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NUMERICAL ANALYSIS OF A GRAD-DIV
STABILIZATION METHOD FOR THE
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Abstract This paper analyzes an inf-sup stable Galerkin mixed finite ele-
ment method with a grad-div stabilization for the equation of the motion of
the fluid arising in the Oldroyd model of order one. The main idea of the
grad-div stabilization method is to add a stabilization term to the Galerkin
approximation, which is very effective at a high Reynolds number. Optimal
error bounds for the velocity in L∞(L2)-norm and the pressure in L2(L2)-norm
are derived in the semidiscrete case with time remaining continuous. Then, a
fully discrete scheme is analyzed by employing the backward Euler method,
and optimal error estimates are derived. All these estimates are obtained with
constants independent of the inverse of viscosity and for both the cases when
the solution is as smooth as we want (has to satisfy nonlocal compatibility
conditions) and when the solution is just smooth (compatibility conditions are
no longer needed). Finally, we present some numerical results in support of
our theoretical findings.
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ler method, optimal error estimates.

MSC(2010) 65M60, 65M15, 35Q35.

1. Introduction

In this paper, we consider a linear viscoelastic model with a memory of past defor-
mation. The model is known as the Oldroyd model of order one [36], and is given
by the following integro-differential system:

ut − µ∆u+ u · ∇u−
∫ t

0

β(t− τ)∆u(s) ds+∇p = f , in Ω, t > 0, (1.1)

with incompressibility condition

∇ · u = 0, on Ω, t > 0, (1.2)
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and initial and boundary conditions

u(x, 0) = u0 in Ω, u = 0, on ∂Ω, t ≥ 0. (1.3)

Here Ω is a bounded domain in R2 with boundary ∂Ω, µ = κλ−1 > 0, the kernel
β(t) = γe−δt, γ = λ−1(ν−κλ−1) > 0 and δ = λ−1 > 0, where ν > 0 is the kinematic
coefficient of viscosity, λ > 0 is the relaxation time and κ > 0 is the retardation
time. The unknowns u and p represent the fluid’s velocity and pressure, respectively.
Furthermore, the forcing term f and the initial velocity u0 are given functions in
their respective domains of definition. This system represents a basic model for
polymeric fluids, suspensions, or biological fluids, a non-Newtonian model, which
has been derived under the assumption that the material can be regarded as a
single stationary macroscopic element with small stress and strain rates and finds
applications in various industries, like, paints, DNA suspensions, biological fluids,
and some chemical industries. When γ = 0, the system reduces to the well-known
Navier-Stokes flows and, as such, can be considered as an integral perturbation
of the Navier-Stokes equations. For more details on the mathematical model and
physical background, we refer to [36].

Details of early developments of the model and continuous and semi-discrete
cases can be found in [21, 24, 40] and references therein. Moreover, for time dis-
cretization, we refer to [6, 22, 41, 47]. There are several other works on this model
based on finite elements and related frameworks; for example, see [1,5,20,33,35,49,
50], and references therein.

Galerkin mixed finite element for the model has been analyzed on a few occa-
sions [21,24] with optimal error estimates. However, it is well known that similar to
the Navier-Stokes equation (NSEs), the coupling of the velocity and the pressure,
through the divergence-free term, is in fact not desirable. There are methods, for
decoupling by various means, like the penalty method, the artificial compressibility
method, the pressure correction method, the projection method, etc., which attempt
to overcome this difficulty by means of artificial conditions. Work in these directions
for the Oldroyd model can be found in [7,33,45,46,51]. Unfortunately, these methods
are less sufficient when the Reynolds number is high. This is due to the domination
of the advection term on the viscous term, which typically arises for small values of
viscosity. It is handled via methods based on stabilization techniques like streamline
upwind/Petrov-Galerkin(SUPG) method, residual-free bubbles enrichment method,
local projection stabilization, and interior-penalty methods, see [9, 11–13]. In par-
ticular, in the SUPG method, a grad-div stabilization is included, which allows for
achieving stability and accuracy for small values of viscosity.

In this paper, we add a grad-div stabilization term to the problem (1.1)-(1.3)
and we analyze its effect for high Reynolds number. The main idea is to add a sta-
bilization term with respect to the continuity equation to the momentum equation.
It was first proposed by Franca and Hughes [16] to improve the conservation of
mass in the finite element method. However, the method comes with several other
benefits. For example, the use of grad-div stabilization results in improved conver-
gence of preconditioned iteration when the stabilization parameter is too small [37].
The well-posed continuous solution as well as the accuracy and convergence of the
numerical approximation for small values of viscosity [39] and the local mass bal-
ance of the system in numerical experiments [15] are observed while using grad-div.
Moreover, it has been observed that using grad-div stabilization in the simulation
of turbulent flows is sufficient for performing a stable simulation, see [32, Figure 3]
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and [42, Figure 7].

These observations lead us to the present paper: to derive the error bounds
that do not depend on inverse powers of viscosity (that is, µ, in our case) for the
Galerkin mixed finite element method with grad-div stabilization applied to the
Oldroyd model of order one. This is not the first time that similar results have
been achieved. In fact, in [17,18], de Frutos et al. have obtained error bounds with
constants independent of inverse powers of viscosity for the evolutionary Oseen
equations and the Navier-Stokes equations, respectively. There are a few recent
works in this direction for incompressible flow problems [23, 30, 43, 44, 48], but to
the best of our knowledge, no work is available for the Oldroyd model of order one.
In this paper, we extend the analysis of [18] to the Oldroyd model of order one.
As in [18], we have carried out our analysis for the initial velocity u0 ∈ H1

0 ∩Hm

(m > 2 and we call it, Hm-smooth initial data), as well as for the initial velocity
u0 ∈ H1

0 ∩H2 (we call it, H2-smooth initial data). However, our proofs are shorter
and less technically involved than those from [18]. Our analysis relies solely on the
standard L2-projection, and the standard approximation properties along with the
discrete incompressibility conditions. Also, same analysis goes through for both
the cases, that is, Hm-smooth and H2-smooth cases for the linear and quadratic
approximation unlike [18], see Subsection 3.2.

We note that the assumption of Hm-smooth data comes at the cost of non-
local compatibility conditions of various orders, for the given data, at time t = 0.
Without these conditions, which do not arise naturally, the solutions of the Oldroyd
model of order one can not be assumed to have more than second-order derivatives
bounded in L2(Ω) at t = 0 (see [21]). The analysis for H2-smooth initial data takes
into account this lack of regularity at t = 0.

We would also like to point out that the analysis in both these cases does not
differ by much. However, the analysis suggests that less regularity of the initial
velocity puts a restriction on the order of finite element approximation when keeping
estimates independent of the inverse of µ. For example, with H2-smooth initial
data, we may get a maximum second-order convergence rate in the case of velocity,
even if we employ higher-order approximations, see Remark 3.4.

It is well known that the suitable choice of stabilization parameter for any sta-
bilized scheme is important for accuracy in numerical simulations. In the case of
grad-div stabilization, a suitable choice of grad-div parameter ρ is shown to be O(1)
for the Navier-Stokes equations and for inf-sup stable finite element pairs, in [37,38].
In [34], it is shown that error can be minimized for ρ ≈ 10−1. However, larger values
of ρ may be needed in special cases, see [19]. A detailed investigation of the choice of
grad-div stabilization parameter for the steady Stokes problem has been discussed
in [29]. They have observed that the choice of grad-div parameter depends on the
used norm, the mesh size, the type of mesh, the viscosity, the finite element spaces,
and the solution. A similar analysis and numerical simulations have been seen in [3]
for the steady-state Oseen problem and Navier-Stokes equations.

In this paper, we briefly look into this aspect. Based on the error estimate from
Theorem 3.1, we have observed that ρ = O(1) is a suitable choice for stable mixed
finite element spaces. Moreover, for the MINI element, the choice of ρ can be in the
range of h2 to 1, see Remark 3.3. Furthermore, some numerical experiments are
carried out to verify the theoretical order of convergence. The effect of the grad-
div stabilization is then verified for a benchmark problem. We have also shown
numerically that the grad-div parameter depends on the mesh size, the type of
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mesh, the viscosity, and the finite element spaces. Finally, we have obtained the
values of grad-div parameter ρ that minimize the L2 and H1 errors for the velocity
and L2 error for the pressure for a known solution.

The main results of this article consist of the following:

(i) Stability analysis of the semidiscrete solution with constant does not depend
on inverse power of µ.

(ii) Optimal error estimates for the velocity in L∞(L2)-norm and for the pressure
in L2(L2)-norm, where the error bounds are independent of µ−1, that is, these
results are valid for high Reynolds number.

(iii) Fully discrete optimal error estimates, for the velocity and the pressure, by ap-
plying a first-order backward Euler method for temporal discretization. The
order of convergence for the velocity in L∞(L2) norm and the pressure in
L2(L2) norm is O(hk + ∆t) when the finite element velocity space and the
pressure space are approximated by k-th and (k−1)-th degree piecewise poly-
nomial, respectively (k > 1), where h and ∆t are the space and time dis-
cretization parameter, respectively. These results are valid for high Reynolds
number as well.

(iv) Numerical experiments with known solution to verify the order of convergence
and simulations for a couple of benchmark problems to prove the effectiveness
of the grad-div stabilization for the Oldroyd model of order one.

(v) Suitable choice of grad-div parameter for stable mixed finite element spaces
and for stable equal order spaces like the MINI element.

The remaining part of this paper is organized as follows. In Section 2, we
introduce the requisite functional spaces and the assumptions on the domain and on
the given data. Then the positivity property of the kernel of the memory term and
the Gronwall’s lemma, both continuous and discrete versions, are mentioned there.
In Section 3, the semidiscrete formulation and error analysis of the stabilized scheme
is carried out, and in Section 4 backward Euler method is applied to the stabilized
system. Finally, in Section 5, some numerical examples are given which conform
with our theoretical results. We also obtain numerically suitable values of the grad-
div parameter for the Oldroyd model of order one that minimizes velocity and
pressure errors. Throughout this paper, we will use C as a generic constant, which
depends on the given data and not on spatial and time discretization parameters.
We note that C may grow exponentially with time, but it does not depend on
inverse powers of µ.

2. Preliminaries

For our subsequent use, we denote by boldface letters the R2-valued function space
such as H1

0 = [H1
0 (Ω)]

2, L2 = [L2(Ω)]2 and Hm = [Hm(Ω)]2. We denote by ∥ · ∥i
the usual norm on the Sobolev space Hi, for i = 1, 2 and (·, ·) and ∥ · ∥ be the inner
product and norm on L2 or L2. The norm on the space of essentially bounded
functions L∞(Ω) will be denoted by ∥ · ∥∞. The space H1

0 is equipped with the
norm

∥∇v∥ =
( 2∑
i,j=1

(∂jvi, ∂jvi)
)1/2

=
( 2∑
i=1

(∇vi,∇vi)
)1/2

.
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We denote by J1 and J, the divergence free subspaces of H1
0 and L2, respectively.

J1 = {ϕ ∈ H1
0 : ∇ · ϕ = 0},

J = {ϕ ∈ L2 : ∇ · ϕ = 0 in Ω, ϕ · n|∂Ω = 0 holds weakly},

where n is the outward normal to the boundary ∂Ω and ϕ · n|∂Ω = 0 should be
understood in the sense of trace in H−1/2(∂Ω). Let Hm/R be the quotient space
with norm ∥ϕ∥Hm/R = infc∈R ∥ϕ+ c∥m. For m = 0, it is denoted by L2/R. For any
Banach space X, let Lp(0, T ;X) denote the space of measurable X-valued functions
ϕ on (0, T ) such that∫ T

0

∥ϕ(t)∥pX dt <∞, if 1 ≤ p <∞, and ess sup
0<t<T

∥ϕ(t)∥X <∞, if p = ∞.

The dual space of Hm(Ω), denoted by H−m(Ω), is defined as the completion of
C∞(Ω̄) with respect to the norm

∥ϕ∥−m := sup

{
(ϕ, ψ)

∥ψ∥m
: ψ ∈ Hm(Ω), ∥ψ∥m ̸= 0

}
.

The following Sobolev’s embedding [2] will be used for our analysis: For 1 ≤
p ≤ d/s, let q be such that 1

q = 1
p − s

d , then there exists a constant C independent
of s, such that

∥v∥Lq′(Ω) ≤ C∥v∥W s,p(Ω),
1

q′
≥ 1

q
, v ∈W s,p(Ω).

