to 2017, the best fitting parameters
of such model are determined by using the Markov Chain Monte Carlo algo-
rithm. Finally, some numerical simulations are carried out. These indicate
that vaccination is of great significance to control the spread of disease.

Keywords Dengue, disease extinction, vaccination, periodicity, consistent
persistence.
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1. Introduction

Dengue fever is an infectious disease caused by the dengue virus. It is a mosquito-
borne disease mainly transmitted by Aedesalbopictus and Aedesaegypti. The num-
ber of dengue fever infections in the whole world has increased dramatically in recent
decades, putting about half of the population at risk [33]. The main symptoms are
high fever, headache, eye pain, joint pain and vomiting. Severe cases can develop
into dengue haemorrhagic fever and shock syndrome [11]. Mosquito-borne trans-
mission is influenced by many factors, such as natural environment including at-
mospheric temperature and humidity, and the social environment including human
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activities [20,47]. One person can become infected with dengue fever once he (she) is
bitten by a mosquito infected with the virus [30]. Similarly, a mosquito can become
infected with dengue fever by biting a person who carries the dengue virus [13]. Fis-
cher and Halstead [12] first used a mathematical model to study the transmission
mechanism of dengue fever. Subsequently, a large number of mathematical models
have been used to analyze the transmission characteristics and epidemic trends of
dengue fever. Cai et al. [3] presented a model of dengue fever with bilinear and
standard incidence rates, and provided a representation of the basic reproduction
number. Musa et al. [29] established a deterministic model and found consistent
fitting results and equivalent goodness-of-fit when the asymptomatic infection was
considered. Chang et al. [5] constructed a dengue transmission model incorporating
nonlocal diffusion. Li-Mart́ın et al. [25] proposed a dengue disease transmission
model with two-stage structure in the human population.

The environment in which the mosquitoes grow is influenced by a variety of
factors, such as rainfall, temperature, and humidity. Because most factors affecting
the environment change periodically, dengue fever also spreads periodically. Wu et
al. [40] suggested that climate affects mosquito behavior and dengue transmission.
Coutinho et al. [8] studied a non-autonomous dengue model with seasonality and
derived time-dependent thresholds. Andraud et al. [1] established a simple vector-
host model by considering seasonal variations in mosquito density. Zha and Jiang
[42] showed a degenerate dengue fever model in heterogeneous environment.

Since the dengue fever can bring great disasters to humans, various measures
have bee taken to control the transmission of the dengue fever. One of the effec-
tive ways is to control the mosquito. However, large-scale mosquito control efforts,
such as insecticide delivery, removal of mosquito breeding sites, and release of Wol-
bachian mosquitoes, are costly, and the use of a large number of chemicals damages
the ecological environment [46]. Therefore, the development of an effective vaccine
can overcome these problems. Efforts to develop a dengue vaccine have been under-
way since the 1930s. Some obtained results found that the vaccine can significantly
reduce the infection rate and death rate [17,18]. However, there is no specific treat-
ment for dengue, and prevention is limited to control the mosquito. Therefore, the
development of a safe and effective vaccine is of great significance for the control of
the disease. Shim [34] proposed a dengue model with age structure and vaccination
to study dengue dynamics in the Philippines. Their results show that age-based
vaccination is good at controlling disease transmission as long as the cost of vacci-
nation is low enough when vaccine efficacy is relatively low. Pratchaya et al. [31]
proposed an SIR transmission model with vaccination, and investigated the exis-
tence of the equilibrium and stability of the model. The role of the dengue vaccine in
the model was determined. Magal and Webb [23] analyzed the relationship between
reported and unreported cases, and showed that the proportion of unreported cases
was very high, which is significant for taking measures to control the epidemic. Xue
et al. [41] established a model of dengue fever with vaccination, and considered its
optimal control. Musa et al. [29] constructed a dengue fever model including the
unreported cases, and obtained the basic reproduction number, the conditions of
extinction and uniform persistence of the disease. There are also many results on
dengue fever (seen the references [4, 16,19,22,26,27,32,42,44]).

The above authors have considered models with vaccine control or periodic out-
breaks alone. However, the model with vaccination and periodic outbreaks simul-
taneously is rare. Based on the above work [1, 29, 41], we will take the periodic
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transmission, vaccination and the unreported cases into account on the spread of
dengue fever in our paper. Based on the data of dengue fever in Singapore from
2014 to 2017, we will fit our model using the Markov Chain Monte Carlo (MCMC)
algorithm.

The rest of this paper is as follows. In Section 2, a new dengue model with
vaccination strategies and periodic outbreaks is established. In Section 3, the basic
reproduction number is analyzed. The extinction of the periodic disease-free state
and the uniform persistence of the periodic disease are analyzed. In Section 4, a
case study and numerical results are presented. In Section 5, the uncertainty and
sensitivity analyses are presented. Some discussions and conclusions are included
in the final section.

2. Mathematical model

2.1. Model

The total population is divided into six compartments: S(t), V (t), E(t), A(t),
I(t) and R(t). S(t) represents the number of susceptible individuals, V (t) represents
the number of vaccinated individuals, E(t) represents the number of individuals
exposed to the infected but unable to possess infectivity, A(t) represents the number
of unreported infected individuals, I(t) represents the number of reported infected
individuals by the Ministry of Health (Singapore), R(t) represents the number of
recover individuals. Hence, the total number of population at time t is given by
N(t) = S(t) + V (t) + E(t) +A(t) + I(t) +R(t).

The total mosquito population at time t, denoted by H(t), is divided into
three compartments: M(t), L(t) and P (t). M(t) denotes the number of suscep-
tible mosquitoes, L(t) denotes the number of exposed mosquitoes that can not
infect the people, P (t) denotes the number of infected mosquitoes that can in-
fect the people. Hence, the total number of mosquitoes at time t is given by
H(t) = M(t) + L(t) + P (t).

Thus, the model structure is shown in Figure 1. The corresponding system of
ordinary differential equations for such flowchart is as follows:

Figure 1. Flowchart of the dengue epidemic model.
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dS

dt
= Λ− β(t)SP − κS − dS,

dV

dt
= κS − (1− ξ)β(t)V P − dV,

dE

dt
= β(t)SP + (1− ξ)β(t)V P − σE − dE,

dA

dt
= (1− θ)σE − δA− γaA− dA,

dI

dt
= θσE + δA− γiI − dI,

dR

dt
= γaA+ γiI − dR,

dM

dt
= Π− ρ(t)M(A+ I)− µM,

dL

dt
= ρ(t)M(A+ I)− λL− µL,

dP

dt
= λL− µP.

