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Abstract This paper introduces a two-grid multipoint flux mixed finite ele-
ment (MFMFE) method for solving nonlinear parabolic problems. The
MFMFE method is advantageous due to its ability to decouple saddle point
algebraic systems. The two-grid algorithm transforms nonlinear problems into
smaller nonlinear systems on coarse grids and linear problems on fine grids,
facilitating rapid decoupling of nonlinear equations. We present semi-discrete
and fully discrete backward Euler schemes for the model problem. Theoretical
results demonstrate the convergence order of velocity and pressure. A numer-
ical example validates the effectiveness of the proposed algorithm, showing
that the two-grid MFMFE method significantly reduces CPU running time
compared to the standard MFMFE method.
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1. Introduction

We consider the following nonlinear parabolic problem:

X V-(KD) = f0), @yt €Qx 0.T) (1)
p(x,9,0) = po(z,y), (2,y) €9, (1.2)
KVp-n=0, (x,yt)ecdQx(0,T], (1.3)

where the polygon domain © C R? has a boundary 952, in flow in porous media

modeling, p denotes the fluid pressure, n is the outward unit normal on 02, K is

the symmetric positive definite tensor, and f(p) represents the external flow rate.
The assumptions for the solution of (1.1)-(1.3) are given as follows:

(1) For some positive constants ko, k1,

kotTe < ETK(2)¢ < k1€T¢, VreQ, VeeR2 (1.4)
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(2) We assume that the solution p € L2(0,T; W24(Q)), and f(p) is twice continu-
ously differentiable.

Parabolic equations have been widely used in physical phenomena such as heat
conduction processes, electromagnetic field transmission, and wave propagation
problems in porous media. In the past few decades, scholars have conducted ex-
tensive research, and classic numerical methods include the finite difference method
[8, 18], finite element method [1,21], finite volume element method [4, 11], and so
on.

Moreover, to obtain local mass conservation and to accurately approximate the
gradient of the principal variable, the mixed finite element (MFE) method is widely
used [14,17]. However, the disadvantage of the MFE method is that it requires
solving a saddle point type algebraic system, which is computationally intensive.
Mary F. Wheeler and Ivan Yotov proposed a multipoint flux mixed finite element
(MFMFE) method [23]. This method can not only keep the advantages of the MFE
method but also decouple the saddle point type algebraic system. The development
and application of this method can be found in [9,10,13,15,26,27]. In [9], a posterior
error estimation for MFMFE method was studied. In [26], the MFMFE method
was presented to solve the Darcy-Forchheimer model. The MFMFE method of
decoupling miscible displacement problem was studied in [15,27].

The model problem is a large nonlinear system. It is necessary to study an
efficient algorithm. Inspired by Xu [24, 25], the two-grid algorithm is a suitable
candidate. The main idea of the algorithm is to generate a rough approximation of
the solution using the coarse grid space, then correct it by solving a linear system
on the fine grid space. Many scholars have applied this method to different model
problems [5,6,16,19,20]. As far as we know, no one has used the two-grid method
to the MFMFE approximation schemes for strongly nonlinear parabolic problems
to achieve equation decoupling and accelerate solutions.

In this paper, we will consider a novel two-grid MFMFE method for nonlinear
parabolic problems (1.1)-(1.3). Solving a large nonlinear system on the fine grid is
reduced to solving a linear problem on the fine grid space and a small nonlinear
problem on the coarse grid space. Theoretical deduction and numerical experi-
ment show that the new method can decouple nonlinear equations quickly and have
certain theoretical and practical application values. The rest of this paper is ar-
ranged as follows. In section 2, the MFMFE spaces and the semi-discrete and fully
discrete approximation scheme for nonlinear parabolic problems are presented. A
two-grid algorithm of the MEMFE discretization is proposed and error estimates of
the schemes are derived in section 3. In section 4, a numerical example is given to
illustrate the theoretical analysis and to indicate that the computing time is greatly
reduced.

2. Multipoint flux mixed finite element method

2.1. Some notations and weak formulation

For the domain Q C R?, let W*4(Q) be a standard Sobolev space, where 1 < ¢ < co.
The norm is defined as

lullweaey = lullig = ( /Q S oruln) a1 < g < oo,

lo| <k
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Uy, 00 = max ||0%u = max (esssup |[0%ul).
oy = e 10"l = s esssup 0%

When ¢ = 2, let W*2(Q) = H*(Q) be a Hilbert space equipped with the norm
| - lk2. We denote by L*(0,T;W*4(2)) the Banach spaces of all L* integrable
functions from [0, 7] into W*¢(Q) with norm

1
s

T
Ls(0,T;Wk:a(Q)) = (/0 Hu”f/vk,q(g)dt) .