If p > d
s the above result is valid for q′ = ∞. In our case, we consider d = 2. The

similar embedding inequality holds for vector-valued functions. Throughout this
paper, we make the following assumption:
(A1) For g ∈ Hm−1 withm ≥ 1, let the unique pair of solutions {v ∈ J1, q ∈ L2/R}
for the steady state Stokes problem

−µ∆v +∇q = g, ∇ · v = 0 in Ω; v|∂Ω = 0,

satisfy the following regularity result [27]:

µ∥v∥m+1 + ∥q∥Hm/R ≤ C∥g∥m−1.

We first note here that (A1) implies (see [26])

∥v∥2 ≤ C∥∆̃v∥, ∀v ∈ J1 ∩H2,

∥v∥ ≤ λ
−1/2
1 ∥v∥1, v ∈ H1

0,

∥v∥1 ≤ λ
−1/2
1 ∥v∥2, v ∈ J1 ∩H2,

where ∆̃ = P∆, ∆̃ : J1∩H2 ⊂ J → J is the Stokes operator and P is the orthogonal
projection of L2 onto J. Here, λ1 > 0 is the least positive eigenvalue of ∆̃.

We will subsequently use the Gagliardo-Nirenberg inequality [28]

∥ϕ∥Lp ≤ C∥ϕ∥2/p∥∇ϕ∥1−2/p, ∀ ϕ ∈ H1
0, (2.1)

where 2 ≤ p < ∞ and C = C(p,Ω). Also, we will consider the Agmon’s inequality
[28]

∥ϕ∥L∞ ≤ C∥ϕ∥1/2∥∆ϕ∥1/2, ∀ ϕ ∈ H2, (2.2)

where C = C(Ω).
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Remark 2.1. We will use the discrete version of the above two inequalities with
constants uniform in the discretizing parameter h, following [28].

We now make the following assumption about the given data for the problem
(1.1)-(1.3).
(A2) The external force f satisfy for some M0 > 0 and for 0 < T ≤ ∞

f , ft ∈ L∞(0, T ;Hm) with sup
0<t<T

{
∥f∥m, ∥ft∥m

}
≤M0, for some integerm ≥ 0.

Before going into the details, we define the continuous bilinear form a(·, ·) on H1
0 ×

H1
0 by

a(v,w) = (∇v,∇w), ∀ v,w ∈ H1
0,

and the continuous trilinear form b(·, ·, ·) on H1
0 ×H1

0 ×H1
0 by

b(v,w,ϕ) = ((v · ∇)w,ϕ) +
1

2
((∇ · v)w,ϕ)

=
1

2
((v · ∇)w,ϕ)− 1

2
((v · ∇)ϕ,w), ∀ v,w,ϕ ∈ H1

0. (2.3)

It is clearly seen that

b(v,w,ϕ) = −b(v,ϕ,w), ∀ v,w,ϕ ∈ H1
0. (2.4)

In particular

b(v,w,w) = 0, ∀ v,w ∈ H1
0. (2.5)

Let us introduce the weak formulation of (1.1)-(1.3): To find a pair of functions
{u(t), p(t)} ∈ H1

0 × L2/R, t > 0 such that for ϕ ∈ H1
0, χ ∈ L2

(ut,ϕ) + µa(u,ϕ) + b(u,u,ϕ) +
∫ t

0
β(t− s)a(u(s),ϕ) ds− (p,∇ · ϕ) = (f ,ϕ),

(∇ · u, χ) = 0.


(2.6)

Equivalently, find u(t) ∈ J1, t > 0 such that

(ut,ϕ)+µa(u,ϕ)+ b(u,u,ϕ)+

∫ t

0

β(t− s)a(u(s),ϕ)ds = (f ,ϕ), ∀ϕ ∈ J1. (2.7)

For the existence and uniqueness of the problem (2.6) and (2.7), we refer to [21].
For the regularity of the solutions u and p, we make the following assumptions
depending on whether the initial velocity u0 is Hm-smooth (m > 2) or H2-smooth:
(A3) Let us assume that u0 ∈ H1

0∩Hmax{2,m} is Hm-smooth and the solution pair
(u, p) of (2.6) satisfies

u ∈ L2(0, T ;Hm+1) ∩ L2(0, T ; (W 1,∞(Ω))2) ∩ L∞(0, T ;Hm),

p ∈ L2(0, T ;Hm/R)∩L∞(0, T ;Hm−1/R)

for all m ≥ 1. Further, there exists a positive constant C that does not depend on
the inverse power of µ such that for all m ≥ 1, the following hold:

max
0≤t≤T

(
∥u(t)∥2m + ∥p(t)∥2Hm−1/R

)
≤ C,

∫ t

0

∥∇u(s)∥2∞ds ≤ Ct,
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e−2αt

∫ t

0

e2αs
(
∥u(s)∥2m+1 + ∥us(s)∥2m−1 + ∥p(s)∥2Hm/R

)
ds ≤ C.

(A3′) Let us assume that the initial data u0 ∈ H1
0 ∩ H2 is H2-smooth and the

solution pair (u, p) of (2.6) satisfies

(τ(t))m−2u ∈ L2(0, T ;Hm+1) ∩ L∞(0, T ;Hm), u ∈ L2(0, T ; (W 1,∞(Ω))2),

(τ(t))m−2p ∈ L2(0, T ;Hm/R),

for m ≥ 2, where τ(t) = min{1, t} and for m = 1,

u ∈ L2(0, T ;H2) ∩ L2(0, T ; (W 1,∞(Ω))2) ∩ L∞(0, T ;H1), p ∈ L2(0, T ;H1/R).

Further, there exists a positive constant C that does not depend on the inverse
power of µ such that, the following hold: For m = 1,∫ t

0

∥∇u(s)∥2∞ds ≤ Ct, max
0≤t≤T

∥u(t)∥21 + e−2αt

∫ t

0

e2αs∥u(s)∥22ds ≤ C.

For m ≥ 2, and for τ(t) = min{1, t}

max
0≤t≤T

(τ(t))
m−2

(
∥u(t)∥2m + ∥p(t)∥2Hm−1/R

)
≤ C,

e−2αt

∫ t

0

e2αs(τ(s))m−2
(
∥u(s)∥2m+1 + ∥us(s)∥2m−1 + ∥p(s)∥2Hm/R

)
ds ≤ C.

Note that, the assumptions (A3) and (A3′) are coincide for the case m = 1 and 2.
Before we move to the next section, we present below a few lemmas which will

be used in our subsequent analysis. First one deals with the positivity of the kernel
β. The result is borrowed from [40, Lemma 2.1].

Lemma 2.1. For arbitrary α > 0, t∗ > 0 and ϕ ∈ L2(0, t∗), the following positive
definite property holds∫ t∗

0

(∫ t

0

exp [−α(t− s)]ϕ(s) ds

)
ϕ(t) dt ≥ 0.

Second and third Lemmas are on Gronwall’s inequality.

Lemma 2.2 (Gronwall’s Lemma). Let g, h, y be three locally integrable non-negative
functions on the time interval [0,∞) such that for all t ≥ 0

y(t) +G(t) ≤ C +

∫ t

0

h(s) ds+

∫ t

0

g(s)y(s) ds,

where G(t) is a non-negative function on [0,∞) and C ≥ 0 is a constant. Then,

y(t) +G(t) ≤
(
C +

∫ t

0

h(s) ds
)
exp

(∫ t

0

g(s) ds
)
.

Lemma 2.3 (discrete Gronwall’s Lemma [27]). Let k,B and {ai, bi, ci, di}i∈N be
non-negative numbers such that

an + k

n∑
i=1

bi ≤ B + k

n∑
i=1

ci + k

n∑
i=1

diai, n ≥ 1. (2.8)
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Suppose that kdi ≤ 1, for all i. Set γi = (1− kdi)
−1. Then,

an + k

n∑
i=1

bi ≤
{
B + k

n∑
i=1

ci

}
exp

(
k

n∑
i=1

γidi

)
. (2.9)

If the last sum of (2.8) extends only up to n− 1, then the estimate (2.9) holds for
all k > 0, with γi ≡ 1.

Remark 2.2. Whenever we use discrete Gronwall’s Lemma, it restricts the time
step size k.

3. Galerkin finite element method

In this section, we consider the finite element Galerkin approximations to the
problem (1.1)-(1.3) with grad-div stabilization. From now on, we denote h, with
0 < h < 1, to be a real positive spatial discretization parameter, tending to zero.
Let Th be a finite decomposition of mesh size h, of the polygonal domain Ω̄ into
closed subsets, triangles, or quadrilaterals in two dimensions. The decomposition
Th is assumed to be “face to face” and satisfy a “uniform size” condition:

Any two elements of Th meet only in entire common sides or in vertices. Each
element of Th contains a circle of radius κ1h and it’s contained in a circle of radius
κ2h, these constant κ1, κ2 being independent of h.

Let Hh and Lh be two families of finite element spaces, finite-dimensional sub-
spaces of H1

0 and L2/R, respectively, approximating the velocity vector and the
pressure. It is assumed that the spaces (Hh, Lh) are of the form (Pk, Pk−1) where
Pk comprises of piecewise polynomial of degree at most k, k > 1. [However for
k = 1, we consider the mini element (P1b, P1) where P1b is the P1 space with
bubble enrichment.]

Assume that the following approximation properties are satisfied for the spaces
Hh and Lh:
(B1) For each w ∈ H1

0 ∩ Hk+1 and q ∈ Hk/R with k ≥ 1, then there exist
approximations ihw ∈ Hh and jhq ∈ Lh such that for all 0 ≤ j ≤ k

∥w − ihw∥+ h∥∇(w − ihw)∥ ≤ Chj+1∥w∥j+1, ∥q − jhq∥ ≤ Chj∥q∥j . (3.1)

Further, we will assume that the meshes are quasi-uniform and the following inverse
hypothesis holds for vh ∈ Hh, see [14, Theorem 3.2.6]

∥vh∥Wm,p(K)d ≤ Chn−m−d( 1
q−

1
p )∥vh∥Wn,q(K)d , (3.2)

where 0 ≤ n ≤ m ≤ 1, 0 ≤ q ≤ p ≤ ∞, h be the diameter of the mesh cell K ∈ Th
and ∥ · ∥Wm,p(K)d is the norm in Sobolev space Wm,p(K)d.

Now, we consider the discrete analogue of the weak formulations (1.1)-(1.3) with
a grad-div stabilization term: Find (uh, ph) in Hh × Lh satisfying

(uht,ϕh) + µa(uh,ϕh) + b(uh,uh,ϕh) +
∫ t

0
β(t− τ)a(uh(τ),ϕh) dτ

−(ph,∇ · ϕh) + ρ(∇ · uh,∇ · ϕh) = (f ,ϕh), ∀ ϕh ∈ Hh,

(∇ · uh, χh) = 0, ∀ χh ∈ Lh,

 (3.3)
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where ρ ≥ 0 is the stabilization parameter and u0h ∈ Hh is suitable approximation
of u0 ∈ J1.

Let us consider the associated weekly divergence-free subspace Jh of the discrete
space Hh as

Jh = {vh ∈ Hh : (χh,∇ · vh) = 0,∀χh ∈ Lh}.

Note that the space Jh is not a subspace of J1. So, we now introduce an equivalent
Galerkin approximation in the space Jh as: Find uh(t) ∈ Jh such that uh(0) = u0h

and for t > 0

(uht,ϕh) + µa(uh,ϕh) + b(uh,uh,ϕh) +

∫ t

0

β(t− τ)a(uh(τ),ϕh) dτ

+ ρ(∇ · uh,∇ · ϕh) = (f ,ϕh), ∀ ϕh ∈ Jh. (3.4)

Below, we present a priori estimate for the discrete solution.

Lemma 3.1. Let the assumption (A1) hold. Then, the following stability estimate
holds for the discrete velocity for all 0 ≤ t ≤ T, T > 0

∥uh(t)∥2 + 2e−2αt

∫ t

0

e2αs
(
µ∥∇uh(s)∥2 + ρ∥∇ · uh(s)∥2

)
ds

≤
(
e−2αt∥u0h∥2 +

∥f∥2∞
2α

)
e(1+2α)t,

where ∥f∥∞ = sup0<t<T ∥f(t)∥.

Proof. Choose ϕh = uh(t) in (3.4) and use (2.5) to obtain

1

2

d

dt
∥uh∥2 + µ∥∇uh∥2 + ρ∥∇ · uh∥2 +

∫ t

0

β(t− τ)a(uh(τ),uh) dτ ≤ (f ,uh).

We multiply both sides by 2e2αt and integrate with respect to time from 0 to t.
Then, the use of the Cauchy-Schwarz inequality with the Young’s inequality yields

e2αt∥uh(t)∥2 + 2

∫ t

0

e2αs
(
µ∥∇uh(s)∥2 + ρ∥∇ · uh(s)∥2

)
ds

+ 2

∫ t

0

e2αs
∫ s

0

β(s− τ)a(uh(τ),uh(s)) dτ ds

≤∥uh(0)∥2 +
∫ t

0

e2αs∥f∥2ds+ (1 + 2α)

∫ t

0

e2αs∥uh(s)∥2ds.