(2.1)

The initial conditions of model (2.1) are

S(0) ≥ 0, V (0) ≥ 0, E(0) ≥ 0, A(0) ≥ 0, I(0) ≥ 0,

R(0) ≥ 0,M(0) ≥ 0, L(0) ≥ 0, P (0) ≥ 0.
(2.2)

Here, β(t) and ρ(t) are two functions with periodic contagions. These parameters
are described in Table 1.

Table 1. The parameters description of the dengue epidemic model.

Parameter Description(Units)

Λ/Π The constant recruitment rate of the humans/mosquitoes (month−1)

d/µ The natural mortality rate of the humans/mosquitoes (month−1)

β(t) Transmission probability from infectious mosquitoes to susceptible

humans (time−1)

ρ(t) Transmission probability from infectious humans to susceptible

mosquitoes (time−1)

ξ The effectiveness of a vaccine(none)

σ Progression rate of exposed humans to infectious humans with

clinical symptoms (month−1)

θ The proportion of infected individuals notified by MOH in Singapore (none)

δ The rate of unreported infected to reported infected humans (none)

γa/γi Recovery rate of infectious humans from A, I, respectively (month−1)

λ Progression rate of exposed mosquitoes to the infectious

mosquitoes (month−1)

κ The rate of vaccination (time−1)
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2.2. Basic properties

To show that model (2.1) is epidemiologically, we will prove that all variables of
model (2.1) are non-negative for all time t > 0.

2.2.1. Positivity of solutions

Lemma 2.1. Under the initial conditions (2.2), the solutions S(t), V (t), E(t),
A(t), I(t), R(t), M(t), L(t), and P (t) of model (2.1) are positive for all t > 0.

Proof. For the given initial conditions, it is easily proof that the solutions of
model (2.1) are positive. Suppose that there exists a first time t′ such that

S(t′) = 0, S
′
(t′) < 0, 0 ≤ t ≤ t′.

According to model (2.1), we have

S
′
(t′) = Λ > 0,

which is contradiction implying that S(t) ≥ 0, t ≥ 0.
Next, there exists another time t′′ such that

V (t′′) = 0, V
′
(t′′) < 0, 0 ≤ t ≤ t′′.

According to model (2.1), we have

V
′
(t′′) = κS(t′′) ≥ 0,

which is contradiction implying that V (t) ≥ 0, t ≥ 0. By using the similar methods,
it can be proven that E(t) ≥ 0, A(t) ≥ 0, I(t) ≥ 0, R(t) ≥ 0,M(t) ≥ 0, L(t) ≥
0, P (t) ≥ 0, for all t ≥ 0. Therefore, the solutions S(t), V (t), E(t), A(t), I(t), R(t),
M(t), L(t) and P (t) of model (2.1) still positive for all t > 0. This completes the
proof of Lemma 2.1.

2.2.2. Invariant set

Define

Ω =
{
(S, V,E,A, I,R,M,L, P ) ∈ R9

+ :

0 ≤ S, V,E,A, I,R ≤ N ≤ Λ

d
, 0 ≤ H ≤ Π

µ

}
.

Lemma 2.2. The solutions of model (2.1) is bounded and the set Ω is positive
invariant for model (2.1).

Proof. Adding the former six equations of model (2.1), we have

dN

dt
=

dS

dt
+

dV

dt
+

dE

dt
+

dA

dt
+

dI

dt
+

dR

dt
= Λ− dN.

It follows that

0 ≤ N(t) =
Λ

d
+

(
N(0)− Λ

d

)
e−dt,
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where N(0) represents the initial value of the total population. Therefore, we can
obtain 0 ≤ lim sup

t→∞
N(t) ≤ Λ

d .

Next, according to the last three equations of model (2.1), we have

dH

dt
=

dM

dt
+

dL

dt
+

dP

dt
= Π− µH.

Further, we obtain that

0 ≤ H(t) =
Π

µ
+

(
H(0)− Π

µ

)
e−µt,

whereH(0) represents the initial value of the total mosquito. Thus, 0 ≤ lim sup
t→∞

H(t)

≤ Π
µ . In the rest of our paper, we will consider the dynamics of model (2.1) in the

region Ω. This completes the proof of Lemma 2.2.

3. Mathematical analysis

3.1. The basic reproduction number

The basic reproduction number, defined as the number of expected secondary cases
produced by a typically infected person throughout its infectious period in a com-
pletely susceptible population, is one of the most important threshold quantities to
determine whether an epidemic will spread or die out [9, 10]. Let the right-hand
sides of model (2.1) be equal to zero, we have

Λ− β(t)SP − κS − dS = 0,

κS − (1− ξ)β(t)V P − dV = 0,

β(t)SP + (1− ξ)β(t)V P − σE − dE = 0,

(1− θ)σE − δA− γaA− dA = 0,

θσE + δA− γiI − dI = 0,

γaA+ γiI − dR = 0,

Π− ρ(t)M(A+ I)− µS = 0,

ρ(t)M(A+ I)− λL− µL = 0,

λL− µP = 0.

(3.1)

Then, it is straightforward to see that model (2.1) has a disease-free periodic equi-
librium given by

J0 (S0, V0, 0, 0, 0, 0,M0, 0, 0) =

(
Λ

κ+ d
,

κΛ

d(κ+ d)
, 0, 0, 0, 0,

Π

µ
, 0, 0

)
.

Next, we can use the theorem proposed by Wang and Zhao [37] to define the basic
reproduction number of model (2.1). Let x = (E,A, I,R, L, P, S, V,M)T , then
model (2.1) can be rewritten as

dx

dt
= F(t, x)− V(t, x),
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where

F(t, x) =



β(t)SP + (1− ξ)β(t)V P

0

0

0

ρ(t)M(A+M)

0

0

0

0



,

V(t, x) =



(σ + d)E

−(1− θ)σE + (δ + γa + d)A

−θσE − δA+ (γi + d)I

−γaA− γiI + dR

(λ+ µ)L

−λL+ µP

−Λ + β(t)SP + κS + dS

−κS + (1− ξ)β(t)V P + dV

−Π+ ρ(t)M(A+ I) + µM



.