[[ul

Let 0 = t° <t < ... < t¥ = T be the partition of time interval [0, 7] with
t" = nAt.
We will also use the space
H(div; Q) = {v € (L}(Q)*: V-v € L*(Q)},
equipped with the norm
[vllaiv = (0> + |V - v]|*)"/2. (2.1)

Denoting u = —KVp, the weak formulation of (1.1)-(1.3) is the following: find
(u,p) € V. x W such that

(K 'u,v) — (p,V-v) =0, YveV, (2.2)
(2 w) + (7 w,w) = (fp)w), Y €W, (2.3

where
V={veH(iv;Q):v-n=00nd0}, W=L*Q).

In this paper, we will use C to represent a general positive constant that is inde-
pendent of the discretization parameter.

2.2. Multipoint flux finite element spaces

Let I'j, be a shape regular and quasi-uniform finite element partition [7] of € con-
sisting of convex quadrilaterals, where h = maxger, diam(E). For any element
FE € Ty, there exists a bijection mapping Fg : E—>E , where F is the reference unit
square with vertices 7#; = (0,0)7, 7, = (1,0)T,73 = (1,1)7, 7, = (0,1)T. Denote by
ri = (z4,y:)T (i = 1,...,4) the four corresponding vertices of element E, the Jaco-
bian matrix by DFg and Jg = |det(DFg)|. Denote the inverse mapping by Fy',
its Jacobian matrix by DFy*', and Jpor = |det(DF,')|. We have that

DEg () = (DFg) ™' (2), Jppr (1) = 5.

The bilinear mapping given by

Fp(®)=ri(1 —2)(1 —§) + roz(1 — §) + 329 + ra(1l — 2)9. (2.4)
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We define the lowest order BDM; mixed finite element space [2, 3], which is
defined on the reference unit as

V(E) = P (E)? +r curl(22§) + s curl(i4?)

_ (041:% + B+ +rit+ 25:2@,) (2.5)
o + Bof) 4 o — 2rdy — 552 )’
W(E) = Py(E), (2.6)

where r, s, aq, s, 81, 82,71, Y2 are real constants and Py represents the space of
polynomials of degree less than or equal to k.

The outward unit normal vectors to the edges of E and E are denoted by n;
and 7, ¢ = 1,...,4. The degrees of freedom for ¢ € V(E) can be chosen to be the
values of ¥ - 71z at any two points on each edge é. We can obtain the velocity space
on any element F by Piola transformation to v <> ¢ : v = iDFEf; o Fbil, and the

pressure space can be obtained by transformation to w <> w: w = wo Fy L
The BDM; spaces are given by

Vi={veV:v|ge0,0eV(E),VE e I}}, (2.7)

Wh={weW:w|pge w,we W(E),YE € I} (2.8)
We define a BDM; projection operator Il : V' — V},, which satisfies

(V- (u—Tpu),w) =0, Ywe Wy, (2.9)

=Tl < Cllulo g, ~<r <2, (2.10)

V- (u—-Thu)log <CIV-ulph”, 0<r<I1. (2.11)

In addidition, we define L? orthogonal projection Qj : W — W), , which satisfies

(p — Qwp, w) =0, VYwe Wy, (212>
[P = Qnpllog < Clipllrgh", 0<r <1 (2.13)
For u,v € V},, we introduce the global quadrature rule
(K 'u,v)g = Y (K 'u,v)q.k. (2.14)
Eerly,

The integration on any element E is performed by mapping to the reference
element E. The quadrature rule is defined on E. Using the transformation of the
reference unit and the physical unit, we have

(K 'u,v)gp = / K 'u-vdz
E
rq 1 .1 . A
B JEe JE

1 T £ —1 PN

CEIN= tpa ey
= ;% (75)u(s) - D(7),
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where
»=JgDF;'K(DF;H)T. (2.16)
We define the quadrature error on the element to be

op(K tu,v) = (K tu,v)p — (K 'u,v)g.5. (2.17)

For the subsequent error analysis, the following lemmas are listed.

Lemma 2.1. [23] If u € V},(E), for all constant vectors vy, then
og(u,v9) = 0. (2.18)
Lemma 2.2. [23] There exists a positive constant C' independent of h, such that
(K 'v,v)g > COllv|?, Vv e V. (2.19)

Lemma 2.3. [22] If K~! € Wb for all elements E, then there exists a constant
C independent of h, such that

lo(K ', v)| < Chljul|i|v]. (2.20)

Lemma 2.4. [12] Suppose g is the fragment smooth function on partition Ty, and g
is the mean value on the partition unit and ||Vgllo,co < M, then it has the following
form

[(9(p)0, &) — (g0, @)| < CMA|B][[¢]- (2.21)

Next, two MFMFE approximation schemes for the model problem are proposed,
where the semi-discrete scheme is: Find (uy, pp) € Vi, X Wy, such that

(K_luh’”h)Q - (phav : ’Uh) =0, VYv, €V, (2.22)
0
(%710]1) + (V . Uha’th) = (f(ph), wh), th S Wh~ (223)

And the fully discrete backward Euler scheme is: Find (uj,pp) € Vi, x Wp, such
that

(K_luﬁwh)Q — (p;f,v . ’Uh) =0, Yv, €V, (2.24)
pp—py " 0N (o
BB )+ (7 ufwn) = (@) wn). Yun € Wh  (225)

In order to prove the main theorem of this article, we will use some projection
techniques and estimates between the solution of the formulation (2.22)-(2.23) and
the elliptic-mixed projection defined below.