The double integration term on the left-hand side is positive due to Lemma 2.1;
hence, we drop it. Then, we use the Gronwall’s lemma to arrive at

e2αt∥uh(t)∥2 + 2

∫ t

0

e2αs
(
µ∥∇uh(s)∥2 + ρ∥∇ · uh(s)∥2

)
ds

≤
(
∥u0h∥2 +

∥f∥2∞
2α

(e2αt − 1)

)
e(1+2α)t.

We multiply both sides by e−2αt to complete the rest of the proof.
Lemma 3.1 helps us to prove the local existence of the solution of (3.4). Once

we have the solution of (3.4), then using this, we can easily prove the existence of
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the solutions of (3.3). The proof is quite similar to that of [40]; hence we skip it.
The uniqueness of the pressure is obtained on the quotient space Lh/Nh, where

Nh = {qh ∈ Lh : (qh,∇ · ϕh) = 0 for ϕh ∈ Hh}.

The norm of Lh/Nh is given by

∥qh∥L2/Nh
= inf

χh∈Nh

∥qh + χh∥.

Since Jh is finite-dimensional, the problem (3.4) leads to a system of nonlinear
integro-differential equations with a stabilization term. For continuous dependence
of the discrete pressure ph(t) ∈ Lh/Nh on the discrete velocity uh(t) ∈ Jh, we
assume the following discrete inf-sup (LBB) condition:
(B2′) For every qh ∈ Lh, there exists a non-trivial function ϕh ∈ Hh such that

inf
qh∈Lh

sup
ϕh∈Hh

|(qh,∇ · ϕh)|
∥∇ϕh∥∥qh∥L2/Nh

≥ C, (3.5)

where the constant C > 0 is independent of h.
Moreover, we also assume that the following approximation property holds true

for Jh.
(B2) For every w ∈ J1 ∩Hk+1, there exists an approximation rhw ∈ Jh such that

∥w − rhw∥+ h∥∇(w − rhw)∥ ≤ Chj+1∥w∥j+1, 0 ≤ j ≤ k. (3.6)

We define L2-projection Ph : L2 → Jh satisfy the following properties for 0 ≤ j ≤ k
[27]

∥ϕ− Phϕ∥+ h∥∇(ϕ− Phϕ)∥ ≤ Chj+1∥ϕ∥j+1, ∀ ϕ ∈ J1(Ω) ∩Hk+1(Ω). (3.7)

Let us also consider the Lagrange interpolant Ihu ∈ Hh of a continuous function u
satisfying the following bounds (see [10, Theorem 4.4.4])

∥u− Ihu∥Wm,p(K) ≤ Chn−m∥u∥Wn,p(K), 0 ≤ m ≤ n ≤ k + 1, (3.8)

where n > 2
p when 1 < p ≤ ∞ and n ≥ 2 when p = 1.

We now define the discrete operator ∆h : Hh → Hh through the bilinear form
a(·, ·) as

a(vh,ϕh) = (−∆hvh,ϕh), ∀ vh,ϕh ∈ Hh.

We also define the discrete Stokes operator ∆̃h = Ph∆h of ∆̃ = P∆. The restriction
of ∆̃h to Jh is invertible and its inverse is denoted as ∆̃−1

h . We recall the discrete
Sobolev norms on Jh (see [27]): For r ∈ R, we define

∥vh∥r := ∥(−∆̃h)
r/2v∥, vh ∈ Jh.

We note that ∥vh∥0 = ∥vh∥ and ∥vh∥1 = ∥∇vh∥. Also the norm ∥∆̃h(·)∥ is equiv-
alent to the norm ∥ · ∥2 in Jh with constant independent of h.

We present below the error analysis due to the space discretization (time remains
continuous). Our analysis will be divided into two parts based on the regularity of
the given initial data. First, we consider Hm-smooth initial data, that is, the initial
velocity u0 ∈ H1

0 ∩Hmax{2,m}, m = k, and then, we take H2-smooth initial data,
that is, u0 ∈ H1

0 ∩H2.
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3.1. Semidiscrete error estimate for Hm-smooth data

In this section, we derive error bounds for the velocity and the pressure for the case
when the exact solution remains regular as t→ 0; that is, the given data is as much
regular as we need.

3.1.1. Error bounds for velocity

Since Jh is not a subspace of J1, the weak solution u of the Oldroyd model of order
one satisfies for all ϕh ∈ Jh

(ut,ϕh) + µa(u,ϕh) + b(u,u,ϕh) +

∫ t

0

β(t− s)a(u(s),ϕh)ds = (f ,ϕ) + (p,∇ ·ϕh).

(3.9)
Define e = u − uh, then subtract (3.4) from (3.9) and use ∇ · u = 0 to obtain the
following error equation

(et,ϕh) + µa(e,ϕh) +

∫ t

0

β(t− s)a(e(s),ϕh)ds+ ρ(∇ · e,∇ · ϕh)

=(p,∇ · ϕh) + b(uh,uh,ϕh)− b(u,u,ϕh), ∀ϕh ∈ Jh. (3.10)

Theorem 3.1. Assume that (A1)-(A3), (B1) and (B2) hold. Let α > 0 be such

that µ−
(

γ
δ−α

)2
> 0. Then, there exists a positive constant C that does not depend

on the inverse power of µ, such that the following bounds hold for t ∈ [0, T ], T > 0

∥e(t)∥2 + β1e
−2αt

∫ t

0

e2αs∥∇e(s)∥2ds+ ρe−2αt

∫ t

0

e2αs∥∇ · e(s)∥2ds ≤ Ch2keL(t),

where, β1 = µ−
(

γ
δ−α

)2
> 0, and

L(t) =

∫ t

0

(
2α+ 4∥∇u(s)∥∞ + (1 +

4

ρ
)∥u(s)∥22

)
ds, (3.11)

and C depends on

∥u(t)∥2k + e−2αt

∫ t

0

e2αs
(
(µ+ 4ρ+ 2)∥u(s)∥2k+1 +

4

ρ
∥p(s)∥2k

)
ds. (3.12)

Proof. Choose ϕh = Phe = e− (u− Phu) in (3.10) to arrive at

1

2

d

dt
∥e∥2 + µ∥∇e∥2 + ρ∥∇ · e∥2 +

∫ t

0

β(t− τ)a(e(τ), e)dτ

=(et,u− Phu) + µa(e,u− Phu) + ρ(∇ · e,∇ · (u− Phu))

+

∫ t

0

β(t− τ)a(e(τ),u− Phu)dτ + (p,∇ · Phe)− Λ(Phe), (3.13)

where

Λ(ϕh) = b(u,u,ϕh)− b(uh,uh,ϕh) = b(u, e,ϕh) + b(e,u,ϕh)− b(e, e,ϕh).
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Now, using the definition of Ph, we tackle the first term on the right hand side of
(3.13) as

(et,u− Phu) = (ut − Phut + Phut − uht,u− Phu)

= (ut − Phut,u− Phu)

=
1

2

d

dt
∥u− Phu∥2. (3.14)

An application of the Cauchy-Schwarz inequality and the Young’s inequality with
(3.7) leads to

µ|a(e,u− Phu)| ≤ µ∥∇e∥∥∇(u− Phu)∥
≤ Cµhk∥u∥k+1∥∇e∥

≤ Cµ

2
h2k∥u∥2k+1 +

µ

2
∥∇e∥2. (3.15)

Use of the Cauchy-Schwarz inequality and the Young’s inequality with (3.7) and
∥∇ · ϕ∥ ≤ C∥∇ϕ∥ yield

ρ|(∇ · e,∇ · (u− Phu))| ≤ Cρ∥∇ · e∥∥∇(u− Phu)∥

≤ 2Cρh2k∥u∥2k+1 +
ρ

8
∥∇ · e∥2. (3.16)

The integration term on the right-hand side can be estimated as∫ t

0

β(t− τ)a(e(τ),u− Phu)dτ ≤
(∫ t

0

β(t− τ)∥∇e(τ)∥dτ
)
∥∇(u− Phu)∥

≤ Chk
(∫ t

0

β(t− τ)∥∇e(τ)∥dτ
)
∥u∥k+1 (3.17)

≤ C

2
h2k∥u∥2k+1 +

1

2

(∫ t

0

β(t− τ)∥∇e(τ)∥dτ
)2

.

A use of discrete incompressibility condition, that is, (jhp,∇ · Phe = 0), with the
Cauchy-Schwarz inequality and the approximation property (3.1) yields

|(p,∇ · Phe)| = |(p− jhp,∇ · Phe)|
≤ Chk∥p∥k∥∇ · e∥

≤ 2C

ρ
h2k∥p∥2k +

ρ

8
∥∇ · e∥2. (3.18)

Using (2.5), we can rewrite the nonlinear terms as

|Λ(Phe)| ≤ |b(u, e,u− Phu)|+ |b(e,u, e)|
+ |b(e,u,u− Phu)|+ |b(e, e,u− Phu)|. (3.19)

We use (2.4) and (2.3) with the Hölder’s inequality, the Gagliardo-Nirenberg in-
equality (2.1), the Agmon’s inequality (2.2), the Young’s inequality, the continuous
divergence constraint ∇ ·u = 0 and (3.7) to bound the first term on the right-hand
side of (3.19) as

|b(u, e,u− Phu)| = |b(u,u− Phu, e)|
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= |((u · ∇)(u− Phu), e) +
1

2
((∇ · u)(u− Phu), e)|

≤ ∥u∥∞∥∇(u− Phu)∥∥e∥+
1

2
∥∇ · u∥L4∥u− Phu∥L4∥e∥

≤ Chk∥e∥∥u∥2∥u∥k+1

≤ C

2
h2k∥u∥2k+1 +

C

2
∥u∥22∥e∥2. (3.20)

Third term on the right-hand side of (3.19) can also be estimated as follows:

|b(e,u,u− Phu)| = |1
2
((e · ∇)u,u− Phu)−

1

2
((e · ∇)(u− Phu),u)|

≤ 1

2
(∥e∥∥∇u∥L4∥u− Phu∥L4 + ∥e∥∥∇(u− Phu)∥∥u∥∞)

≤ Chk∥e∥∥u∥2∥u∥k+1

≤ C

2
h2k∥u∥2k+1 +

C

2
∥u∥22∥e∥2. (3.21)

To bound the second term on the right-hand side of (3.19), use (2.3) with the
Cauchy-Schwarz inequality and the Agmon’s inequality (2.2) as

|b(e,u, e)| ≤ ((e · ∇)u, e) +
1

2
((∇ · e)u, e)

≤ ∥∇u∥∞∥e∥2 + 1

2
∥∇ · e∥∥u∥∞∥e∥

≤ C

(
∥∇u∥∞ +

1

ρ
∥u∥22

)
∥e∥2 + ρ

8
∥∇ · e∥2. (3.22)

For the last term on right hand side of (3.19), use (2.4) then doing similar as (3.22)
to obtain

|b(e, e,u− Phu)| = |b(e,u− Phu, e)|

≤ C(∥∇(u− Phu)∥∞ +
1

ρ
∥u− Phu∥2∞)∥e∥2 + ρ

8
∥∇ · e∥2

≤ C(∥∇u∥∞ +
1

ρ
∥u∥22)∥e∥2 +

ρ

8
∥∇ · e∥2. (3.23)

Inserting (3.14)-(3.23) in (3.13) and then multiplying both side by e2αt, we arrive
at

1

2

d

dt
e2αt∥e∥2 + µ

2
e2αt∥∇e∥2 + ρ

2
e2αt∥∇ · e∥2 + e2αt

∫ t

0

β(t− τ)a(e(τ), e)dτ

≤1

2

d

dt
e2αt∥u− Phu∥2 − αe2αt∥u− Phu∥2

+ Ch2ke2αt
(
(
µ

2
+ 2ρ+ 1)∥u∥2k+1 +

2

ρ
∥p∥2k

)
+ e2αt

(
2∥∇u∥∞ + (

1

2
+

2

ρ
)∥u∥22 + α

)
∥e∥2

+
1

2
e2αt

(∫ t

0

β(t− τ)∥∇e(τ)∥dτ
)2
. (3.24)
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First, we drop the second term on the right-hand side of (3.24) and then integrate
with respect to time from 0 to t and use ∥e(0)∥ = ∥u(0)− Phu(0)∥ to obtain

e2αt∥e(t)∥2 + µ

∫ t

0

e2αs∥∇e(s)∥2ds+ ρ

∫ t

0

e2αs∥∇ · e(s)∥2ds

+ 2

∫ t

0

e2αs
∫ s

0

β(s− τ)a(e(τ), e(s))dτds

≤ e2αt∥u(t)− Phu(t)∥2

+ Ch2k
∫ t

0

e2αs
(
(µ+ 4ρ+ 2)∥u(s)∥2k+1 +

4

ρ
∥p(s)∥2k

)
ds

+

∫ t

0

e2αs
(
2α+ 4∥∇u∥∞ + (1 +

4

ρ
)∥u∥22

)
∥e(s)∥2ds

+

∫ t

0

e2αs
(∫ s

0

β(s− τ)∥∇e(τ)∥dτ
)2
ds. (3.25)

From Lemma 2.1, the double integration term on left-hand side is positive, so we
can drop it and the double integration term on right-hand side can be bounded as
similar as (4.2) of [40, page 761] as∫ t

0

e2αs
(∫ s

0

β(s− τ)∥∇e(τ)∥dτ
)2
ds ≤

(
γ

δ − α

)2 ∫ t

0

e2αs∥∇e(s)∥2ds. (3.26)

Now, use (3.26) in (3.25) with β1 = µ−
(

γ
δ−α

)2
> 0 and use the Gronwall’s lemma

to conclude

e2αt∥e(t)∥2 + β1

∫ t

0

e2αs∥∇e(s)∥2ds+ ρ

∫ t

0

e2αs∥∇ · e(s)∥2ds

≤Ch2keL(t)

[
e2αt∥u(t)∥2k +

∫ t

0

e2αs
(
(µ+ 4ρ+ 2)∥u(s)∥2k+1 +

4

ρ
∥p(s)∥2k

)
ds

]
.