Obviously, the conditions (A1)− (A5) of the theorem proposed by Wang and Zhao
[37] are satisfied. Let

f(t, x(t)) =F(t, x)− V(t, x)
=(f1(t, x(t)), f2(t, x(t)), f3(t, x(t)), f4(t, x(t)), f5(t, x(t)),

f6(t, x(t)), f7(t, x(t)), f8(t, x(t)), f9(t, x(t)))
T .

Then, we define

U(t) :=

(
∂fi(t, x

0(t))

∂xj

)
, 7 ≤ i, j ≤ 9,

where x0(t) = (0, 0, 0, 0, 0, 0, Λ
κ+d ,

κΛ
d(κ+d) ,

Π
µ ) is the disease-free periodic solution.

Let ΦU (t) be the monodromy matrix of the linear T -periodic system dz
dt

= U(t)z.

Further, we get that the spectral radius of ΦU (T ) is less than the unity. It is very
obvious that the condition (A6) of the theorem [37] is also satisfied.

Next, we will prove the condition (A7) is satisfied according to Wang and
Zhao [37]. That is, the spectral radius ϱ(Φ−V (T )) < 1. At first, we assume that
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F (t) =
(

∂Fi(t,x
0(t))

∂xj

)
1≤i,j≤6

and V (t) =
(

∂Vi(t,x
0(t))

∂xj

)
1≤i,j≤6

, where Fi(t, x(t)) and

Vi(t, x(t)) denote the i − th component of F(t, x(t)) and V(t, x(t)), respectively.
After simple calculations, we can obtain

F (t) =



0 0 0 0 0
β(t)Λ

κ+ d
+

(1− ξ)β(t)κΛ

d(κ+ d)

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0
ρ(t)Π

µ

ρ(t)Π

µ
0 0 0

0 0 0 0 0 0


,

and

V (t) =



σ + d 0 0 0 0 0

−(1− θ)σ δ + γa + d 0 0 0 0

−θσ −δ γi + d 0 0 0

0 −γa −γi d 0 0

0 0 0 0 λ+ µ 0

0 0 0 0 −λ µ


.

Clearly, F (t) is nonnegative and −V (t) is cooperative. Let Y (t, s), t ≥ s be the
evolution operator of the linear T -periodic system

dy

dt
= −V (t)y. (3.2)

Therefor, for each s ∈ ℜ, the matrix Y (t, s)6×6 satisfies

dY (t, s)

dt
= −V (t)Y (t, s), ∀t ≥ s, Y (s, s) = Z, (3.3)

where Z is the 6× 6 identity matrix.
Thus, let Φ−V (t) be the monodromy matrix of the linear T -periodic system

(3.2). It is proved that

ϱ(Φ−V (T )) = max{e−(σ+d)T , e−(γa+δ+d)T , e−(γi+d)T , e−dT , e−(λ+µ)T } < 1.

According to the theorem in Reference [37], we assume that Υ(s) is the initial
distribution of infectious individuals, and Υ(s) is T -periodic. Then, the function

Ψ(t) :=

∫ t

−∞
Y (t, s)F (s)Υ(s)ds

represents the distribution of accumulated newly infected individuals produced by
all infected individuals introduced from the previous time to the time t. Let RT
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be the ordered Banach space of all T - periodic functions from ℜ to ℜ6 with the
maximum norm || · || and the positive cone R+

T := {Υ ∈ RT : Υ(t) ≥ 0,∀t ∈ ℜ}. We
can define a linear operator L : RT → RT as follows

(LΥ)(t) :=

∫ ∞

0

Y (t, t− a)F (t− a)Υ(t− a)da, ∀t ∈ ℜ, Υ ∈ RT . (3.4)

L is called the next-generation infection operator and the spectral radius of L is
defined as the basic reproduction number R0. Therefore, the basic reproduction
number R0 of model (2.1) can be given as R0 := ϱ(L).

Lemma 3.1. ( [37]) The following statements are valid.
(1) If ϱ(W (T, 0, η)) = 1 has a positive solution η0, then η0 is an eigenvalue of L,
and hence R0 > 0.
(2) If R0 > 0, then η =R0 is the unique solution of ϱ(W (T, 0, η)) = 1.
(3) R0 = 0 if and only if ϱ(W (T, 0, η)) < 1 for all η > 0.

Therefore, the disease-free periodic solution of model (2.1) is locally asymptoti-
cally stable if R0 < 1, but unstable if R0 > 1. The basic reproduction number will
be calculated. We introduce the linear T -periodic system as follows.

dw

dt
=

[
−V (t) +

F (t)

η

]
w, (3.5)

where η ∈ (0,∞). Then, let the evolution operator of system (3.5) on ℜ6 be
W (t, s, η), t ≥ s, s ∈ ℜ. It is clear that ΦF−V (t) = W (t, 0, 1), t ≥ 0 can be obtained.
Hence, we derive

ΦF
η −V (t) = W (t, 0, η), t ≥ 0, (3.6)

where

F (t)

η
− V (t)

=



−(σ + d) 0 0 0 0
β(t)Λ

η(κ+ d)
+

(1− ξ)β(t)κΛ

ηd(κ+ d)

(1− θ)σ −(δ + γa + d) 0 0 0 0

θσ δ −(γi + d) 0 0 0

0 γa γi −d 0 0

0
ρ(t)Π

ηµ

ρ(t)Π

ηµ
0 −(λ+ µ) 0

0 0 0 0 λ −µ


.

Therefore, numerical algorithm is mainly used to calculate the reproduction number
according to condition 2 in Lemma 3.1.

3.2. Extinction of the disease

Let (ℜk,ℜk
+) be the standard ordered k-dimensional Euclidean space with a norm

|| · ||. For u, v ∈ ℜk, if u − v ∈ Int(ℜk
+), then u ≫ v; if u − v ∈ ℜk

+\{0}, then
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u > v; if u − v ∈ ℜk
+, then u ≥ v. Assume G(t) is a continuous, irreducible and

cooperative, and w− periodic k× k matrix function. The linear differential system

dz

dt
= G(t)z (3.7)

has a fundamental solution matrix ΦG(t). Let ϱ(ΦG(w)) be the spectral radius of
ΦG(w), where ΦG(w) is a matrix with all entries positive for each w > 0 [2]. By
the Perron-Frobenius theorem [36], ϱ(ΦG(w)) is the principal eigenvalue of ΦG(w)
which is simple and admits an eigenvector v∗ ≫ 0. Therefore, we can obtain the
following result.