We define the following mixed elliptic projection (Rpu, Rpp) € Vi, x W}, by

(K_thu,'uh)Q — (th, V- ’Uh> =0, VYo, €V, (2.26)

(V- Ry, wn) = (f(p) — 2

a,wh), Ywy, € Wh, (2.27)

in order to perform error estimation related to the next section of the two-grid
algorithm, we need the following theorems.
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Theorem 2.1. (u,p) is the solution of (2.2)-(2.3), (Rpu, Rpp) is the solution of
(2.26)-(2.27), then there exists the following convergence

Ju— Ryl < Chilull, (2.25)
IV (u— Ryuw)|| < ChIIV - w1 (2.29)
Proof. Subtracting the scheme (2.2)-(2.3) from (2.26)-(2.27), we have the error
equation
(K~ Y(pu — Rpw),vi)g — (Qup — Rup, V - vp)
= (K Yu —Tju),v,) — o(K lu,vy), Yo, € Vi, (2.30)
(V- (u— Rpu),wp) =0, Ywy, € W, (2.31)
From (2.30)-(2.31), taking v;, = Ilyu — Rpu and wy, = Qpp — Ryp, we can obtain
that

(K™Y (Tpu — Rpw), Mpu — Ryw) = — (K H(u — Myu), Mu — Ryu)

— o(K'Ipu, Iu — Ryu). (2.32)
Combining (2.10) and Lemma 2.3, we deduce that
MThw — Ryul* < Chlluls [ Mhu — Ryull, (2.33)

(2.28) can be easily derived.
Then, it is obvious that (V - (u — Rpu),wp) = (V- (IIpu — Rpu),wy) = 0, so
that V - (II,u — Rpu) = 0. Hence, according to (2.11), we have

IV (u—Ryu)|| <[V (u—Ihu)|| < Ch|V - ull, (2.34)
so (2.29) is proved, thus we complete the proof of the theorem. O

Theorem 2.2. Ryp is the mized elliptic solution of (2.26)-(2.27), then we have the
following estimate

1Qnp — Rupll < CR2(Jull + [V - ulh). (2.35)
Proof. We suppose the Dirchlet problem as follows [17]
—A¢ = in Q
QS dja mn ) (2.36)
o =0, on 0f).

For ¢ € L1(Q), the system (2.36) has a unique solution ¢, and for ¢» € W™1(Q),
there has

[6llr+2.4 < [[¥lrq- (2.37)
Let ¢ € L2(Q) and ¢ € W, %() satisfy (2.36), then by (2.9) and (2.30)-(2.31),

we derive
(Qnp — Rup, 1)
=(Qnp — Rup, —A¢)
=(Qnp — Bup, =V - (IIx(V¢))
=— (K™'(u — Ryu), Hh(V¢)) o(K ’1(RhU) I, (V) (2.38)
=— (K '(u— Rpu), Vo — Qn(Ve)) + (K~'V - (u— Rpu), ¢ — Quo)
+ (K~ (u— Ryu), ¢> — Qn(Ve)) + (K~ (u — Ryu), Vo — 11, (Vo))
— (K~ (Rpu), 1, (V).
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By using the approximation properties (2.11) and (2.13), we see that the first
four terms on the right side of (2.38) are estimated as

CV - (u = Ryu)ll[|¢ — Quoll + lu — Rpul[[Ve — A (V)]). (2.39)
For the last term on the right side of (2.38), by (2.18), we can derive that

o(K~ (Rpu), Tn(V9)) = o (K~ (Ryu), 11 (Vo) — 1(V9)), (2.40)

where II,(V¢) are the mean value of 115 (V¢) on E. Therefore,

o (K~ (Ryu), T1h(V9))| < Chllul1 [11,(V) — (V)|

(2.41)
< CR?|[ulf]|¢]|2-

Combining (2.39) and (2.41), by using the approximation properties (2.10) and
(2.13), we see that

(@Qnp = Bup, ¥)] < C(hllu — Rpw|| [Vl + hl|V - (u — Ryw)|l[ 6]l + h?[[ull1]#]2)
< C(R2|lully + P2V - ull)]|6]12