Multiply both sides by e−2αt, which completes the rest of the proof.

Remark 3.1. In Theorem 3.1, such a choice of α > 0 is possible under the assump-
tion that µ > (ν − µ)2 and by choosing α < δ

(
1− ν−µ√

µ

)
.

Remark 3.2. From the assumption (A3), it is clear that L(t) defined on (3.11) is
bounded by C(t) and the quantity in (3.12) is also bounded by C, where C does
not depend on µ−1.

Remark 3.3. For stable mixed finite element spaces (Pk, Pk−1), k > 1, the con-
stant C of Theorem 3.1 does not depends on the inverse power of µ, but it depends
on ρ and ρ−1. This justifies the standard choice of grad-div stabilization parameter
to be ρ ≈ 1 (as for NSEs, see [37, 38]). However, we have numerically verified that
it depends on the mesh size, the type of mesh, the viscosity, and the finite element
spaces as well. (Detailed discussion for Stokes and NSEs can be found in [3, 29].)

For a pair of equal degree inf-sup stable finite element spaces like the MINI
element (P1b, P1), the constant C depends on

∥u(t)∥21 + e−2αt

∫ t

0

e2αs
(
(µ+ 4ρ+ 2)∥u(s)∥22 +

4h2

ρ
∥p(s)∥22

)
ds,
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Then, we can choose ρ ≈ h2 or h, which gives us the optimal result. In other words,
we can choose the stabilization parameter ρ in a range of h2 to 1.

3.1.2. Error bounds for pressure

Theorem 3.2. Let us assume that the hypothesis of the Lemma 3.1 holds true. Ad-
ditionally, we assume that ut ∈ L2(0, T ;Hk−1), then there exists a positive constant
C independent of µ−1, such that, for all t > 0,

e−2αt

∫ t

0

e2αs∥(p− ph)(s)∥2L2/Nh
ds ≤ Ch2keL(t),

holds, where, L(t) is defined in (3.11) and C depends on the following

∥u(t)∥2k + e−2αt

∫ t

0

e2αs
(
∥us(s)∥2k−1 + (µ+ 4ρ+ 2)∥u(s)∥2k+1 +

4

ρ
∥p(s)∥2k

)
ds.

(3.27)

To achieve proof, we need some intermediate results. We start by splitting the
pressure error p− ph as

∥p− ph∥ ≤ ∥p− jhp∥+ ∥jhp− ph∥. (3.28)

We need to estimate the second term on the right-hand side of (3.28). Using (3.5),
we rewrite it as

∥jhp− ph∥L2/Nh
≤ C sup

ϕh∈Hh/{0}

{
|(jhp− ph,∇ · ϕh)|

∥∇ϕh∥

}

≤ C

(
∥jhp− p∥+ sup

ϕh∈Hh/{0}

{
|(p− ph,∇ · ϕh)|

∥∇ϕh∥

})
. (3.29)

The first term on the right-hand side of (3.29) can be estimated by using the ap-
proximation property (3.1). For the second term, we first look at the error equation
in pressure obtained by subtracting (3.3) from (2.6):

(p− ph,∇ · ϕh) = (et,ϕh) + µa(e,ϕh) +

∫ t

0

β(t− s)a(e(s),ϕh)ds

+ ρ(∇ · e,∇ · ϕh) + Λ(ϕh), (3.30)

where

Λ(ϕh) = −b(u,u,ϕh) + b(uh,uh,ϕh) = −b(uh, e,ϕh)− b(e,u,ϕh), ϕh ∈ Hh.

Similar to (3.20) and (3.21), we bound the nonlinear terms as

|Λ(ϕh)| = C(∥u∥2 + ∥uh∥2)∥e∥∥∇ϕ∥.

Since u is regular enough, u is continuous and hence, ∥Ihu∥2 ≤ C∥u∥2, for some
C > 0. Then, using (3.2), (3.8) and Lemma 3.1, one can find

∥uh∥2 ≤ ∥uh − Ihu∥2 + ∥Ihu∥2 ≤ Ch−2∥uh − Ihu∥+ C∥u∥2 ≤ C∥u∥3. (3.31)
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Apply the Cauchy-Schwarz inequality and (3.31) in (3.30) to arrive at

(p− ph,∇ · ϕh) ≤C
(
∥et∥−1;h + µ∥∇e∥+ ρ∥∇ · e∥+ ∥u∥3∥e∥

+

∫ t

0

β(t− s)∥∇e(s)∥ds
)
∥∇ϕh∥, (3.32)

where,

∥et∥−1;h = sup

{
⟨et,ϕh⟩
∥∇ϕh∥

: ϕh ∈ Hh,ϕh ̸= 0

}
.

Since all the estimate on right hand side in (3.32) are known except ∥et∥−1;h, we
now derive ∥et∥−1;h. As Hh ⊂ H1

0, we note that

∥et∥−1;h = sup

{
⟨et,ϕh⟩
∥∇ϕh∥

: ϕh ∈ Hh,ϕh ̸= 0

}
≤ sup

{
⟨et,ϕ⟩
∥∇ϕ∥

: ϕ ∈ H1
0,ϕ ̸= 0

}
= ∥et∥−1.

Lemma 3.2. The error e = u− uh satisfies for 0 < t < T

∥et∥−1 ≤C
(
hk(∥ut∥k−1 + ∥p∥k) + µ∥∇e∥+ ρ∥∇ · e∥+ ∥u∥3∥e∥

+

∫ t

0

β(t− s)∥∇e(s)∥ds
)
.

Proof. For any ψ ∈ H1
0, use the orthogonal projection Ph : L2 → Jh, we obtain

using (3.10) with ϕh = Phψ

(et,ψ) = (et,ψ − Phψ) + (et, Phψ)

= (et,ψ − Phψ)− µa(e, Phψ)−
∫ t

0

β(t− s)a(e(s), Phψ)ds+ (p,∇ · Phψ)

− ρ(∇ · e,∇ · Phψ)− Λ(Phψ). (3.33)

Using the approximation property (3.7) of Ph, we find that

(et,ψ − Phψ) = (ut − Phut,ψ − Phψ) ≤ Chk∥ut∥k−1∥∇ψ∥. (3.34)

Also, using discrete incompressibility condition and the approximation properties
(3.1) and (3.7), we bound the pressure term as

(p,∇ · Phψ) ≤ (p− jhp,∇ · Phψ) ≤ Chk∥p∥k∥∇ψ∥. (3.35)

Now, substitute (3.34)-(3.35) in (3.33) and use (3.31) with ϕh = Phψ to obtain

(et,ψ) ≤C
(
hk(∥ut∥k−1 + ∥p∥k) + µ∥∇e∥+ ρ∥∇ · e∥+ ∥u∥3∥e∥

+

∫ t

0

β(t− s)∥∇e(s)∥ds
)
∥∇ψ∥.
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Therefore,

∥et∥−1 ≤ sup

{
⟨et,ϕ⟩
∥∇ϕ∥

: ϕ ∈ H1
0,ϕ ̸= 0

}
≤C
(
hk(∥ut∥k−1 + ∥p∥k) + µ∥∇e∥+ ρ∥∇ · e∥+ ∥u∥3∥e∥

+

∫ t

0

β(t− s)∥∇e(s)∥ds
)
,

which completes the proof.

Proof of the Theorem 3.2. From (3.28), (3.29), (3.32) and Lemma 3.2, we obtain

∥(p− ph)∥2L2/Nh
≤C
(
h2k(∥ut∥2k−1 + ∥p∥2k) + µ∥∇e∥2 + ρ∥∇ · e∥2 + ∥u∥23∥e∥2

+
( ∫ t

0

β(t− s)∥∇e(s)∥ds
)2)

.

We multiply both sides by e2αt and integrate with respect to time from 0 to t. Then,
the resulting double integration term can be written as a single integration similar
to (3.26) and we finally reach at∫ t

0

e2αs∥(p− ph)(s)∥2L2/Nh
ds

≤C
(
h2k

∫ t

0

e2αs(∥us(s)∥2k−1 + ∥p(s)∥2k)ds+ β1

∫ t

0

e2αs∥∇e(s)∥2ds

+ ρ

∫ t

0

e2αs∥∇ · e(s)∥2ds+ ∥e(t)∥2L∞

∫ t

0

e2αs∥u(s)∥23ds
)
.

We use Theorem 3.1 and multiply both sides by e−2αt to complete the rest of the
proof.

3.2. Semidiscrete error estimate for H2-smooth data

As discussed in the introduction, the assumption of Hm-smooth initial data is unre-
alistic. So we restrict the initial velocity u0 to be H2-smooth, that is, u0 ∈ J1∩H2.
The analysis of this section takes into account the lack of regularity at t = 0.

Theorem 3.3. Assume that (A1), (A2), (A3′), (B1) and (B2) hold. Let α > 0

be such that µ−
(

γ
δ−α

)2
> 0. Then, there exists a positive constant C as defined on

Theorem 3.1, such that the following bounds hold for t ∈ [0, T ], T > 0 and k ∈ {1, 2}

∥e(t)∥2 + β1e
−2αt

∫ t

0

e2αs∥∇e(s)∥2ds+ ρe−2αt

∫ t

0

e2αs∥∇ · e(s)∥2ds ≤ Ch2keL(t),

and

e−2αt

∫ t

0

e2αs∥(p− ph)(s)∥2L2/Nh
ds ≤ Ch2keL(t), k ∈ {1, 2},

where, β1, and L(t) are defined on Theorem 3.1.
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We skip the proof since it follows the proofs of Theorems 3.1 and 3.2.

Remark 3.4. Unlike in the case of Hm-smooth data, where the estimates of The-
orems 3.1 and 3.2 are valid for all k ≥ 1, here, in the case of H2-smooth data, these
estimates remain valid only for k ∈ {1, 2}. That is, for k ≥ 3, for higher order
approximations of velocity and pressure, we do not obtain a higher order rate of
convergence but are restricted to second order convergence for velocity and pres-
sure, in case of H2-smooth data, and in case the estimates do not depend on inverse
power of µ.

In view of the above remark, we look into the case k ≥ 3 for H2-smooth initial
data. We set ϕh = Phe = e − (u − Phu) in (3.10) and following the steps (3.13)-
(3.23), we obtain (3.24), that is,

1

2

d

dt
e2αt∥e∥2 + µ

2
e2αt∥∇e∥2 + ρ

2
e2αt∥∇ · e∥2 + e2αt

∫ t

0

β(t− τ)a(e(τ), e)dτ

≤1

2

d

dt
e2αt∥u− Phu∥2 − αe2αt∥u− Phu∥2

+ Ch2ke2αt
(
(
µ

2
+ 2ρ+ 1)∥u∥2k+1 +

2

ρ
∥p∥2k

)
+ e2αt

(
2∥∇u∥∞ + (

1

2
+

2

ρ
)∥u∥22 + α

)
∥e∥2

+
1

2
e2αt

(∫ t

0

β(t− τ)∥∇e(τ)∥dτ
)2
. (3.36)

Here we can not integrate with respect to time directly since the third term on the
right-hand side of (3.36) is no longer integrable near t = 0 for k ≥ 3. For example,
from (A3′), and for k = 3, we have∫ t

0

e2αsτ(s)(∥u∥24 + ∥p∥23) ds ≤ C.