Lemma 3.2. ( [43]) Let q = 1
w ln ϱ(ΦG(w)) . Then, there exists a positive, w−

periodic function v(t) such that eqtv(t) is a solution of system (3.7).

Theorem 3.1. The disease-free periodic solution J0 is globally asymptotically stable
if R0 < 1, but unstable if R0 > 1.

Proof. According to Lemma 3.2, the disease-free periodic solution J0 is locally
asymptotically stable when R0 < 1. Next, we will only prove that the disease-free
periodic solution J0 is globally attractive when R0 < 1.

According to Lemma 2.2, we have

lim sup
t→∞

(S(t) + V (t) + E(t) +A(t) + I(t) +R(t)) ≤ Λ

d
,

lim sup
t→∞

(M(t) + L(t) + P (t)) ≤ Π

µ
.

Under the initial conditions (2.2), it follows that

lim sup
t→∞

S(t) ≤ Λ

κ+ d
,

lim sup
t→∞

V (t) ≤ κΛ

d(κ+ d)
,

lim sup
t→∞

M(t) ≤ Π

µ
.

Hence, for ∀ϵ > 0, there exists t > 0 such that S(t) ≤ Λ
κ+d + ϵ, V (t) ≤ κΛ

d(κ+d) + ϵ

and M(t) ≤ Π
µ + ϵ for t > t̂. We consider the following comparison system

dE

dt
= β(t)(

Λ

κ+ d
+ ϵ)P + (1− ξ)β(t)

(
κΛ

d(κ+ d)
+ ϵ

)
P − σE − dE,

dA

dt
= (1− θ)σE − δA− γaA− dA,

dI

dt
= θσE + δA− γiI − dI,

dR

dt
= γaA+ γiI − dR,

dL

dt
= ρ(t)(

Π

µ
+ ϵ)(A+ I)− λL− µL,

dP

dt
= λL− µP .

(3.8)
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Let x = (E,A, I,R, L, P )T , system (3.8) is equivalent to the following system

ẋ = (F (t)− V (t) + ϵn(t))x,

where

n(t) =



0 0 0 0 0 (1− ξ)β(t)

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 ρ(t) ρ(t) 0 0 0

0 0 0 0 0 0


.

According to Lemma 3.2, we know that there is a positive w - periodic function v(t)
such that eqtv(t) is a solution of system (3.8), where v(t) = (v1(t), v2(t), v3(t), v4(t),
v5(t), v6(t)) and q = 1

w ln ϱ(ΦF−V+ϵn(w)). Then, we choose t̂ > t and a large τ > 0
to make the following inequalities be true,

E(t̂) ≤ τv1(0), A(t̂) ≤ τv2(0), I(t̂) ≤ τv3(0),

R(t̂) ≤ τv4(0), L(t̂) ≤ τv5(0), P (t̂) ≤ τv6(0).

Hence, we have

E(t) ≤ τeq(t−t̂)v1(t− t̂), A(t) ≤ τeq(t−t̂)v2(t− t̂), I(t) ≤ τeq(t−t̂)v3(t− t̂),

R(t) ≤ τeq(t−t̂)v4(t− t̂), L(t) ≤ τeq(t−t̂)v5(t− t̂), P (t) ≤ τeq(t−t̂)v6(t− t̂).

According to the standard comparison principle, we obtain the inequalities as follows

E(t) ≤ E(t) ≤ τeq(t−t̂)v1(t− t̂), A(t) ≤ A(t) ≤ τeq(t−t̂)v2(t− t̂),

I(t) ≤ I(t) ≤ τeq(t−t̂)v3(t− t̂), R(t) ≤ R(t) ≤ τeq(t−t̂)v4(t− t̂),

L(t) ≤ L(t) ≤ τeq(t−t̂)v5(t− t̂), P (t) ≤ P (t) ≤ τeq(t−t̂)v6(t− t̂).

We know that R0 < 1 if and only if ϱ(ΦF−V (ω)) < 1. Since ϱ(ΦF−V+ϵn(ω)) is
continuous for all small ϵ, we can choose all small ϵ > 0 such that ϱ(ΦF−V+ϵn(ω)) <
1. Therefore, we can obtain q < 0. This means that the following limits are true,

lim
t→∞

E(t) = 0, lim
t→∞

A(t) = 0, lim
t→∞

I(t) = 0,

lim
t→∞

R(t) = 0, lim
t→∞

L(t) = 0, lim
t→∞

P (t) = 0.

Now, there are lim
t→∞

S(t) = Λ
κ+d , lim

t→∞
V (t) = κΛ

d(κ+d) , and lim
t→∞

M(t) = Π
µ . Therefore,

the disease-free periodic equilibrium J0 of system (2.1) is globally asymptotically
stable. This completes the proof.

The values of the parameters are Λ = 44671, d = 1/(80 ∗ 12), β(t) = 2.1331 ×
10−10+1.468×10−10sin( π

12 t+1.0778), ρ(t) = 1.5992×10−10+4.584×10−10sin( π
12 t+

1.0778), κ = 0.002, σ = 30/6, γa = 30/7, γi = 30/5, λ = 30/7, µ = 0.002,
Π = 10000, θ = 0.00462, δ = 0.0109, ξ = 0.8. The initial value of model (2.1) is
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Figure 2. The global stability of the disease-free periodic solution. (a)S(t), (b)V (t), (c)E(t), (d)A(t),
(e)I(t), (f)R(t).

(S(0), V (0), E(0), A(0), I(0), R(0),M(0), L(0), P (0)=(10000000, 200000, 8000, 4000,
2000, 5000, 100000000, 1000000, 1000000)). According to these parameters, to cal-
culate the R0 = 0.0663 < 1. We can give some numerical simulations to illustrate
and extend our results in Figure 2.

From the Figure 2, it can be seen that all population in each compartment exhibit
periodic fluctuation. The susceptible individuals and the vaccinated individuals
tend to non-zero values, but the other individuals tend to zero values. Especially,
the recover individuals increase at the beginning, then decrease, and finally approach
zero.

3.3. Uniform persistence of the disease

The uniform persistence of system (2.1) is demonstrated by the theory of uniform
persistence proposed by Zhao [45].

Theorem 3.2. If R0 > 1, then system (2.1) is uniformly persistent. That is, if
R0 > 1, then there exists a small positive constant η > 0 such that A∞ > 0, I∞ > 0,
P∞ > 0 under the initial conditions of system (2.1).

