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AN EPIDEMIC MODEL COUPLED WITH
ENVIRONMENTAL LEVEL: EXPLORE THE

IMPACT OF DISEASE AWARENESS ON
DIRECT AND INDIRECT TRANSMISSION∗

Shiyu Li1, Yuanshun Tan1,†, Xiaodan Sun2,† and Yu Mu1

Abstract To study the impact of disease awareness on infectious diseases
with direct and indirect transmission, we develop a mathematical model by
coupling the transmission dynamics at the population level and the environ-
mental level. The basic reproduction number R0 of the coupled model is
calculated, and the existence and stability of the disease-free and endemic
equilibrium are analyzed in detail. By using center manifold theory, it is veri-
fied that the model undergoes backward bifurcation under certain conditions.
Numerical simulations verify our theoretical results and indicate that enhanc-
ing disease awareness can help reduce both the risk of direct and indirect
disease transmission. Interestingly, increasing disease awareness decreases the
backward regime of the bifurcation curve, thereby the R0 interval in which
the endemic equilibrium and the disease-free equilibrium showed bistability
becomes smaller, and the R0 interval in which the disease-free equilibrium
showed global stability becomes greater. If the disease cannot be eliminated,
the number of infected persons at the steady state decreases with the increase
in disease awareness. The findings have certain reference values for the devel-
opment of effective non-pharmaceutical intervention policies.

Keywords Coupled epidemic model, disease awareness, backward bifurca-
tion, global stability.
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1. Introduction

Infectious diseases seriously threaten human health and economic development.
Since the 21st century, there have been many large-scale outbreaks of infectious
diseases, such as H1N1 in 2009 and COVID-19 in 2019, etc [21]. Some infec-
tious diseases, like viral respiratory infections (VRIs), cholera, and hand, foot and
mouth disease (HFMD) can be spread not only directly by contact with infected
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individuals but also indirectly by contact with the contaminated surfaces or ob-
jects [6, 7, 9, 12, 17, 20, 22, 24, 25, 28, 29, 31, 32, 35]. For example, some respiratory
viruses, such as human rhinovirus (HRV), respiratory syncytial virus (RSV), and
influenza virus (IFV), can survive in the environment, especially in cold and dry
environments, for a long time and remain infectious, thus presenting a risk of in-
direct transmission [20, 28, 29, 31]. SARS-CoV-2 can survive in the environment,
especially on plastic and stainless steel, for several days [12], thus indirect trans-
mission has had a significant impact on the COVID-19 outbreak [9,32,35]. Cholera
is an acute intestinal infectious disease caused by the bacteria Vibrio cholerae (V.
cholerae), which can survive in contaminated environments, especially river wa-
ter and seawater, for several weeks [7, 17, 24], and indirect transmission is one of
the main transmission routes of cholera. The human enterovirus (EV) that causes
HFMD can also survive for 2 to 12 days on the surfaces of a wide variety of house-
hold items [6, 22, 25], so indirect transmission cannot be ignored. In the process
of disease transmission, people may get information about the disease gradually,
and people who are aware of the disease may engage in protective behaviors to
reduce the risk of infection, such as maintaining personal hygiene and maintaining
social distancing. Thus, people’s disease awareness has a great effect on disease
transmission, especially in today’s society, where the media is highly developed and
information spreads rapidly. Hence, it is of great significance to study how disease
awareness affects the direct and indirect transmission of infectious diseases.

Many mathematical models have been proposed to investigate the impact of dis-
ease awareness on the spread of infectious diseases [1,3–5,10,15,16,18,26]. Agaba et
al. [1] have proposed a SIRS model considering the influence of public and private
awareness on infectious diseases. The study found that the spread of awareness
reduces disease transmission, and increases the recovery rate of infected people.
Das et al. [10] have established a SEIR model by introducing a media awareness
related infection rate function to research the influence of awareness on tuberculosis
transmission. The research found that increasing media awareness can reduce the
peak level of infected people. Sharmin et al. [26] have investigated how awareness
affects disease transmission by introducing a media compartment to the classical
SIR model. Their findings indicate continuous publicity is effective in preventing
disease transmission. By supposing that the infection rate is a decreasing function
and removal rate of mosquitoes is a non-decreasing saturation function of disease
awareness, Basir et al. [5] have studied the influence of awareness on malaria trans-
mission. The study found that increasing people’s awareness would reduce the
abundance of mosquitoes in the environment. Recently, Aldila [3] has studied how
media awareness impacts dengue eradication by introducing the control variable
media publicity and found that high-intensity media attention significantly reduced
the scale of infection. However, to our knowledge, current studies have not exam-
ined the effects of awareness on diseases that can be transmitted both directly and
indirectly.

To study the indirect transmission of infectious diseases, many researchers have
introduced an environmental compartment into their models [2,14,23,27,30,33,34].
Feng et al. [14] have studied toxoplasmosis infectious diseases by explicitly link-
ing epidemiology and immunology through an environmental compartment. Taking
bacterial infection as an example, Xiao et al. [33] have established a model con-
sidering the pathogen concentration in the environment to study the impact of
individual movement and spatial control measures on disease outbreaks. In this ar-
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ticle, we shall establish a mathematical model with disease awareness, which takes
into account both direct transmission between people and indirect transmission be-
tween people and the environment. It should be noted that the environmental time
scale is slower than the epidemiological time scale [14], so our model couples two
different time scales and contains multiple transmission routes of the disease.