Here the kernel τ(t) compensates for the singularity at t = 0 of the higher-order
estimates of the solutions.

Keeping this in mind we multiply (3.36) by τk−2(t) and use the fact σk−2
t (t) ≤

2ασk−2(t) + (k − 2)σk−3(t), where σk(t) = (τ(t))ke2αt. Then we integrate the
resulting inequality over time from 0 to t to obtain

σk−2(t)∥e(t)∥2 +
∫ t

0

σk−2(s)
(
µ∥∇e∥2ds+ ρ∥∇ · e∥2

)
ds

+ 2

∫ t

0

σk−2(s)

∫ s

0

β(s− τ)a(e(τ), e(s))dτds

≤ σk−2(t)∥u(t)− Phu(t)∥2 + (k − 2)

∫ t

0

σk−3(s)∥e(s)∥2ds

−
∫ t

0

(2ασk−2(s) + (k − 2)σk−3(s))∥u(t)− Phu(t)∥2ds

+ Ch2k
∫ t

0

σk−2(s)

(
(µ+ 4ρ+ 2)∥u(s)∥2k+1 +

4

ρ
∥p(s)∥2k

)
ds

+

∫ t

0

σk−2(s)
(
2α+ 4∥∇u∥∞ + (1 +

4

ρ
)∥u∥22

)
∥e∥2ds
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+

∫ t

0

σk−2(s)
(∫ s

0

β(s− τ)∥∇e(τ)∥dτ
)2
ds. (3.37)

However the bound for the second term on the right-hand side of (3.37), that is,

(k − 2)

∫ t

0

σk−3(s)∥e(s)∥2ds (3.38)

is no longer independent of the inverse power of µ. To see this for the case k = 3,
we first split the error e in two parts, as e = u−uh = (u− vh) + (vh −uh), where
vh : [0, T ) → Jh is the auxiliary function satisfying

(ut − vht,ϕh) + µa(u− vh,ϕh) +

∫ t

0

β(t− s)a(u(τ)− vh(τ),ϕh)dτ = 0. (3.39)

Let ξ = u− vh, the choose ϕh = Ph(−∆h)
−1ξ = (−∆h)

−1ξ − (−∆h)
−1(u− Phu)

in (3.39) to obtain

1

2

d

dt
∥ξ∥2−1 + µ∥ξ∥2 +

∫ t

0

β(t− τ)(ξ(τ), ξ)dτ

=(ξt, (−∆h)
−1(u− Phu)) + µ(ξ,u− Phu) +

∫ t

0

β(t− τ)(ξ(τ),u− Phu)dτ.

A use of the properties of Ph, the Cauchy-Schwarz inequality, and the Young’s
inequality yields

d

dt
∥ξ∥2−1 + µ∥ξ∥2 + 2

∫ t

0

β(t− τ)(ξ(τ), ξ)dτ

≤ d

dt
∥u− Phu∥2−1 + C(µ+ 1)h6∥u∥23 + (

∫ t

0

β(t− τ)∥ξ(τ)∥dτ)2.

We multiply both sides by e2αt and integrate with respect to time to arrive at

e2αt∥ξ(t)∥2−1 + µ

∫ t

0

e2αs∥ξ(s)∥2ds+ 2

∫ t

0

e2αs
∫ s

0

β(s− τ)(ξ(τ), ξ(s))dτds

≤2α

∫ t

0

e2αs∥ξ(s)∥2−1ds+ e2αt∥u− Phu∥2−1 + C(µ+ 1)h6
∫ t

0

e2αs∥u(s)∥23ds

+

∫ t

0

e2αs(

∫ s

0

β(s− τ)∥ξ(τ)∥dτ)2ds. (3.40)

We drop the double integration term on the left-hand side of (3.40) and as in
(3.26) we bound the last term on the right-hand side. Now for the first term on
the right-hand side, an application of the orthogonal property (3.7) of Ph and the
Cauchy-Schwarz’s inequality leads to

∥u− Phu∥2−1 = (u− Phu+ Phu− vh + vh − Phu, (−∆h)
−1(u− Phu))

= (ξ, (−∆h)
−1(u− Phu))

≤ ∥ξ∥−1∥u− Phu∥−1.

Above we have used the fact that ξ = u− vh. On simplifying, we find

∥u− Phu∥−1 ≤ ∥ξ∥−1. (3.41)
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Finally, a use of the Gronwall’s lemma and (3.41) in (3.40) give(
µ− γ2

(δ − α)2

)∫ t

0

e2αs∥ξ(s)∥2ds ≤ Ce2αt(µ+ 1)h6
∫ t

0

e2αs∥u(s)∥23ds.

We recall from Theorem 3.1 that β1 = µ− γ2

(δ−α)2 > 0. Now the resulting estimate

will depend on the inverse power of µ. Using similar arguments we can show that
the estimate of (3.38) will depend on the inverse power of µ for k > 3. As a result,
so will the estimate of (3.37).

In order to show that only second-order convergence is possible, in case estimates
are independent of inverse power of µ, and in case k ≥ 3, we obtain (3.36) as
earlier. But now we restrict ourselves to lower order projection properties, that
is, ∥∇(u − Phu)∥ ≤ Ch2∥u∥3, etc., which no longer demands a time weight τ(t).
Following the lines of argument for (3.24), we can obtain the desired result.

4. Backward Euler method

In this section, we consider the full discretization of the finite element approximation
(3.3). We apply a backward Euler method for time discretization. Let {tn}Nn=0 be
a uniform partition of the time interval [0, T ] and tn = n∆t with time step ∆t > 0.
We approximate the time derivative term of the Oldroyd model of order one by

∂tϕ
n =

(ϕn − ϕn−1)

∆t
,

where ϕn = ϕ(tn) a sequence in Hh which is defined on [0, T ]. Since the backward
Euler method is of the first order in time, so for the integration term, we apply the
right rectangle rule as

qnr (ϕ) = ∆t

n∑
j=0

β(tn − tj)ϕ
j ≈

∫ t

0

β(tn − s)ϕ(s)ds.

It is observed that the right rectangle rule [41] is positive in the sense that

∆t

n∑
i=1

qir(ϕ) = ∆t

n∑
i=1

(
∆t

i∑
j=0

β(tn − tj)ϕ
j

)
ϕi ≥ 0. (4.1)

Now the backward Euler method applied in (3.3) is stated as below: Find Un ∈ Hh

and Pn ∈ Lh such that for U(0) = Phu0 and t > 0

(∂tU
n,ϕh) + µa(Un,ϕh) + b(Un,Un,ϕh)

−(Pn,∇ · ϕh) + ρ(∇ ·Un,∇ · ϕh)

= (fn,ϕh)− a(qnr (U),ϕh), ∀ ϕh ∈ Hh,

(∇ ·Un, χh) = 0, ∀ χh ∈ Lh.


(4.2)

If we consider the discrete solution Un ∈ Jh, then (4.2) becomes: Find Un ∈ Jh

such that for U(0) = Phu0 and t > 0

(∂tU
n,ϕh) + µa(Un,ϕh) + b(Un,Un,ϕh) + ρ(∇ ·Un,∇ · ϕh)
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=(fn,ϕh)− a(qnr (U),ϕh), ∀ ϕh ∈ Jh. (4.3)

Using a variant of Brouwer fixed point theorem and standard uniqueness arguments,
it is easy to show that the discrete problem (4.2) or (4.3) is well-posed. We can
prove a priori bounds for the fully discrete solution {Un}1≤n≤N similar to Lemma
3.1, which helps us to prove the local existence of the fully discrete solution (for a
similar proof, see [6]).

4.1. Fully discrete error estimates for Hm-smooth data

We define u(tn) = un, p(tn) = pn and set en = Un − un. For the error equation,
we consider (3.9) at t = tn and subtract the resulting equation from (4.3): For all
ϕh ∈ Jh

(∂te
n,ϕh) + µa(en,ϕh) + ρ(∇ · en,∇ · ϕh) + a(qnr (e),ϕh)

=(pn,∇ · ϕh) +Rn(ϕh) + Λn(ϕh) + En(ϕh), (4.4)

where

Rn(ϕh) = (un
t ,ϕh)− (∂tu

n,ϕh)

= (un
t ,ϕh)−

1

∆t

∫ tn

tn−1

(us,ϕh) ds

=
1

∆t

∫ tn

tn−1

(s− tn−1)(uss,ϕh) ds, (4.5)

En(ϕh) =

∫ tn

0

β(t− s)a(u(s),ϕh) ds−∆t

n∑
i=1

β(tn − ti)a(u
i,ϕh) (4.6)

≤ C

n∑
i=1

∫ ti

ti−1

(s− ti−1)
(
βs(tn − s)a(u(s),ϕh) + β(tn − s)a(us(s),ϕh)

)
ds,

Λn(ϕh) = b(un,un,ϕh)− b(Un,Un,ϕh)

= b(en, en,ϕh)− b(un, en,ϕh)− b(en,un,ϕh). (4.7)

4.1.1. Fully discrete error bounds for velocity

In this section, we consider the exact solution to be Hm-smooth. Our main result
of this section is as follows:

Theorem 4.1. Let the initial velocity satisfy u0 ∈ Hmax{3,k} and let all other
assumptions of Theorem 3.1 hold true. Further, let ut ∈ L2(0, T ;H2)∩L2(0, T ;Hk)
and utt ∈ L2(0, T ;L2). Then there exists a positive constant C, independent of the
inverse power of µ, such that the following bounds hold for 1 ≤ n ≤ N

∥en∥2 + β1∆te
−2αtn

n∑
i=1

e2αti∥∇ei∥2 + ρ∆te−2αtn

n∑
i=1

e2αti∥∇ · ei∥2

≤CeL̂
n(
K1(tn)h

2k +K2(tn)(∆t)
2
)
,

where β1 = µ−
(

γ
δ−α

)2
> 0, and

L̂n =

n∑
i=1

(
C(α) + 4∥∇ui∥∞ + (1 +

4

ρ
)∥ui∥22

)
, (4.8)
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K1(tn) = e−2αtn

∫ tn

0

e2αs
(
∥us(s)∥2k + (µ+ 4ρ+ 2)∥u(s)∥2k+1 +

4

ρ
∥p(s)∥2k

)
ds

+ ∥u(tn)∥2k,

K2(tn) = e−2αtn

∫ tn

0

e2αs
(
∥uss(s)∥2 + ∥u(s)∥22 + ∥us(s)∥22

)
ds.

Proof. We take n = i and ϕh = Phe
i = ei − (ui − Phu

i) in (4.4) to arrive at

(∂te
i, ei) + µa(ei, ei) + ρ(∇ · ei,∇ · ei) + a(qir(e), e

i)

=(∂te
i,ui − Phu

i) + µa(ei,ui − Phu
i) + ρ(∇ · ei,∇ · (ui − Phu

i))

+ a(qir(e),u
i − Phu

i) + (pn,∇ · Phe
i) +Ri

h(Phe
i) + Λi

h(Phe
i) + Ei

h(Phe
i).

We note that

(∂tϕ
i,ϕi) =

1

∆t
(ϕi − ϕi−1,ϕi) =

1

2
∂t∥ϕi∥2 + ∆t

2
∥∂tϕi∥2 ≥ 1

2
∂t∥ϕi∥2. (4.9)

A use of the approximation property (3.7) of Ph yields

(∂te
i,ui − Phu

i) = (∂t(u
i − Phu

i),ui − Phu
i)

≤ Ch2k(
1

2
∂t∥ui∥2k +

∆t

2
∥∂tui∥2k). (4.10)

We now apply the Cauchy-Schwarz inequality and the Young’s inequality along with
(3.7), (4.9) and (4.10) to obtain

∂t∥ei∥2 + µ∥∇ei∥2 + 3ρ

2
∥∇ · ei∥2 + 2a(qir(e), e

i)

≤Ch2k
(
∂t∥ui∥2k +∆t∥∂tui∥2k + (µ+ 4ρ+ 1)∥ui∥2k+1 +

4

ρ
∥pi∥2k

)
+ (qir(∥∇e∥))2 + 2Ri

h(Phe
i) + 2Λi

h(Phe
i) + 2Ei

h(Phe
i).