< CR*(|Jully + |V - ull)[[¥ ],
(2.42)

hence, we derive formula (2.35). O

Theorem 2.3. Suppose that (up, pp) € Vi X Wy, is the solution of the semi-discrete
scheme (2.22)-(2.23), and (Rpu, Rpp) € Vi, x Wy, is the mized element projection
(2.26)-(2.27), then there exists a constant C' independent of h, which satisfies

| Rnp = pul| < Ch2. (2.43)

Proof. Subtracting the scheme (2.22)-(2.23) from the formulation (2.26)-(2.27),
then we can get

(Kﬁthu, ’Uh)Q — (Kﬁluh, ’Uh)Q = (th —pn, V- ’Uh), Yo, € Vp, (2.44)
dp | Opn )

(V- (Rpw —up),wn) = (f(p) = f(pn) — 57 + 7> wn

En ot Ywy, € Wy, (2.45)

Taking the test functions wp = Rpp — pp and v, = Rpu — up, combining (2.12),
adding (2.44) and (2.45), we can derive that

0
(K™Y (Rpu —up), Ryu — up)g + (E(th —pn)s Rup — pn)

5 (2.46)
= (f(p) = f(pn) = 5, (Qnp — RBup), Rup — pn)-
The left side of (2.46) can be estimated as follows
1 0
(K™ (Rpu — up), Rpyu — up)o + (a(th —Pn), Rup — pn)
L (2.47)
> || Bhw — unll® + 5 — | Bup — pall*.

2dt
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For the right side of (2.46), we see that

(f(p) = f(pn) — %(th — Rup), Rup — pn)

= (f(p) — f(Qnp) + f(Qnp) — f(Rup) + f(Rup) — f(pn) (2.48)

0
- &(th — Rpp), Rnp — pn)-

Due to Taylor expansion f(p) = f(th) + fp(QhP) (p - th) + fpp(p) (p - th)Qa
we have

(f(p) — f(Qup), Rnp — 1) < (fo(p)(p — Qnp), Rup — 1)

d , (2.49)
+ (fop(p — Qup)*, Rup — p1)-

Because of (2.13), (2.21) and e-inequality,

|(f(p) — f(Qnp), Rnp — p1)|
< Chllp — Qupll|Bnp — pull + Cllp — Qupll§ 4l Rrp — pall (2.50)
< Ch* +¢|Rpp — pull*.

Combining Theorem 2.3 and e-inequality, we deduce that

|(f(Qnp) — f(Bap), Rnp — pn)| < Cl|Qnp — Rupll|| Rnp — pall
< Ch* +¢|Rup — pul%

|(f(Rap) = f(pr), Rup — pn)| < C||Rp — pall?, (2.52)

(2.51)

0
— 2 (Qup — Bup), Rup —p1)| < C — Rup)elll| Rnp —
(=5, (@np = Bup), Bup = pu)| < Cll(@np — Bup)ellll Bnp — pu (2.53)
< Ch* +¢||Rup — pull*-
Substituting (2.47)-(2.53) into (2.46), we get
1 d 2 4 2
5 gz Bep —pull” < O+ |1 Brp = pal°), (2.54)

integrating over [0, 7] and combining the Gronwall inequality, we can get the theo-
rem. O

Theorem 2.4. Suppose that (uj,pp) € Vi, x Wy, is the solution of the fully discrete
backward Euler scheme (2.24)-(2.25), and (Rpu™, Rpp™) € Vi, X Wy, is their mized
element projection (2.26)-(2.27), then there exists a constant C independent of h,
which satisfies

|Rrp™ — pi|| < C(h* + At). (2.55)
Proof. At the time t = t", we rewrite (2.26)-(2.27) as
(K_thu”,'uh)Q — (thn7 V- vh) =0, Vv, € Vy, (2.56)

(V- Ry wy) = (f") — 2

ﬁ,ﬂ}h), V'U.Jh € Wh. (257)
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Subtracting the scheme (2.24)-(2.25) from the formulation (2.56)-(2.57), then
we can get

(Kﬁl(Rh’u,n — UZ),’U}L)Q — (thn — pz, V- ’Uh) =0, (2.58)

(V- (R — ), ) — (P ) = (1)~ 2 o)), (259)

Taking vy, = 7" = Rpu”™ — u} and wy, = (" = Ryp" — p}, combining (2.58) and
(2.58), then we have
S S

1A (2.60)
=((f") = F@h) + (K7 (Bap" = Bap" ™) = pi)),C").