Proof. In order to prove this result, the uniform persistence theorem in [45] is
used. Define

X =
{
(S, V,E,A, I,R,M,L, P ) ∈ Γ

}
,

X0 =
{
(S, V,E,A, I,R,M,L, P ) ∈ X : E > 0, A > 0, I > 0, R > 0, L > 0, P > 0

}
,

∂X = X\X0.

Now we prove that system (2.1) is uniformly persistent with respect to (X,X0).
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First, it is easy to verify that both X and X0 are positively invariant for system
(2.1), and X0 is relatively closed in X. Moreover, by Lemma 2.2, system (2.1) is
point dissipative. Thus, there exists a global attractor of system (2.1).

Let

M∂ = {(S(0), V (0), E(0), A(0), I(0), R(0),M(0), L(0), P (0)) ∈ ∂X0 :

(S(t), V (t), E(t), A(t), I(t), R(t),M(t), L(t), P (t)) ∈ ∂X0,∀t ≥ 0},
M ′

∂ = {(S, V, 0, 0, 0, 0,M, 0, 0) ∈ ∂X0 : S ≥ 0, V ≥ 0,M ≥ 0}.

We will prove that
M∂ = M ′

∂ .

It is clearly that M ′
∂ ⊆ M∂ . We only need to show the validity of M∂ ⊆ M ′

∂ .
Suppose not, let Γ(t) be a solution of system (2.1) with initial condition Γ(0).
Hence, for any

Γ(t) = (S(t), V (t), E(t), A(t), I(t), R(t),M(t), L(t), P (t)) ∈ M∂

and Γ(t) ̸= M ′
∂ , for ∀t > 0, the following inequalities are given

E(t) = e−(σ+d)

[
E(0) +

∫ t

0

[S(τ)β(τ)p(τ) + (1− ξ)β(τ)V (τ)P (τ)] dτ

]
> 0,

A(t) = e−(γa+δ+d)

[
A(0) +

∫ t

0

[(1− θ)σE(τ)] dτ

]
> 0,

I(t) = e−(γi+d)

[
I(0) +

∫ t

0

[θσE(τ) + δA(τ)] dτ

]
> 0,

R(t) = e−d

[
P (0) +

∫ t

0

[γaA(τ) + γiI(τ)]dτ

]
> 0,

L(t) = e−(λ+µ)

[
l(0) +

∫ t

0

[ρ(τ)(A(τ) + I(τ))M(τ)]dτ

]
> 0,

P (t) = e−µ

[
P (0) +

∫ t

0

[λL(τ)]dτ

]
> 0.

There exists at least one of E(t), A(t), I(t), R(t), L(t) and P (t), which is not zero.
This means that Γ(t) /∈ ∂X0 for t > 0, which contradicts the hypothesis that
Γ(t) ∈ M∂ . Therefore, we can get that M∂ ⊆ M ′

∂ which indicates M∂ = M ′
∂ . We

can obtain that M∂ only has the J0(
Λ

κ+d ,
κΛ

d(κ+d) , 0, 0, 0, 0,
Π
µ , 0, 0) and J0 is isolate

and compact invariant.
Then we will prove that W s(J0) ∩ X0 = ∅, where W s(J0) indicates the sta-

ble manifold of J0. There exists a positive constant ϵ such that under the initial
condition Γ(0) ∈ X0, the follow inequality is true for any solution Γt(Γ(0)) of system

D(Γt(Γ(0)), J0)
∞ ≥ ϵ,

where D is a distance function in X0. Inverse, for ∀ϵ̄ > 0, we assume that
D(Γt(Γ(0)), J0)

∞ < ϵ̄. For ∀ϵ̄ > 0, there exists the period ω > 0 such that
Λ

κ+d − ϵ̄ ≤ S(t) ≤ Λ
κ+d + ϵ̄, κΛ

d(κ+d) − ϵ̄ ≤ V (t) ≤ κΛ
d(κ+d) + ϵ̄, 0 ≤ E(t) ≤ ϵ̄,

0 ≤ A(t) ≤ ϵ̄, 0 ≤ I(t) ≤ ϵ̄, 0 ≤ R(t) ≤ ϵ̄, Π
µ − ϵ̄ ≤ M(t) ≤ Π

µ + ϵ̄, 0 ≤ L(t) ≤ ϵ̄ and

0 ≤ P (t) ≤ ϵ̄.
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Further, we consider the following comparison system

dẼ

dt
≥ β(t)(

Λ

κ+ d
− ϵ̄)P̃ + (1− ξ)β(t)

(
κΛ

d(κ+ d)
− ϵ̄

)
P̃ − σẼ − dẼ,

dÃ

dt
= (1− θ)σẼ − δÃ− γaÃ− dÃ,

dĨ

dt
= θσẼ + δÃ− γiĨ − dĨ,

dR̃

dt
= γaÃ+ γiĨ − dR̃,

dL̃

dt
≥ ρ(t)(

Π

µ
− ϵ̄)(Ã+ Ĩ)− λL̃− µL̃,

dP̃

dt
= λL̃− µP̃ .

(3.9)

System (3.9) can be represented as

ẋ = [F (t)− V (t)− ϵ̄n(t)]x,

where x = (Ẽ, Ã, Ĩ, R̃, L̃, P̃ )T and

n(t) =



0 0 0 0 0 (1− ξ)β(t)

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 ρ(t) ρ(t) 0 0 0

0 0 0 0 0 0


.

According to Lemma 3.2, we know that there is a positive w-periodic function v∗(t)
such that eq

∗tv∗(t) is a solution of system (3.9), where v∗(t) = (v∗1(t), v
∗
2(t), v

∗
3(t),

v∗4(t), v
∗
5(t), v

∗
6(t)) and q∗ = 1

w ln ϱ(ΦF−V+ϵn(w)). Due to R0 > 1,
ϱ(ΦF−V+ϵn(w)) > 1. Therefore, according to the comparison principle, we can
obtain

lim
t→∞

E(t) = +∞, lim
t→∞

A(t) = +∞, lim
t→∞

I(t) = +∞,

lim
t→∞

R(t) = +∞, lim
t→∞

L(t) = +∞, lim
t→∞

P (t) = +∞,

which is contradictory to 0 ≤ E(t) ≤ ϵ̄, 0 ≤ A(t) ≤ ϵ̄, 0 ≤ I(t) ≤ ϵ̄, 0 ≤ R(t) ≤ ϵ̄,
0 ≤ L(t) ≤ ϵ̄ and 0 ≤ P (t) ≤ ϵ̄. Then, there exists W s(E0)∩X0 = ∅. Hence, system
(2.1) is uniformly persistent when R0 > 1.