We multiply both side by ∆te2αti then sum over i = 1 to n to find that,

∆t

n∑
i=1

e2αti∂t∥ei∥2 + µ∆t

n∑
i=1

e2αti∥∇ei∥2

+
3ρ

2
∆t

n∑
i=1

e2αti∥∇ · ei∥2 + 2∆t

n∑
i=1

e2αtia(qir(e), e
i)

≤Ch2k∆t

n∑
i=1

e2αti
(
∂t∥ui∥2k +∆t∥∂tui∥2k + (µ+ 4ρ+ 1)∥ui∥2k+1 +

4

ρ
∥pi∥2k

)
+∆t

n∑
i=1

e2αti(qir(∥∇e∥))2 + 2∆t

n∑
i=1

e2αti(Ri(Phe
i) + Λi(Phe

i) + Ei(Phe
i)).

(4.11)

The positivity property (4.1) gives us

∆t

n∑
i=1

e2αtia(qir(e), e
i) = ∆t

n∑
i=1

e2αti∆t

i∑
j=1

β(ti − tj)∥∇ej∥∥∇ei∥ ≥ 0. (4.12)
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Similar to (3.26), with a use of Cauchy-Schwarz inequality and the change of order
of summation, we can write the second term on the right-hand side of (4.11) as

∆t

n∑
i=1

e2αti(qir(∥∇e∥))2 = ∆t

n∑
i=1

e2αti∆t

i∑
j=0

β(tn − tj)∥∇ej∥2

≤
( γ

δ − α

)2
∆t

n∑
i=1

e2αti∥∇ei∥2. (4.13)

Now use the fact that

∆t

n∑
i=1

e2αti∂t∥ei∥2 =

n∑
i=1

e2αti(∥ei∥2 − ∥ei−1∥2)

= e2αtn∥en∥2 −
n−1∑
i=1

e2αti(e2α∆t − 1)∥ei∥2

in (4.11) and then use (4.12) and (4.13) with β1 = µ− ( γ
δ−α )

2 > 0 to arrive at

e2αtn∥en∥2 + β1∆t

n∑
i=1

e2αti∥∇ei∥2 + 3ρ

2
∆t

n∑
i=1

e2αti∥∇ · ei∥2

≤
n−1∑
i=1

e2αti(e2α∆t − 1)∥ei∥2 + Ch2k
[
e2αtn∥un∥2k − ∥u0∥2

−
n−1∑
i=1

e2αti(e2α∆t − 1)∥ui∥2 + (∆t)2
n∑

i=1

e2αti∥∂tui∥2k

+∆t

n∑
i=1

e2αti
(
(µ+ 4ρ+ 1)∥ui∥2k+1 +

4

ρ
∥pi∥2k

)]

+ 2∆t

n∑
i=1

e2αti(Ri(Phe
i) + Λi(Phe

i) + Ei(Phe
i)). (4.14)

The second and third terms within the bracket on the right-hand side are positive,
so we drop them and the third and fourth terms can be written as

(∆t)2
n∑

i=1

e2αti∥∂tui∥2k ≤ (∆t)2
n∑

i=1

e2αti
( 1

∆t

∫ ti

ti−1

∥us(s)∥kds
)2

≤ C

∫ tn

0

e2αs∥us(s)∥2kds, (4.15)

and

∆t

n∑
i=1

e2αti
(
(µ+ 4ρ+ 1)∥ui∥2k+1 +

4

ρ
∥pi∥2k

)
≤
∫ tn

0

e2αs
(
(µ+ 4ρ+ 1)∥u(s)∥2k+1 +

4

ρ
∥p(s)∥2k

)
ds. (4.16)
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A use of the Cauchy-Schwarz inequality and the Young’s inequality with ti−1 ≤
t, t ∈ [ti−1, ti] in (4.5) yields

∆t

n∑
i=1

e2αtiRi(Phe
i)

≤∆t

n∑
i=1

e2αti
1

∆t

∫ ti

ti−1

(s− ti−1)∥uss(s)∥ds ∥Phe
i∥

≤∆t

n∑
i=1

e2αti
(

1

∆t

∫ ti

ti−1

(s− ti−1)∥uss(s)∥ds
)2

+
1

4
∆t

n∑
i=1

e2αti∥ei∥2

≤∆t

n∑
i=1

e2αti
1

(∆t)2

(∫ ti

ti−1

(s− ti−1)
2ds

)(∫ ti

ti−1

∥uss(s)∥2ds
)

+
∆t

4

n∑
i=1

e2αti∥ei∥2

≤(∆t)2
n∑

i=1

e2αti
∫ ti

ti−1

∥uss(s)∥2ds+
∆t

4

n∑
i=1

e2αti∥ei∥2

≤Ce2α∆t(∆t)2
∫ tn

0

e2αs∥uss(s)∥2ds+
1

4
∆t

n∑
i=1

e2αti∥ei∥2. (4.17)

Again, an application of the Cauchy-Schwarz inequality and the Young’s inequality
in (4.6) give

∆t

n∑
i=1

e2αti |Ei(Phe
i)|

≤C∆t
n∑

i=1

e2αti
( i∑

j=1

∫ tj

tj−1

(s− tj−1)β(ti − s)
∣∣δ∥∆̃u(s)∥+ ∥∆̃us(s)∥)

∣∣ds)∥Phe
i∥

≤C∆t
n∑

i=1

e2αti
( i∑

j=1

∫ tj

tj−1

(s− tj−1)β(ti − s)
(
δ∥u(s)∥2 + ∥us(s)∥2

)
ds
)2

+
1

4
∆t

n∑
i=1

e2αti∥ei∥2

≤C(∆t)2
∫ tn

0

e2αs(∥u(s)∥22 + ∥us(s)∥22)ds+
1

4
∆t

n∑
i=1

e2αti∥ei∥2. (4.18)

Also, similar to (3.19)-(3.23), we can bound the nonlinear terms of (4.7) as

|Λi(Phe
i)| ≤|b(ui, ei,ui − Phu

i)|+ |b(ei,ui, ei)|
+ |b(ei,ui,ui − Phu

i)|+ |b(ei, ei,ui − Phu
i)|

≤Ch2k∥ui∥2k+1 + (2∥∇ui∥∞ + (
1

2
+

2

ρ
)∥ui∥22)∥ei∥2 +

ρ

4
∥∇ · ei∥2.

Hence,

∆t

n∑
i=1

e2αti |Λi(Phe
i)| ≤Ch2k∆t

n∑
i=1

e2αti∥ui∥2k+1 +
ρ

4
∆t

n∑
i=1

e2αti∥∇ · ei∥2



1354 B. Bir & D. Goswami

+ C∆t

n∑
i=1

e2αti(2∥∇ui∥∞ + (1 +
1

2ρ
)∥ui∥22)∥ei∥2. (4.19)

Now, we use (4.15)-(4.19) in (4.14) to arrive at

e2αtn∥en∥2 + β1∆t

n∑
i=1

e2αti∥∇ei∥2 + ρ∆t

n∑
i=1

e2αti∥∇ · ei∥2

≤Ch2k
[ ∫ tn

0

e2αs
(
∥us(s)∥2k + (µ+ 4ρ+ 2)∥u(s)∥2k+1 +

4

ρ
∥p(s)∥2k

)
ds

]
+ Ch2ke2αtn∥u(tn)∥2k + C(∆t)2

∫ tn

0

e2αs
(
∥uss∥2 + ∥u(s)∥22 + ∥us(s)∥22

)
ds

+∆t

n∑
i=1

e2αti
(e2α∆t − 1

∆t
+ 4∥∇ui∥∞ + (1 +

4

ρ
)∥ui∥22

)
∥ei∥2.

Note that e2α∆t − 1 ≤ C(α)∆t. We now apply the discrete Gronwall’s Lemma and
then multiply the resulting equation by e−2αtn to complete the rest of the proof.

Remark 4.1. From (A3), L̂n defined in (4.8) is bounded by Ctn and K1(tn) and
K2(tn) defined in (3.12) and (3.27) respectively, both are bounded by C, where C
is not dependent of inverse power of µ.

4.1.2. Fully discrete error bounds for pressure

To obtain the fully discrete pressure error estimate, first, we consider (3.9) with
t = tn and subtract (4.2) from the resulting equation to arrive at

(pn − Pn,∇ · ϕh) = (∂te
n,ϕh) + µa(en,ϕh) + ρ(∇ · en,∇ · ϕh) + a(qnr (e),ϕh)

+Rn(ϕh) + Λn(ϕh) + En(ϕh).

A use of (4.5), (4.6), (4.7) with the Cauchy-Schwarz inequality yields

(pn − Pn,∇ · ϕh)

≤C
[
∥∂ten∥−1 + µ∥∇en∥+ ρ∥∇ · en∥+ ∥qnr (∇e)∥

+

n∑
i=1

∫ ti

ti−1

(s− ti−1)
(
βs(tn − s)∥∇u(s)∥+ β(tn − s)∥∇us(s)∥

)
ds

+
1

∆t

∫ tn

tn−1

(s− tn−1)∥uss(s)∥−1 ds+ (∥un∥2 + ∥Un∥2)∥en∥
]
∥∇ϕh∥. (4.20)

Arguing as in the proof of Lemma 3.2, we can bound the first term on the right-hand
side of (4.20) as

∥∂ten∥−1 ≤C
[
h2k∥∂tun∥k−1 + µ∥∇en∥+ ρ∥∇ · en∥+ ∥qnr (∇e)∥

+

n∑
i=1

∫ ti

ti−1

(s− ti−1)
(
βs(tn − s)∥∇u(s)∥+ β(tn − s)∥∇us(s)∥

)
ds
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+
1

∆t

∫ tn

tn−1

(s− tn−1)∥uss(s)∥−1 ds+ (∥un∥2 + ∥Un∥2)∥en∥
]
. (4.21)

Incorporate (4.21) in (4.20) and divide the resulting inequality by ∥∇ϕh∥, ϕh ̸= 0.
Similar to (3.29), we then have

∥pn − Pn∥L2/Nh

≤C
[
hk(∥∂tun∥k−1 + ∥pn∥k) + µ∥∇en∥+ ρ∥∇ · en∥+ ∥qnr (∇e)∥

+
1

∆t

∫ tn

tn−1

(s− tn−1)∥uss(s)∥−1 ds+ (∥un∥2 + ∥Un∥2)∥en∥

+

n∑
i=1

∫ ti

ti−1

(s− ti−1)
(
βs(tn − s)∥∇u(s)∥+ β(tn − s)∥∇us(s)∥

)
ds

]
.

Squaring and multiplying both side by ∆te2αtn with n = i and taking sum from
i = 1 to n to obtain

∆t

n∑
i=1

∥pi − P i∥2L2/Nh

≤C∆t
n∑

i=1

[
h2k(∥∂tui∥2k−1 + ∥pi∥2k) + µ∥∇ei∥2 + ρ∥∇ · ei∥2

+ ∥qir(∇e)∥2 +
( 1

∆t

∫ ti

ti−1

(s− ti−1)∥uss(s)∥−1 ds
)2

+ (∥ui∥22 + ∥Ui∥22)∥ei∥2

+
( i∑

j=1

∫ tj

tj−1

(s− tj−1)
(
βs(ti − s)∥∇u(s)∥+ β(ti − s)∥∇us(s)∥

)
ds
)2]

.

A use of Theorem 4.1 and the Young’s inequality leads to

∆t

n∑
i=1

∥pi − P i∥2L2/Nh

≤CeL̂tnh2k
(
∥u(tn)∥2k

+ e−2αtn

∫ tn

0

e2αs
(
∥us(s)∥2k + (µ+ 4ρ+ 2)∥u(s)∥2k+1 +

4

ρ
∥p(s)∥2k

)
ds
)

+ CeL̂tn(∆t)2e−2αtn

∫ tn

0

e2αs
(
∥uss(s)∥2 + ∥u(s)∥22 + ∥us(s)∥22

)
ds.

Multiply both sides by e−2αt. We summarize our result in the following Theorem.

Theorem 4.2. Under the assumption of theorem 4.1, the following holds true:

∆te−2αtn

n∑
i=0

e2αti∥pn − Pn∥2L2/Nh
≤ CeL̂

n(
K1(tn)h

2k +K2(tn)(∆t)
2
)
.