(K—lnn, nn)Q 4 (

The left side of (2.60) can be estimated as

-1, n ,n C Cn ! n n||2 n—1(2 n|2
(K n"m )Q+(7,C ) = 2Aﬁ(HC == 1¢" 1) + Clin™ |7 (2.61)

For the first item on the right side of (2.60), we have

[(f(") = FloR), ¢ <I(F@™) = F(Qup™), ™) + [(f(Qnp™) — f(Rrp™), ¢
+[(f(Rup™) = f(pR), ¢l
<|(fp(@™) (" — Qup™),¢™)| + |(fpp(pn - thn)27 ¢l
+C[Qup™ = Rup™ (€™ + Cl1¢™1?
<Ch|p" = Qup"[[IIC" | + Cllp"™ — Q™ 13 4l1C"
+C(h + 1<)
<C(h" +[1¢"1%), (2.62)
which follows from Taylor expansion, (2.13), (2.35) and schwarz inequality.
Taking a™ = p™ — Rpp™, we see that
1 1

1 n n—1 n —1 —1
— - - _ — - . 2.
xg (Brp" = Bap" ) —pf = (0" = ") = = (@ —a ). (263)

Let d™ = Qpp™ — Rpp™, from (2.35) and schwarz inequality, we get

1 g2
(0" ===l [ 6t§dt||||<"|| (261)
t"
<ar [ 1GEPa e
< oA K
1 1
(g5 (@ = a6 = l( (@ = "), ¢ (2.65)

1 [ ad .
<llas / ol |

<Ol h4+ I 11%).
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Now, by (2.63)-(2.65), it follows that

1 n n—1 n n 1 4 n||2
— - - <O(— . .
(a (B — Rap™™) — 9, C")| < CLachd + At +[C7?) (2.66)
Combining (2.62) and (2.66), we can get
1 ni|2 n—12 ni|2 1 4 ni|2
— - <C(— . .
S 7 — M)+ o < C(h® + A+ ). (267

Multiplying 2A¢ on both sides of (2.67), then summing for n from 1 to N, we can
obtain

N
ICVIZ = NI°NP < C(h* + (A0)* + ) AtlIC™|1?). (2.68)

n=1

We choose the initial function (° = 0 and by the discrete Gronwall inequality, we
can derive that

ICV ] < O + Av). (2.69)

Thus, we complete the proof of the theorem. O

3. Two-grid algorithm and error estimates

3.1. The two-grid scheme

In this section, we introduce an efficient two-grid method for the above MFMFE
discrete approximation scheme to the problems (1.1)-(1.3). We present two quadri-
lateral mesh partiton of €2, denoted as I';, and 'y with mesh sizes h and H
(h < H < 1). Based on the partitons I', and I'gy, we define two finite element
spaces Vg X Wy and Vi x Wp, which are called the coarse grid space and the
fine grid space, respectively. The main idea of the two-grid algorithm involves a
nonlinear solver on the coarse grid space and a linear solver on the fine grid space.

We give the semi-discrete approximation scheme of the MFMFE method based
on the two-grid algorithm for the original problem:

Algorithm 3.1.
Step 1. Find (ug,pr) € Vg x Wy, such that

(K_luH,'vH)Q—(pH,V-'uH) =0, VYvyg e Vy, (31)
0
(S wm) + (V- wi,w) = (fpr) wa), Vo € W (32)

Step 2. Find (up,prn) € Vi x Wy, such that
(K_lu;“vh)Q — (ph,v . Uh) =0, Vv, €V, (33)

(8(;);,100 + (V- up,wn) = (f(pu) + f'(pu)(r — pE) wh), Yw, € Wy, (3.4)

where the Vg x Wy and V;, x W), are the BDM; mixed element space.



1320 W. Xu, X. Li, N. Song, L. Yang & X. Yuan

A two-grid algorithm of the fully discrete backward Euler approximation scheme
by the MFMFE method is given as follows.

Algorithm 3.2.
Step 1. Find (u%,p}) € Va x Wy, such that

(Kﬁl’u,?],’UH)Q —(py,V-vyg)=0, Yoy e Vy, (3.5)

(p% —pyt

Af swi) + (V-uhy,wy) = (f(0%),wn), Ywg € Wy (3.6)

Step 2. Find (u},p}) € Vi, x W}, such that

(K 'ujl,vn)o — 0],V -vp) =0, Yo, €V, (3.7)
n n—1

p 7pL n n n n n

(Pt wn) + (V- ujt,wn) = (F(0h) + ' 0%) (P — D), wn),  Ywn € Wi,

At
(3.8)
3.2. Error estimate

Theorem 3.1. Let (u,p) € V x W be the solution of problem (2.2)-(2.3), and
(up,pr) € Vg x Wy be the solution of step 1 of Algorithm 3.1(3.1)-(3.2), then
there exists a constant C independent of H, such that

lw —wgllL20,7:02(0) + Ip — Pl Lo (0,1:22(02)) < CH. (3.9)

Proof. Subtracting the numerical scheme (3.1)-(3.2) from the weak formulation
(2.2)-(2.3), then the error equation is that

(Kﬁl’u,,’UH) — (KﬁluH,vH)Q =(p—pH,V-vy), Yog € Vy, (3.10)
(S0 pm) win) + (V- (= wag) wrr) = (F(p) — [ (pre),wm), Srom € Wi
(3.11)

For (3.10), we derive that

(K'(Mpu—ug),vu)o — (Qup — pu. V- vu)

) i (3.12)
= — (K_ (u — HHu)7’lJH> — O'(K_ HH’LI,,’UH)7
which can be easily get from (2.12) and (2.17). For (3.11), we derive that
0
(E(QHP —pu);wn) + (V- (lgu —upg),wn)
(3.13)

(4 (@up —p)wn) + (F(B) ~ Fpr) ).