Next, we prove the existence of a positive ω - period solution of system (2.1),
that is, f has a fixed point. We consider (S∗(0), V ∗(0), E∗(0), A∗(0), I∗(0), R∗(0),
M∗(0), L∗(0), P ∗(0))∈X0. We can easily obtain that S∗(0) > 0, V ∗(0) > 0, E∗(0) >
0, A∗(0) > 0, I∗(0) > 0, R∗(0) > 0,M∗(0) > 0, L∗(0) > 0, P ∗(0) > 0. First, S∗(0) >
0 is satisfied. Suppose not, assuming S∗(0) = 0, the first equation of system (2.1)
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is expressed as follows

dS∗(t)

dt
= Λ− β(t)S∗P − κS∗ − dS∗ = Λ− (α(t) + d)S∗,

where α(t) = β(t)P + κ. Hence, we obtain

S∗(t) = e
∫ t
0
−(α(τ)+d)dτ

[
S∗(0) +

∫ t

0

Λe
∫ τ̃
0
(α(τ)+d)dτdτ̃

]
= e

∫ t
0
−(α(τ)+d)dτ

∫ t

0

Λe
∫ τ̃
0
(α(τ)+d)dτdτ̃ , ∀t ≥ 0.

Further, the following inequality

S∗(nω) = e
∫ nω
0

−(α(τ)+d)dτ

∫ nω

0

Λe
∫ τ̃
0
(α(τ)+d)dτdτ̃ > 0

can be obtained. From the periodicity of S∗(t). it is easy to see that S∗(0) =
S∗(nω) = 0, n = 1, 2, 3..., which is inconsistent with S∗(nω) > 0. Therefore, we can
obtain S∗(0) > 0.

Thus, we obtain that u(S∗(0), V ∗(0), E∗(0), A∗(0), I∗(0), R∗(0), M∗(0), L∗(0),
P ∗(0)) ∈ ℜ9

+ and (S∗(ω), V ∗(ω), E∗(ω), A∗(ω), I∗(ω), R∗(ω), M∗(ω), L∗(ω), P ∗(ω))
is the positive ω-period solution of system (2.1). This completes the proof.

The values of the parameters are Λ = 100000, d = 1/(80∗12), β(t) = 8.0×10−7(1
+sin( π

12 t+4)), ρ(t) = 3×10−7(1++sin( π
12 t+4)), κ = 0.002, σ = 30/6, γa = 30/7,

γi = 30/5, λ = 30/7, µ = 0.002, Π = 10000, θ = 0.5, δ = 0.80935, ξ = 0.8. The
initial value of model (2.1) is (S(0), V (0), E(0), A(0), I(0), R(0),M(0), L(0), P (0)) =
(1000000, 20000, 10000, 4000, 3000, 5000,1000000, 10000, 10000). According to these
parameters, we calculate that R0 = 8.2813 > 1. We can give some numerical
simulations to illustrate and extend our results in Figure 3.
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Figure 3. The global stability of the disease-free periodic solution. (a)S(t), (b)V (t), (c)E(t), (d)A(t),
(e)I(t), (f)R(t).

From Figure 3, it can be seen that all population in each compartment exhibit
periodic fluctuation and tend to non-zero values.
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4. A case study

In this section, we will estimate the unknown parameters of model (2.1) on the basis
of the dengue fever data in Singapore from January 2014 to June 2017 by using the
MCMC algorithm. According to the estimated unknown parameters, the mean and
confidence interval of the basic reproduction number R0 is also calculated.

Since the early dengue vaccine is very flawed and the number of people vacci-
nated is also very small, we will ignore the number of people vaccinated and will
study the significance of vaccination for controlling the disease later. Therefore,
model (2.1) is transformed to

dS

dt
= Λ− β(t)SP − dS,

dE

dt
= β(t)SP − σE − dE,

dA

dt
= (1− θ)σE − δA− γaA− dA,

dI

dt
= θσE + δA− γiI − dI,

dR

dt
= γaA+ γiI − dR,

dM

dt
= Π− ρ(t)M(A+ I)− µM,

dL

dt
= ρ(t)M(A+ I)− λL− µL,

dP

dt
= λL− µP.

(4.1)

4.1. Parameter estimation and model fitting

According to the periodic characteristics of dengue fever in Singapore, we de-
fine the periodic direct transmission rate between susceptible humans and infected
mosquitoes as follows

β(t) = β0 + β1 sin(
π

12
t+ φ), (4.2)

where π
12 means that the reporting cases period is π and the time period is 12

months. β0 and β1 indicate coefficients of direct transmission rate between sus-
ceptible humans and infected mosquitoes, φ indicates the phase of the T -periodic
function.

Similarly, periodic indirect transmission rates between infected humans and sus-
ceptible mosquitoes are defined as follows

ρ(t) = ρ0 + ρ1 sin(
π

12
t+ φ), (4.3)

where π
12 means that the reporting cases period is π and the time period is 12

months. ρ0 and ρ1 indicate coefficients of direct transmission rate between infected
humans and susceptible mosquitoes, φ indicates the phase of the T -periodic func-
tion.

For the sake of simulating the number of new cases of dengue in Singapore,
the rationality of the model is verified by the number of cases actually monitored.
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Therefore, we mainly focus on new infections and cumulative infections every month
in Singapore. Cumulative infections reported cases can be expressed as follows

dI

dt
= θσE + δA, (4.4)

where I(t) indicates the number of cumulative infections of reported infected hu-
mans. As for the newly infected cases, it can be expressed as follows

GI = I(t)− I(t− 1), (4.5)

where GI represents the number of new cases of reported infected humans, and t is
regarded as month in the simulations. In what follows, we use Eq. (4.5) to fit the
number of new cases of reported infected humans in Singapore. The fitting results
are shown in Figure4. In Figure4, the solid black line represents the fitted data, and
the red boxes represent the actual data. The areas from the darkest to the lightest
is the 95% of the model uncertainty.
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Figure 4. The fitting results from January 2014 to April 2017. (a) The number of new cases reported,
(b) The number of cumulative reported.

It can be seen from Figure 4 that our fitting is adequate. In addition, we also
get that the number of reported dengue cases is much lower than the number of
unreported dengue cases.