4.2. Fully discrete error estimates for H2-smooth data

We now consider, the initial data u0 ∈ J1 ∩H2. Then, the following result holds.
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Theorem 4.3. Let the assumptions of Theorem 3.3 hold true. Further, let τ(t)ut ∈
L2(0, T ;H2) and τ(t)utt ∈ L2(0, T ;L2). Then there exists a positive constant C,
independent of the inverse power of µ, such that the following bounds hold for 1 ≤
n ≤ N and k ∈ {1, 2}

∥en∥2 + β1∆te
−2αtn

n∑
i=1

e2αti∥∇ei∥2 + ρ∆te−2αtn

n∑
i=1

e2αti∥∇ · ei∥2

≤CeL̂
n(
K3(tn)h

2k +K4(tn)∆t
)
,

and

∆te−2αtn

n∑
i=0

e2αti∥pn − Pn∥2L2/Nh
≤ CeL̂

n(
K3(tn)h

2k +K4(tn)∆t
)
,

where β1 = µ−
(

γ
δ−α

)2
> 0, and L̂n is defined in (4.8), and

K3(tn) = e−2αtn

∫ tn

0

e2αsτk−1(s)
(
∥us(s)∥2k + (µ+ 4ρ+ 2)∥u(s)∥2k+1 +

4

ρ
∥p(s)∥2k

)
ds

+ ∥u(tn)∥2k,

and

K4(tn) = e−2αtn

∫ tn

0

e2αsτ(s)
(
∥uss(s)∥2 + ∥u(s)∥22 + ∥us(s)∥22

)
ds.

Proof. The proof goes in the similar way of the proof of Theorem 4.1 except the
estimates (4.15), (4.17) and (4.18) since ∥utt(t)∥ and ∥ut(t)∥2 are not integrable
at t = 0, when u0 ∈ J1 ∩ H2. For k = 1, (4.15) will go through as it is but for
k = 2, we modify it as follows, keeping in mind τ(tn) ≤ τ(tn−1) + ∆t ≤ Cτ(t) for
t ∈ [tn−1, tn]

(∆t)2
n∑

i=1

e2αti∥∂tui∥22 ≤ (∆t)2
n∑

i=1

e2αti
( 1

∆t

∫ ti

ti−1

∥us(s)∥2ds
)2

≤ e2α∆t
n∑

i=1

(∫ ti

ti−1

1

τ(ti)
ds
)(∫ ti

ti−1

τ(ti)e
2αti−1∥us(s)∥22ds

)
≤ e2α∆t

n∑
i=1

( ∆t

τ(ti)

)(∫ ti

ti−1

σ(s)∥us(s)∥22ds
)
.

When 0 < ti < 1, we have τ(ti) = ti = i∆t. Hence

n∑
i=1

( ∆t

τ(ti)

)(∫ ti

ti−1

σ(s)∥us(s)∥22ds
)
≤

n∑
i=1

1

i

(∫ ti

ti−1

σ(s)∥us(s)∥22ds
)

≤
∫ tn

0

σ(s)∥us(s)∥22ds.

When ti ≥ 1, we have τ(ti) = 1 and then

n∑
i=1

( ∆t

τ(ti)

)(∫ ti

ti−1

σ(s)∥us(s)∥22ds
)
≤ ∆t

n∑
i=1

(∫ ti

ti−1

σ(s)∥us(s)∥22ds
)
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≤ ∆t

∫ tn

0

σ(s)∥us(s)∥22ds.

We modify (4.17) for both k = 1, 2, using the fact t− ti−1 ≤ τ(t) for t ∈ [ti−1, ti] as

∆t

n∑
i=1

e2αtiRi(Phe
i)

≤∆t

n∑
i=1

e2αti
1

∆t

∫ ti

ti−1

(s− ti−1)∥uss(s)∥ds ∥Phe
i∥

≤∆t

n∑
i=1

e2αti
(

1

∆t

∫ ti

ti−1

(s− ti−1)∥uss(s)∥ds
)2

+
1

4
∆t

n∑
i=1

e2αti∥ei∥2

≤ 1

∆t

n∑
i=1

e2αti
(∫ ti

ti−1

(s− ti−1)ds

)(∫ ti

ti−1

(s− ti−1)∥uss(s)∥2ds
)

+
1

4
∆t

n∑
i=1

e2αti∥ei∥2

≤∆t

n∑
i=1

e2αti
∫ ti

ti−1

τ(s)∥uss(s)∥2ds+
1

4
∆t

n∑
i=1

e2αti∥ei∥2

≤C∆t
∫ tn

0

e2αsτ(s)∥uss(s)∥2ds+
1

4
∆t

n∑
i=1

e2αti∥ei∥2.

Similarly we modify (4.18) and obtain

∆t

n∑
i=1

e2αti |Ei(Phe
i)| ≤C∆t

∫ tn

0

e2αsτ(s)(∥u(s)∥22 + ∥us(s)∥22)ds

+
1

4
∆t

n∑
i=1

e2αti∥ei∥2.

We use these modified estimates in the proof of Theorem 4.1 to complete the velocity
estimates. Now, based on these modified estimates we can easily obtain the pressure
estimate, similar to Theorem 4.2 which completes the rest of the proof.

Remark 4.2. Similar to the semidiscrete case, here also we can not extend the
analysis for k ≥ 3 to obtain a better convergence rate.

5. Numerical experiments

In this section, we present some numerical experiments in support of our theoretical
findings. We first verify the order of convergence of the error estimates for the
velocity and the pressure. For simplicity, we use examples with known solutions.
We then verify the effect of the grad-div stabilization for the Oldroyd model of
order one with varying parameters. We consider two benchmark problems, namely,
the lid-driven cavity and the flow around a cylinder, to show the same. Finally,
we perform a few numerical simulations to find the appropriate choice of grad-div
stabilization parameter. In all the cases, computations are done in FreeFem++ [25].
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5.1. Known analytic solutions

We consider the Oldroyd model of order one in the domain Ω = [0, 1]× [0, 1] subject
to the homogeneous Dirichlet boundary condition. We approximate the equation
using the Mini-element (P1b, P1) [4] and the Taylor-Hood element (P2, P1) [8] over
a regular triangulation of Ω. The domain is partitioned into triangles with sizes
h = 2i, i = 2, 3, . . . , 6. To verify the theoretical results, we consider the following
example:

Example 5.1. For the experiment, we take the forcing term f(x, t) such that the
solution of the problem is,

u1(x, t) = −et(cos(2πx) sin(2πy)− sin(2πy)),

u2(x, t) = et(sin(2πx) cos(2πy)− sin(2πx)),

p(x, t) = 2πet(cos(2πy)− cos(2πx)).

The theoretical analysis provides that the rate of convergences of the velocity
and the pressure in L2-norm are O(h+∆t) in case of the stable equal order finite
element pair (P1b, P1) and O(h2+∆t) in case of the Taylor-Hood element (P2, P1).
For the numerical experiments, we solve the problem for various values of µ, µ =
1, 10−2, 10−4, 10−6 and 10−8, for each value of h with fixed δ = 0.1 and γ = 0.1µ.
We set the grad-div parameter ρ = h2 and ∆t = O(h) for the MINI element
and ρ = 0.25 and ∆t = O(h2) for the Taylor-Hood element for optimal values
(see, Remark 3.3). In Figures 1 and 2, we present the absolute velocity and the
pressure errors in L2-norm for different values of µ, for the MINI element and for the
Taylor-Hood element, respectively. From these graphs, we observe that the order
of convergence coincides with the theoretical findings in the previous section (see,
Theorem 4.1).

0.0156 0.0313 0.0625 0.125 0.25

h

10
-2

10
-1

10
0

V
el

o
ci

ty
 E

rr
o
r

=1

=10
-2

=10
-4

=10
-6

=10
-8

h

(a) Velocity

0.0156 0.0313 0.0625 0.125 0.25

h

10
-2

10
-1

10
0

10
1

P
r
e
s
s
u
r
e
 E

r
r
o
r

=1

=10
-2

=10
-4

=10
-6

=10
-8

h

(b) Pressure

Figure 1. Numerical errors in L2-norm for Example 5.1 with ρ = h2 for (P1b, P1) element.

5.2. Benchmark problem

We next look at a couple of benchmark problems.

Example 5.2. The first example is based on a benchmark problem related to the
2D lid-driven cavity flow on a unit square domain Ω with zero body forces, that is
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Figure 2. Numerical errors in L2-norm for Example 5.1 with ρ = 0.25 for (P2, P1) element.

f = 0 on Ω. We consider the no-slip boundary condition (u = (u1, u2)
′ = (0, 0)′)

everywhere of the boundary except upper boundary and non-zero velocity (u =
(u1, u2)

′ = (1, 0)′) on the upper boundary; see Figure 3.

(0, 0) (1, 0)

(0, 1) (1, 1)

u1 = 0, u2 = 0

u1 = 1, u2 = 0

u1 = 0
u2 = 0

u1 = 0
u2 = 0

Figure 3. Lid-driven cavity flow.

For the numerical simulation, we approximate the velocity and pressure spaces
by the lowest order stable Taylor-Hood element (P2, P1). The domain Ω is dis-
cretized over a regular triangulation with mesh size h = 1/64. We choose different
values of parameter µ = 1, 10−2, 10−4 with δ = 0.1 and γ = 0.1× µ and fixed time
step ∆t = 0.02.

In Figures 4 and 5, we present the stream function, velocity vector, and pressure
contour for the different values of µ and ρ (where ρ is the grad-div stabilization
parameter). We consider both the cases with stabilization, that is, ρ = 0.02 and
without stabilization, that is, ρ = 0. We plot the results at final time T = 65 for
µ = 1, 10−2 and T = 280 for µ = 10−4. From these figures, we observe that we
do not need stabilization for µ = 1 and µ = 10−2. However, for µ = 10−4, the
effect of stabilization can be seen; with stabilization, we get a stable steady-state
solution, unlike the case with no stabilization. To emphasize this, we present the
velocity profiles at one point on the cavity (in our case, we take (2/16,13/16)) for
each time level in Figure 6. These observations indicate that for µ = 1 and 10−2,
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we get a steady state solution after a few time levels with or without stabilization.
But for µ = 10−4, we find a periodic solution without any stabilization and a steady
solution only with stabilization.

Example 5.3. We present another well-known benchmark problem related to the
2D flow around a cylinder with zero body forces (f = 0) [31], to demonstrate the
effectiveness of our scheme. The domain Ω is a channel of size [0, 2.2]× [0, 0.41] with
a circle of diameter 0.1 located at (0.2, 0.2) as shown in Figure 7. We denoted the
boundaries of the domain Ω as: inflow boundary Γin := {x = 0}, outflow boundary
Γout := {x = 2.2}, the remaining two wall Γwall := {y = 0, y = 0.41} and the
boundary of the circle Γcyl := {(x − 0.2)2 + (y − 0.2)2 = 0.0025}. The no-slip
boundary, that is, u = (u1, u2) = (0, 0) has been considered at Γwall and Γcyl and

the non-zero boundary, that is, u(0, y) = u(2.2, y) = (ud, 0)
′
, where

ud =
6

0.142
sin(

πt

8
)(y(0.41− y)), 0 ≤ y ≤ 0.41

has been taken in the inflow and outflow boundaries Γin and Γout as shown in Figure
7.

For the test, we consider the motion of the fluid with µ = 10−3, δ = 0.1, γ = 0.1∗
µ occurring in the cylinder. The domain Ω is discretized over a regular triangulation
with size h = 1/64. In this case also, we use Taylor-Hood element (P2, P1) to
approximate the velocity and the pressure spaces and choose the grad div parameter
ρ = 0.25. We take time step ∆t = 10−3 and the final time T = 8.

From the literature of the 2D flow around a cylinder for the well-known Navier-
Stokes equations [31], we observe that a vortex sheet develops at the cylinder’s
bottom at around time T = 4. In fact, in our case also, we observe this phenomenon,
see Figures 8 and 9. In these figures, we present the velocity field and stream
function for different times T = 5, 6, 7 and 8 and observe that the vortices separated
from the cylinder between the time T = 5 and T = 6, and the vortices are still visible
at time T = 8. Further, we also calculate the drag coefficient (cd(t)) and the lift
coefficient (cl(t)) at the cylinder as well as the differences in the pressure (∆p(t))
between the front and the back of the cylinder using the formula given in [31].
Finally, we plot the evolution of cd(t), cl(t), and ∆p(t) with respect to time in
Figure 10. We compare the results of Oldroyd model of order one with Navier-
Stokes equations and observe that both the results are coincide. Since, in this case
we consider γ = 10−4 and we know that as γ → 0 the solution of Oldroyd model of
order one behave like the solution of Navier-Stokes equations. In addition, we mark
the maximum value of cd(t), cl(t), and the final value of ∆p(t) in the Figure 10.

5.3. Choice of grad-div parameter

As discussed in the introduction, the choice of grad-div stabilization parameter plays
a vital role in numerical simulations. Here we present a few numerical examples to
find a suitable choice of grad-div parameter for the Oldroyd model of order one.