Taking vy = llgu — uy and wy = Qyp — py, combining (3.12) and (3.13),
then we get

)
(K" (Mgu —uy), Dgu —up)g + (&(QHP —pu),Qup — PH)
= (K '(u—Tgu),lgu —uy) — o(K ' Mgu, Tgu — ugy) (3.14)

+ (f(p) — f(pr),Qup — pH) — (%(P — Qup), Qup — pH)-
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From (2.19), the left side of (3.14) can be estimated as follows

_ 0
(K" (Tpu —uy), dgu —up)g + (&(QHP —pu),Qup — PH)
1d
2dt

Now, we estimate the right side of (3.14), from (2.10), (2.13), (2.20), and e-
inequality, we have

(3.15)

>C|Hgu — ugl® + |Qup — pull>.

(K™ u — gu), Tgu —ug)| < Cllu — Mpgull|[Tru — upl|

3.16
< CH?|[ulff + el Tru — ug?, 10
o (K™ Mg, Mgu —up)| < CH|ulli [Ugu — uyl (3.17)
< CH?|lulf? + ¢ | pu — ug|?, '
0
9 Qup—pr)| < Cll(p— -
|(5;( = Qup), Qup — pu)| < Cll(p = Qup)e|||Qup — pal (3.18)

< CH?||pe || + ellQup — pall*.

By using Taylor expansion, f(p) = f(pg)+ f'(Pr)(p — pr), where pg is between p
and pp, we can derive that

[(f(p) = f(pu), Qup —pu)| < C|lf(p) — fu)||Qup — pH|
<C\f'wu)e —pa)||Qup — pul| (3.19)
< CH?|lpl} + CllQup — pr*.
Substituting (3.15)-(3.19) into (3.14), we get

1d 9
55”@1{10 —PH||

<CH*(|[ullf + [IplF + llpel}) + ClQup — prl*.

I _ 2
M — wal]” + (3.20)

Integrating over [0, 7] and combining the Gronwall inequality, we can deduce that

T
/ IMyuw — wyl*dt + |Qup — pull®
0

T T T (3.21)
<on? [ ultde+ o [ pliar+cr® [l
Then, we can obtain
T
| Mt = s Pt + 1 Qup P o
SCH2(||U||2L2(0,T;H1(Q)) + Hp||2L2(o,T;H1(Q)) + ||pt||2L2(0,T;H1(Q)))'
Combining (2.10) and (2.13) , the theorem 3.1 can be proved. O

Proposition 3.1. For the solution py € Wy in step 1, there is the following L*
error estimate

Ip —prlloa < CH. (3.23)
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Proof. By using (2.13) and (2.43), we can derive that

lp —pulloa=lp— Quplloa+ |Qup — Ruplloa + [|[Rap — pulloa
< CH +CH Y(|Qup — Rupll + |Rip — pal|)
<CH +CHi 'H?
< CH.

(3.24)

O

Theorem 3.2. Let (u,p) € V x W be the solution of problem (2.2)-(2.3), and
(up,pn) € Vi x Wy, be the solution of step 2 of Algorithm 3.1(3.3)-(3.4), then there
exists a constant C' independent of h and H, such that

||U - uh||L2(O,T;L2(Q)) + ||P - thLw(o,T;L?(Q)) < C(h + HQ)- (3-25)

Proof. Subtracting the numerical scheme (3.3)-(3.4) from the weak formulation
(2.2)-(2.3), then the error equation is that

(K~ (Mpw — un),vn)q — (Qrp — pry V - vp)

@ 2 (3.26)
=— (K (u—Txu),vy) — o( K Mpu,vy),

(2 (@up — pr),un) + (V- (e — ), )
(3.27)

= (0 (p— Qup)wn) + (F0) — Flom) + 5 o) (s — ), wn).

By using taylor expansion f(p) = f(pu) + f'(px)(p — pr) + " (Pr)(p — pE)?,
where py is between p and py , we derive that

(%(th —pn)ywr) + (V- (Hpu — up), wp)
(3.28)

- (%(p — Qup),wn) + (f (pr)(p — pn) + "' (Br)(p — pr)*, wn).