In order to compute the basic reproduction number R0 of dengue in Singapore
and effectively control the spread of disease, it is necessary to estimate the unknown
parameters of model (4.1) since several parameters and initial values are assigned
values based on existing data and experience. According to some relevant reports
and literatures, we can determine the following initial values and some parameters
of model (4.1).

(i) The recruitment rate of susceptible humans (Λ): we obtain that the birth
rate in Singapore at the end of 2013 is 9.8 per thousand by the relevant data of
the Department of Statistics Singapore [39], and we also get the total population
of Singapore at the end of 2013 is 5.4697 million. Therefore, we can get that the
monthly birth population of Singapore is about 4467.

(ii) The natural mortality rate of the humans (d): according to the statis-
tics of the Department of Statistics Singapore [39], we conclude that the monthly
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natural mortality rate of the population in Singapore in 2013 is approximately
d = 1/(80× 12), where the constant 80 represents the average life span expectancy
of the population of Singapore and the constant 12 represents the month of year.

(iii) The average incubation period in humans (σ): the incubation period of
dengue fever is different in different areas, such as, a few from 3 to 14 days, the
most common being 3 to 7 days [35]. In this paper, we assume that the mean
incubation time is 6 days. Hence, the mean incubation period σ can be determined
by 30/6.

(iv) The recovery rate of reported infected individuals (γi) and the recovery rate
of the unreported infected individuals (γa): the recovery rate for dengue is also
different, a few from 4 to 15 days [6, 21]. We assume that the average recovery
time of reported dengue patients is 5 days , then the recovery rate of monthly is
30/5. The average recovery time of unreported dengue patients is 7 days, then
the recovery rate of monthly is 30/7. According to the report of Ministry of Health
Singapore [28] and related mosquito control work, we assume that the birth number
of mosquitoes is Π = 10000 and the mortality rate is µ = 0.002.

(v) The average incubation period in mosquitoes (λ): according to reference [35],
we assume that the average incubation time is 7 days, then the average incubation
period λ can be determined by 30/7.

Other parameters are estimated in Table 2 based on the actual reported dengue
data of Singapore [28] by using MCMC.

The unknown parameters and initial values of model (4.1) are estimated by
MATLAB software. In this paper, we use an adaptive combination of delayed
rejection and adaptive metropolis algorithm to carry out the Markov Chain Monte
Carlo procedure [15]. The algorithm runs 10 thousands iteration and uses the
Geweke convergence diagnostic method to evaluate the chain convergence [14]. We
can estimate the convergence of the Markov chain by its closeness to 1. The mean,
standard deviation and 95% confidence interval of the estimated parameters are
shown in Table 2.

According to the parameters in Table 2, we can use the theory developed by
Wang and Zhao [37] to calculate the basic reproduction number of model (4.1).
The basic reproduction number R0 can be calculated by Lemma 3.1 and R0 is
estimated to be 1.602 (95% CI:(1.248, 1.958)), as shown in Figure 5.

This means that dengue in Singapore is impossible to ignore. It can be seen
from Figure 5 (b) that the basic reproduction number R0 is normally distributed.
Therefore, we can easily obtain the confidence interval and mean of R0.

5. Uncertainty and sensitivity analysis

The sensitivity of numerical simulations to the variation of various parameters in
model (4.1) is evaluated using Latin Hypercube Sampling (LHS) and Partial Rank
Correlation Coefficients (PRCC) which are significant for differential equations [24].
LHS is a stratified sampling technique where the variation of each parameter can
be effectively analyzed by simultaneous uncertainty ranges. PRCC represents the
relationship between parameters and results, explaining the influence of parameters
on the output variables. Therefore, the positive (or negative) correlation between
the input parameters and the output parameters is represented by the corresponding
positive (or negative) PRCC value.
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Table 2. The parameters description of the epidemic model.

Parameter Mean value Std 95% CI Source

Λ 4467 − − (i)

d 1/(80× 12) − − (ii)

σ 30/6 − − (iii)

γi 30/5 − − (iv)

γa 30/7 − − (iv)

Π 10000 − − (iv)

µ 0.002 − − (iv)

λ 30/7 − − (v)

β0 2.4963× 10−8 9.4183× 10−9 [6.5031× 10−9, 4.3423× 10−8] MCMC

β1 1.5424× 10−8 4.4259× 10−9 [6.7492× 10−9, 2.4099× 10−8] MCMC

ρ0 2.2396× 10−7 7.8214× 10−8 [7.0661× 10−8, 3.7726× 10−7] MCMC

ρ1 5.9320× 10−7 5.6658× 10−8 [4.8215× 10−7, 7.0425× 10−7] MCMC

φ 1.346 0.19287 [0.9680, 1.7240] MCMC

θ 0.0063071 0.00055649 [0.0052, 0.0074] MCMC

δ 0.002162 0.0014369 [0, 0.0050] MCMC

S(0) 5465700 − − [39]

E(0) 1.0456× 104 5.1044× 103 [4.5137× 102, 2.0461× 104] MCMC

A(0) 6.5768× 103 4.1924× 101 [6.4946× 103, 6.6590× 103] MCMC

I(0) 1653 − − [28]

R(0) 3.2046× 103 1.2984× 101 [3.1792× 103, 3.2300× 103] MCMC

M(0) 2.9559× 107 7.2871× 106 [1.5276× 107, 4.3842× 108] MCMC

L(0) 2.0807× 105 8.8522× 104 [3.4567× 104, 3.8157× 105] MCMC

P (0) 1.0745× 105 6.0450× 103 [3.4567× 104, 1.1930× 105] MCMC
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Figure 5. The basic reproduction number of R0. (a) The Markov chain of the last 500 samples of
R0. The purple dot represents the size of the R0 value. (b) The frequency distribution of R0. The red
curve is the probability density function curve of R0 (For an explanation of the reference to color in this
illustration, the reader is referred to the Web version of this article).
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5.1. Sensitivity of other parameters to model

The absolute value of PRCC ranges from 0.4 to 1, which indicates that there is
a high correlation between input parameters and output variables. The absolute
values of PRCC between 0.2 and 0.4 indicate a moderate correlation between input
parameters and output variables. The absolute value of PRCC between 0 and
0.2, indicates that there is no significant correlation between input parameters and
output variables. According to the above values, we can obtain some results of
model (4.1), which is showed in Figure 6. Figure 6 shows 1000 sample fits of model

Figure 6. Plot of the output (1000 runs) of model (4.1). The ordinate represents variable I(t), and the
abscissa represents time (weeks).
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Figure 7. The sensitivity of the parameters changes as the dynamics of model (4.1) progress.