We use the known solution of Example 5.1 for our current experiment. The
numerical simulations are performed for different values of ρ that lie between 10−3 to
104, approximating the equation using the MINI element (P1b, P1) and the Taylor-
Hood element (P2, P1). The numerical results are computed for three successively
finer meshes, with mesh sizes h = 1/8, 1/16 and 1/32, for both union jack (criss-
cross) and Delaunay type triangulation, and for µ = 1, 10−2, 10−4, 10−6 and 10−8.
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(a) µ = 1, ρ = 0, T = 65
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(b) µ = 1, ρ = 0.25, T = 65
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(c) µ = 10−2, ρ = 0, T = 65
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(d) µ = 10−2, ρ = 0.25, T = 65
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(e) µ = 10−4, ρ = 0, T = 280
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Figure 4. Stream function for Example 5.2 for h = 1/64.
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x

y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1 800

600

400

200

20

10

5

2

1

0.75

0.5

0.25

0

0.25

0.5

0.75

1

2

5

10

20

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

(b) µ = 1, ρ = 0.25, T = 65
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Figure 5. Velocity vector and pressure contour for Example 5.2 for h = 1/64.

Figures 11 and 12 represent the velocity and the pressure errors graphs with respect
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(f) µ = 10−4, T = 280

Figure 6. Velocity profile at monitoring point (2/16,13/16) for Example 5.2 for h = 1/64.

to the grad-div stabilization parameter ρ for the MINI element and the Taylor-Hood
element, respectively. For each value of µ, we mark these error graphs for minimum
error, depicting the value of ρ. Overall these figures give us a rough picture of how
the grad-div parameter ρ changes with h and µ. We observe that for L2 error of
velocity, a suitable range of ρ would be from 10−1 to 101. However, for H1 error of
velocity and for L2 error of pressure, a suitable range of ρ is 10−1 to 104.

We also present the values of grad-div parameter ρ, that minimize the L2 and
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Figure 7. Domain Ω for flow past cylinder.

Figure 8. Velocity field for Example 5.3 for T = 5, 6, 7, 8.

H1 errors for the velocity and L2 error for the pressure. In Tables 1-4, we present
the corresponding minimum errors and the errors for the standard choice of grad-div
parameter ρ = 1 for different values of h. We have used boldface for the minimizing
value of ρ in each case. We also observe that we do not get any stable solution
for µ = 10−6 and µ = 10−8 when we use Taylor-Hood element to approximate
the equation over Delaunay triangulation with mesh size h = 1/8 or h = 1/16.
However, for µ = 10−6 if we take h = 1/32, we get a stable solution.

6. Conclusion

We have considered here, an inf-sup mixed finite element method for the Oldroyd
model of order one with grad-div stabilization. We have obtained the error estimates
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Figure 9. Stream function for Example 5.3 for T = 5, 6, 7, 8.

0 1 2 3 4 5 6 7 8

time

-0.5

0

0.5

1

1.5

2

2.5

3

d
ra

g
 c

o
ef

fi
ci

en
t

Evolution of the drag coefficient

Oldroyd

NSE

0 1 2 3 4 5 6 7 8

time

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

li
ft

 c
o
ef

fi
ci

en
t

Evolution of the lift coefficient

Oldroyd

NSE

0 1 2 3 4 5 6 7 8

time

-0.5

0

0.5

1

1.5

2

2.5

P
re

ss
u

re
 d

if
fe

re
n

ce

Difference of the pressure

Oldroyd

NSE

Figure 10. Drag coefficient, lift coefficient, and pressure difference for Example 5.3.

in L∞(L2)-norm for the velocity and L2(L2)-norm for the pressure in the semidis-
crete case as well as in the fully discrete case with the error bounds independent
of the inverse power of µ. We have carried out our analysis for both Hm-smooth
and H2-smooth initial data. Finally, we have briefly looked at suitable values of
the grad-div parameter for the Oldroyd model of order one.
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Figure 11. Velocity and pressure errors vs stabilization parameter for (P1b, P1) element on union jack
triangulation.

Table 1. Minimum errors and corresponding stabilization parameter ρ for (P1b, P1) element on union
jack triangulation.

Velocity errors in L2-norm Velocity errors in H1-norm Pressure errors in L2-norm

µ ρ Min Std.(ρ=1) ρ Min Std.(ρ=1) ρ Min Std.(ρ=1)

h=1/8

1 0.001 0.27419 0.34335 0.001 8.81884 10.05271 0.001 5.8799 7.21910

1e-2 0.02 0.28931 0.32214 0.08 12.6806 13.31144 0.001 1.5288 1.70077

1e-4 4.5 0.30166 0.30490 0.4 13.5764 13.60262 10000 1.23236 1.45157

1e-6 4.5 0.30166 0.30486 0.4 13.5823 13.60660 10000 1.22929 1.44892

1e-8 4.5 0.30166 0.30486 0.4 13.5823 13.60664 10000 1.22746 1.44890

h=1/16

1 0.001 0.06776 0.08406 0.001 4.58129 5.16855 0.001 2.21019 2.91551

1e-2 0.01 0.04718 0.06249 0.001 5.67357 6.71433 0.001 0.23700 0.26881

1e-4 0.55 0.07000 0.07011 1.0 6.82155 6.82155 0.55 0.23076 0.23147

1e-6 0.55 0.07017 0.07030 1.2 6.82284 6.82290 0.55 0.23090 0.23174

1e-8 0.55 0.07015 0.07030 1.2 6.82285 6.82291 0.55 0.23090 0.23175

h=1/32

1 0.001 0.01848 0.02229 0.001 2.31312 2.59893 0.001 0.82050 1.15744

1e-2 0.08 0.01875 0.01936 0.001 2.51021 3.34415 0.06 0.07475 0.08212

1e-4 0.05 0.02717 0.02836 2.0 3.41308 3.41329 0.05 0.09716 0.11123

1e-6 0.05 0.02735 0.02855 4.5 3.41332 3.41436 0.05 0.09740 0.11218

1e-8 0.05 0.02735 0.02855 6.0 3.41334 3.41437 0.05 0.09740 0.11217
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Figure 12. Velocity and pressure errors vs stabilization parameter for (P2, P1) element on union jack
triangulation.

Table 2. Minimum errors and corresponding stabilization parameter ρ for (P2, P1) element on union
jack triangulation.

Velocity errors in L2-norm Velocity errors in H1-norm Pressure errors in L2-norm

µ ρ Min Std.(ρ=1) ρ Min Std.(ρ=1) ρ Min Std.(ρ=1)

h=1/8

1 0.001 0.01011 0.01365 0.001 0.40921 0.54307 0.001 0.86810 0.88401

1e-2 0.73 0.04502 0.04525 0.76 2.21141 2.21968 0.005 0.84583 0.85761

1e-4 0.65 0.07898 0.09129 0.65 3.26339 3.57391 0.55 0.84359 0.84799

1e-6 0.65 0.08016 0.09427 0.65 3.29902 3.66404 0.55 0.84148 0.84708

1e-8 0.65 0.08017 0.09430 0.65 3.29939 3.66500 0.55 0.84146 0.84707

h=1/16

1 0.001 0.00133 0.00182 0.001 0.09276 0.13683 0.001 0.22091 0.22190

1e-2 0.6 0.00723 0.00731 0.55 0.63038 0.63938 0.3 0.22028 0.22029

1e-4 1.2 0.03211 0.03214 0.5 2.84648 2.89919 0.3 0.22017 0.22060

1e-6 1.2 0.04087 0.04098 0.6 3.29495 3.32761 0.55 0.22258 0.22268

1e-8 1.2 0.04099 0.04110 0.6 3.30041 3.33304 0.55 0.22262 0.22271

h=1/32

1 0.001 0.00037 0.00041 0.001 0.02253 0.03440 0.001 0.05545 0.05549

1e-2 0.73 0.00168 0.00168 0.7 0.14200 0.14244 10000 0.05581 0.05581

1e-4 0.27 0.00652 0.00704 0.27 1.26200 1.38753 1000 0.05621 0.05630

1e-6 0.55 0.01876 0.01888 0.25 3.26332 3.59116 1000 0.05638 0.05660

1e-8 0.55 0.01876 0.01924 0.25 3.30041 3.65619 200 0.05619 0.05662
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Figure 13. Velocity and pressure errors vs stabilization parameter for (P1b, P1) element on Delaunay
type triangulation.

Table 3. Minimum errors and corresponding stabilization parameter ρ for (P1b, P1) element Delaunay
type triangulation.

Velocity errors in L2-norm Velocity errors in H1-norm Pressure errors in L2-norm

µ ρ Min Std.(ρ=1) ρ Min Std.(ρ=1) ρ Min Std.(ρ=1)

h=1/8

1 0.001 0.185122 0.25705 0.001 7.85131 8.71753 0.001 4.57057 6.63177

1e-2 0.03 0.24378 1.26223 0.1 10.7217 13.73449 0.001 1.25154 5.65359

1e-4 0.025 0.99323 1.73066 0.2 13.7813 16.35411 0.01 4.13082 6.93560

1e-6 0.07 1.15039 1.73890 0.2 13.9664 16.40470 0.04 4.91701 6.95563

1e-8 0.07 1.15148 1.73898 0.2 13.9684 16.40520 0.04 4.92269 6.95584

h=1/16

1 0.001 0.05050 0.06689 0.001 3.43433 3.85367 0.001 1.24350 1.81684

1e-2 0.08 0.03853 0.24232 0.07 4.69254 6.12371 0.05 0.19402 1.92537

1e-4 0.01 0.24278 1.17155 0.04 6.80301 10.73557 0.005 0.67628 5.06504

1e-6 0.01 0.72179 1.21321 0.07 9.52722 11.02760 0.01 2.86844 5.20610

1e-8 0.01 0.76774 1.21371 0.07 9.57175 11.02760 0.01 3.10471 5.20615

h=1/32

1 0.001 0.02538 0.02904 0.001 1.75240 1.96327 0.001 0.53194 0.77064

1e-2 0.6 0.02231 0.03898 0.01 2.26439 2.89959 0.5 0.13858 0.27880

1e-4 0.015 0.03936 0.83711 0.03 2.90569 7.41920 0.015 0.10728 3.75283

1e-6 0.2 1.03245 1.06105 1.0 9.15781 9.15781 0.03 4.12698 4.60846

1e-8 0.25 1.04678 1.06412 1.0 9.18281 9.18281 0.05 4.37574 4.61964
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Figure 14. Velocity and pressure errors vs stabilization parameter for (P2, P1) element on Delaunay
type triangulation.

Table 4. Minimum errors and corresponding stabilization parameter ρ for (P2, P1) element on Delaunay
type triangulation (‘-’ represent no convergence).

Velocity errors in L2-norm Velocity errors in H1-norm Pressure errors in L2-norm

µ ρ Min Std.(ρ=1) ρ Min Std.(ρ=1) ρ Min Std.(ρ=1)

h=1/8

1 0.2 0.02001 0.02031 0.6 0.30745 0.31173 0.001 0.76559 0.76824

1e-2 1.0 0.07746 0.07746 1.0 1.80654 1.80654 0.04 0.79381 0.81041

1e-4 0.1 0.41249 0.41825 1.0 4.32884 4.32884 0.1 2.00494 2.05792

1e-6 - - - - - - - - -

1e-8 - - - - - - - - -

h=1/16

1 0.001 0.01785 0.01786 0.7 0.14177 0.14204 0.4 0.19729 0.19737

1e-2 15 0.07571 0.07592 0.7 0.72667 0.72999 10000 0.43669 0.43944

1e-4 0.5 0.11650 0.11678 1.0 1.77762 1.7762 0.06 0.62709 0.63073

1e-6 - - - - - - - - -

1e-8 - - - - - - - - -

h=1/32

1 0.001 0.01777 0.01777 0.6 0.12987 0.12989 0.001 0.10288 0.10290

1e-2 10000 0.07621 0.07625 0.6 0.59381 0.59427 10000 0.39478 0.39511

1e-4 0.9 0.10657 0.10658 0.8 1.09028 1.09397 2.0 0.55087 0.55088

1e-6 2.0 0.162439 0.16246 0.6 2.03721 2.05409 10000 0.76746 0.76753

1e-8 - - - - - - - - -
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and subgrid pressure models for the incompressible Navier–Stokes equations,
Computer Methods in Applied Mechanics and Engineering, 2009, 198(49–52),
3975–3988.

[39] M. A. Olshanskii and A. Reusken, Grad-div stabilization for Stokes equations,
Mathematics of Computation, 2004, 73(248), 1699–1718.

[40] A. K. Pani and J. Y. Yuan, Semidiscrete finite element Galerkin approxima-
tions to the equations of motion arising in the Oldroyd model, IMA Journal of
Numerical Analysis, 2005, 25(4), 750–782.

[41] A. K. Pani, J. Y. Yuan and P. D. Damázio, On a linearized backward Eu-
ler method for the equations of motion of Oldroyd fluids of order one, SIAM
Journal on Numerical Analysis, 2006, 44(2), 804–825.
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