Taking v, = pu — uy, and wy, = Qrp — pr, combining (3.26) and (3.28), then we
get
1 0
(K™ (Ilpu — up), Mpu — up)g + (E(th —Pn); Qnp — pn)
= — (K Y (u—Thu), yu — uyp)

5 (3.29)
— (K ' pu, Ty — up) — (E(P — Qnp), Qnp — Pn)
+ (f'(pe)(p = pn), Qup — p) + (f"(5r)(p — pr)?, Qnp — ph).-

From (2.19), (2.10), (2.13), (2.20) and e-inequality, we derive that

1d
2dt
<CR?([|lull + Il + llpl?) + CUI( — pr)?I1” + [Qup — pull*) + el T — up .

(3.30)

[Thw — wpl|® + 1Qrp — pull?
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Integrating over [0, 7], combining (3.24) and the Gronwall inequality, we can deduce
that

T
/ e — wp|%dt + [ Qnp — pall® < C(H + HY). (3.31)
0

By (2.10) and (2.13), the theorem 3.2 can be proved. O

Theorem 3.3. Let (u,p) € V x W be the solution of problem (2.2)-(2.3), and
(U, p%) € Vi x Wy be the solution of Step 1 of Algorithm 3.2 (3.5)-(3.6), then
there exists a constant C independent of H, such that

N
n__ ,n (2 n__ ,mn 2< 2 2 . .
s 10" I+ 3 At — | < COP + (M) (332

Proof. Subtracting the numerical scheme (3.5)-(3.6) from the weak formulation
(2.2)-(2.3), then the error equation is that

(K 'u™ vg) — (K 'y, vg)g = (0" — 0%,V -vw), Yvg € Vi, (3.33)
ap pH _prlflil n n
(815 At ,’LUH)+(V (u’ uH)va)

= (") = f0h),wn), Ywy € Wy. (3.34)

By using (2.9), (2.12) and (2.17), we get
(K~ (Tgu" —up),vi)q — (Qup" —pip, V- vm) (3.35)

= — (K Yu" —Oxu™),vy) — o(K 'Myu™,vy), Yoy € Vi,
((QHP" ) — (Qup" ' —pi )

swg) + (V- (Hgu™ —uly),wy)  (3.36)

At
0 n__ ,n—1 .
( gt %7wH)+(f(pn)_f(pH>va)v VwHEVVH.

Denoting 8" = Qup™ — pl, taking vy = llgu"™ — u} and wy = [", using
Taylor expansion

f@") = fpw) + ' (05) (0" — Pir)
= fw) + [0 @" — Qup™ + Qup™ — py) (3.37)
= f0r) + ' (PR (0" — Qup™ + B"),
then adding the two formulas (3.35) and (3.36) together, we get
n _ an—1
T R

= — (K '(u" —Hgu"), Mygu™ —u) — o( K Tgu™, Mgu™ — ul)

+ (') (0" — Qup™), ") + (f'(Pr)B", B")
n—1 (338)
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Multiplying At on both sides of (3.38), then summing for n from 1 to N, the
left side of (3.38) can be estimated as follows

n—1
Atz YOgu™ —uty), u™ —uH)Q—i-AtZ Tﬁ,ﬁn)
n=1 n=1
. 1 (3.39)
> n__ ,.mn|2 (AN AN .
_CAth:leHHu il + 5(8Y,8Y)

Now, we estimate the right side of (3.38), we gain the following results

N N
At Z Ry = At Z(K‘l(u" —gu™), pu” —uly)

(3.40)
N
< CH?||w]| oo (o 1,1y + €AL Y [Tpu” — ufy||?,
n=1
N N
At Ry =AtY o(K 'yu, Tyu" — ufy)
N
< CALY  Hlu"|1[Thu™ — uf| (3.41)
n=1
N
< CH? |l Fo (o gy + A Y [T — |,
n=1
AtZRg+AtZR4—AtZ )"~ Qup"), 8" +Atz 78", ")
<CAtZ " = Qup™[18™]) +CAtZH/3”H2
n=1 =
N
Z Hllp" [l [I8"[]) +CAtZ 157(I”
n=1 n=1
N
< CH?|Ipl|7 0,751y + CAL Y 18",
n=1
(3.42)
_ n—1
AtZR5 Atz %,5”)
n=1
AtZ || ||2 +Atz 18™11%) (3.43)
n=1

< C((At? / ol dt+0AtZ||/3"||

n=1

Substituting (3.39)-(3.43) into (3.38), combining the Gronwall inequality, then
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we can get
N
AUS i =+ 15" s
SC(H*||ulZ oo (0,751 (02)) + H P T o0 0,711 (2)) + (A0 [[peell L2 (0,710 (2)))-
Thus, we complete the proof of theorem 3.3. O

Theorem 3.4. Let (u™,p™) € V. x W be the solution of problem (2.2)-(2.3) at the
time t = t", and (uj,p}) € Vi, x Wy, be the solution of Step 2 of Algorithm 3.2
(3.7)-(3.8), then there exists a constant C independent of h and At, such that