(4.1) on the variables I(t) from January 2014 to June 2017. The 1000 simulations
of the output variables I(t) is periodic, which reflects the periodicity of dengue in
Singapore.

From Figure 7, it can be seen that the changes of several parameters with time
have an impact on the reported new cases. In particular, there is strong negative
correlation between the recover rate γi and the number of new cases. This means
that the public health department should strengthen the treatment work and the
patients with dengue should go to the hospital for treatment rather than treatment
in family. There is a little negative correlation between the recruitment ratio Π
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and the number of new cases. This means that reducing the mosquito birth rate
has a role in controlling disease. Then, parameters θ and δ are strongly positively
correlated throughout the time period. This indicates that the active case detection
and timely reporting case cannot be overlooked.

Further, we can obtain the sensitivity of some parameters to each population,
such as the infected individual (seen Figure 8). Figure 8 shows that the infected
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Figure 8. P values of each parameter on the 80th days. (a) Λ, (b) Π, (c) γa, (d) θ, (e) δ.

individual (I(t)) is sensitive to parameters Λ (p − value = 2.7146 × 10−35), Π(p −
value = 0.52317), γa (p − value = 0), θ (p − value = 0) and δ (p − value =
3.0644 × 10−89), which indicates that they excepted Π have significant effects on
model (2.1). Therefore, dengue fever epidemic can be effectively controlled under
the appropriate control strategies.

5.2. Sensitivity of the infection rate

In order to study the effects of human-to-mosquito contact transmission rate and
mosquito-to-human contact transmission rate, Figure 9 shows the impact of infec-
tion rates β(t) and ρ(t) on disease transmission respectively. According to Figure
9(a), the infection rate β(t) is increased and then decreased by 0.15 times, respec-
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Figure 9. The impact of infection rates β(t) and ρ(t) on disease transmission. (a) β(t), (b) ρ(t).

tively, and the transmission trend of the disease is obtained. Figure 9(b) reflects
that the infection rate ρ(t) is increased and then decreased by 0.15 times respec-
tively, and the transmission trend of the disease is obtained. According to the
Figure 9, changing the mosquito-borne transmission rate can significantly change
the intensity of infection. The rate of transmission increases, which makes the peak
of infection earlier and larger. Inverse, it delays and decrease the peak of infection.
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Figure 10. The number of the reported infected individuals with different vaccination. (a) 50%, (b)
80%.

5.3. Effects of vaccination on dengue control

In this part, we study the effect of the vaccine on dengue fever. According to model
(2.1), we assume that the vaccine is 50 percent effective and 80 percent effective,
respectively (ξ = 0.8/0.5). Hence, the effect of inoculation ratio of 0.1 and 0.2 on
disease control is considered respectively. When the vaccine is 50 percent effective,
the post-vaccination results are shown in Figure 10 (a). When the vaccine is 80
percent effective, the results after vaccination are shown in Figure 10 (b).



1306 C.-Y. Yin, X.-Y. Meng & J.-M. Zuo

According to Figure 10 (a), when the vaccine is 50 percent effective, with the
vaccination rate increasing, the peak of disease development can be reduced to a
certain extent. However, when the vaccination ratio is 10% and 20%, respectively,
the vaccine has little effect on the peak, but only plays a certain role of delay, which
is conducive to the preparation of epidemic prevention and control. According to
Figure 10 (b), we can easily obtain that when the vaccine is 80 percent effective,
with the inoculation rate increasing, the peak of disease is significantly delayed
and the peak of disease is significantly reduced, and the number of infected people
decreases significantly. Therefore, the government should increase investment in the
research and development of the dengue vaccine to improve the effectiveness of the
vaccine and increase the proportion of vaccinated people, so that the disease can be
effectively controlled.

6. Discussions and conclusions

When we investigate the infectious diseases, some characteristics of such diseases
should be considered into the corresponding model. Cheng et al. [7] created dif-
ferent scenarios to investigate the dengue outbreak in Guangzhou, focusing on the
timing of imported cases, climate, vertical transmission among mosquitoes, and the
impact of intervention measures on the model. The results indicated that the early
appearance of imported cases was the most important factor in the characteristics of
the 2014 outbreak. Precipitation and temperature also altered the transmission dy-
namics, indicating that dengue transmission has a seasonal pattern. Wang et al. [38]
collected weekly dengue incidence data, daily mean temperature, and rainfall from
30 locations in Singapore, Sri Lanka, and Malaysia between 2012 and 2020. They
estimated the peak transmission potential and epidemic duration of dengue fever in
the future. Their study showed that the variation in dengue transmission potential
and epidemic duration differs by location, with varying transmission rates under
different temperatures. Therefore, it is important to consider the seasonal charac-
teristics of dengue fever and construct a cyclical mathematical model for dengue
fever. Therefore, our model takes into account the periodic transmission. In our
paper, in order to study the dynamic relationship among periodic transmission,
vaccinated cases in dengue fever, we propose a novel non-autonomous differential
equation model (2.1) with periodic factors and vaccinated cases.

The basic reproduction number is obtained. We estimate that the basic re-
production number R0 is 1.602 (95% CI: (1.248, 1.958)). The global asymptotic
stability of the disease-free periodic solution is proved. The existence of the disease
periodic solution and the uniform persistence of model (2.1) are also given. The
unknown parameters and initial values of model (4.1) are estimated by using the
MCMC algorithm based on the basis of the dengue data in Singapore from 2014
to 2017. The uncertainty and sensitivity of all parameters are evaluated by us-
ing the Latin Hypercube Sampling and the Partial Rank Correlation Coefficient.
The sensitivity of the parameters suggests that the transmission rate is a possible
intervention to reduce dengue infection. Our results show that improving vaccine
effectiveness and vaccination coverage are beneficial to the control of the dengue
fever. This is consistent with the results in Shim [34] and Pratchaya et al. [31].
Musa et al. [29] also focused on Taiwan and analyzed the impact of different vac-
cination coverage rates on dengue transmission. Our model results align with the
findings [29], showing that high coverage vaccination can effectively control dengue
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outbreaks.
In addition, time delay has a significant effect on the dengue fever, and the

disease can be effectively prevented by controlling the mosquito population. There-
fore, it is possible to consider the dynamics of a dengue fever model with impulsive
effects and delay, and propose a better control strategy. This will be investigated
in the future.
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