N
n _ ,n|2 n_ ,ni|2 < 2 4 2 . .
s 7 DRI D A S OO Y (A (349
Proof. Subtracting the numerical scheme (3.7)-(3.8) from the weak formulation
(2.2)-(2.3), then the error equation is that

(Kﬁl(Hhun - U‘Z)7vh)Q - (QHpn - p;:a V- 'Uh)
= — (K_l(u" — Hhu”),vh) — U(K_lﬂhu",vh), Yvy, € Vh,

((th” —pp) = (@Qup" ' —pp Y
At
apn pn _ pn—l

=( o w0 - fok) - 'Oy ®F —pY),wr), Yo, € V.
(3.47)

(3.46)

,wh) + (V . (Hhu" — uﬁ),wh)

Taking vy, = IIu" — u} and wy, = £" = Qpp™ — pj, using Taylor expansion

F") = fh) + ) ®" — k) + (o)™ — ph)?, (3.48)

then adding (3.46) and (3.47) together, we get

n _ ¢n—1
(K (M — ), T —uf)g + (5 — &)

=— (K ' (u" — Mpu™), Mpu" — u}) — o( K u™ Mu" — ul)
+ (I (" — Qup™ + €M), €M) + (f" () (" — p})*, €")
apn pn _pnfl N
- (W - At 75 )

5
:Z%'
i=1

Multiplying At on both sides of (3.49), then summing for n from 1 to N, the
left side of (3.49) (denoted as L.S.) can be estimated

(3.49)

N
1
L.S.>CAtY  |Myu™ —uj|® + S 1€ (3.50)

n=1
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Now, we estimate the right side of (3.49), because of (2.10), (2.13), (2.20) and e—
inequality, we gain the following results

N N N
n=1 n=1 n=1
SC(P?[ullFe 0.1 () + (APt 720 7110 (2)))

N N
+e(AL Y [Tt —uf? + ALY [l€7]?),
n=1 n=1
N N
AtZSO:a +AL‘ZSD4 (3.52)
n=1 n=1

N N
=AL (F' (5 (" — Qup™ + €M), €M) + ALY (f () (" — ph)?.€")
n=1 n=1
N

<O Pl 70 0.rrr () + At Y 177 + 11p™ — 0 15.4).

n=1

Substituting (3.50)-(3.52) into (3.49), combining the Gronwall inequality and
(3.23), we can get

N
ALY pu” = up | + 1€V < C(h® + H* + (At)?). (3.53)

n=1
Thus, we complete the proof of the theorem. O

4. Numerical example

In this section, we provide a numerical example to illustrate the efficiency and
accuracy of our proposed two-grid algorithm. For simplicity, we take the domain
Q= (0,1) x (0,1), and the exact solution satisfies

p = e’ cos(mx) cos(my) /7,
then the function f is obtained as

fp) =p" + f(z,y). (4.1)

Based on two families I'yy and I'j, with h = H?, we use BDM; mixed finite
element space. In order to confirm the efficiency of the two-grid MFMFE method,
we compare this method with the MFMFE method. The error and CPU time
results are shown in Tables 1-2. The exact solution, the MFMFE solution, and the
two-grid MFMFE solution are shown in Fig. 1-6, the comparison of CPU time is
presented in Fig. 7.

From these data, we can see that the two-grid MFMFE method can have the
same convergence order as the MFMFE method, when the coarse grid size and
the fine grid size satisfy h = O(H?). However, the two-grid MFMFE method is
more effective than the MEFMFE method judging from the CPU time, for example,
when H = 1/12, the latter requires almost three times the running time of the
former, therefore, the two-grid MFMFE method has significant advantages over the
MFMFE method.
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Figure 1. The exact solution of velocity w.
Figure 5. The two-grid MFMFE solution of ve- Figure 6. The two-grid MFMFE solution of pres-

Figure 3. The MFMFE solution of velocity wp,.
locity uyp,.

1/144

1/100
the two-grid MFMFE method

1/64

the MFMFE method

The comparison of CPU time.

7

Figure
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Table 1. The error and CPU time of the MFMFE method.

h lp—pnll Order |u—uy|| Order CPUtime/s
1/36 0.01542 0.04842 2.7

1/64  0.008672 1.00 0.02724 0.99 13.8

1/100  0.005550 1.00 00.01743 1.00 51.2

1/144  0.003958 1.00 0.01211 1.00 150.3

Table 2. The error and CPU time of the two-grid MFMFE method.

H h lp—pnll Order |lu—wuy|| Order CPUtime/s
1/6  1/36  0.01583 0.04842 1.0

1/8 1/64  0.008904 1.00 0.02724 0.99 4.3

1/10 1/100 0.005699 1.00 0.01743  1.00 15.4

1/12  1/144 0.003957 1.00 0.01211 1.00 51.3
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