Based on the proposed multiscale model, we shall study how disease awareness
affects both the direct and indirect transmission of infectious diseases. For this
model, detailed theoretical analyses of the local and global dynamics are presented.
Choosing the basic reproduction number as the bifurcation parameter, the emer-
gence of backward bifurcation under certain conditions is proved. Moreover, by
numerical simulations, we verify our theoretical conclusions, and it is found that
disease awareness significantly affects both the direct and indirect transmission. A
great reduction in the peak level of the number of exposed individuals, infected in-
dividuals, and the virus concentration is observed when disease awareness increases.
Interestingly, increasing disease awareness decreases the backward regime of the bi-
furcation curve, so that the R0 interval in which the endemic equilibrium and the
disease-free equilibrium showed bistability becomes smaller, and the R0 interval in
which the disease-free equilibrium showed global stability becomes greater. If the
disease cannot be eliminated, the number of infected persons at the steady state
decreases with the increase in disease awareness.

The paper is organized as follows: the mathematical model is given in Section
2. In Section 3, the expression of the basic reproduction number is given, and the
existence and stability of the disease-free equilibrium and the endemic equilibrium
are analyzed. In Section 4, the possibility of backward bifurcation at R0 = 1 is
proved. Section 5 validates the theoretical results and assesses the impact of disease
awareness on disease transmission through numerical simulations. In Section 6,
some discussions and summaries are given.

2. Mathematical model

A mathematical model with disease awareness is formulated by coupling the trans-
mission dynamics at the population level and the environmental level. The total
population (N) is divided into five compartments, including unaware susceptible in-
dividuals (Sn), aware susceptible individuals (Sa), exposed individuals (E), infected
individuals (I), and recovered individuals (R). The environmental contamination
level is denoted by W . There is a constant recruitment rate A for the susceptible
population, and a natural death rate ϵ for the whole population. It is assumed
that all the newly recruited susceptibles are unaware of the disease. The unaware
susceptible individuals could become aware susceptibles due to disease awareness
at a rate of a. The awareness acquisition rate, denoted as a, can be regarded as
a constant, as this rate is primarily influenced by stable external factors such as
the efficiency of information dissemination and the level of public attention. Both
unaware and aware susceptible individuals could be infected directly by contacting
with exposed and infected individuals or indirectly through contacting the contam-
inated environment, and the infection rate of the aware susceptibles is decreased by
proportion σ compared with unaware susceptibles, where σ (0 ≤ σ < 1) represents
the effect of disease awareness on direct and indirect transmission. Since the viral
dynamics in the environment is slow relative to the epidemic dynamics between
hosts, two different time scales are coupled by a constant ζ (0 < ζ < 1). The
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following equations can be used to describe the mathematical model:

dSn

dt
= A− (β1E + β2I + β3W )Sn − aSn + θSa − ϵSn,

dSa

dt
= aSn − (1− σ)(β1E + β2I + β3W )Sa − θSa − ϵSa,

dE

dt
= (β1E + β2I + β3W )Sn + (1− σ)(β1E + β2I + β3W )Sa − δE − ϵE,

dI

dt
= δE − γI − ϵI,

dR

dt
= γI − ϵR,

dW

dt
= ζ(η1E + η2I − µW ),

(2.1)

with initial conditions

Sn(0) > 0, Sa(0) > 0, E(0) > 0, I(0) > 0, R(0) > 0, W (0) > 0.

Based on references [1, 16], and [33], we assign specific values to the parame-
ters a, θ and η2. The remaining parameters are assigned ranges based on their
biological relevance. Notably, as this paper employs a bilinear incidence rate, the
three transmission rates must be scaled in proportion to the reciprocal of the total
population. Furthermore, we assume that the virus release rate from individuals
during the latent period is lower than that from infected individuals. Table 1 lists
all the parameters involved in the model (2.1).

Table 1. Interpretation of the parameters in the model (2.1).

Param Biological Meaning Value Source

A Recruitment rate of susceptible individuals 0.1 ∼ 2/day Assumed

ϵ Natural death rate 0 ∼ 1/day Assumed

a Awareness acquisition rate 0.4/day [1]

θ Awareness losing rate 0.2/day [16]

β1 Direct transmission rate of exposed individuals 0.4×10−3 ∼ 0.045/day Assumed

β2 Direct transmission rate of infected individuals 0.5×10−3 ∼ 0.053/day Assumed

β3 Environmental indirect transmission rate 0.2×10−3 ∼ 0.023/day Assumed

σ The impact of disease awareness on both direct and indirect transmission 0 ∼ 1/day Assumed

δ Probability of conversion of exposed persons to infected persons 0.16 ∼ 0.45/day Assumed

γ Recovery rate for those with infection 0.18 ∼ 0.45/day Assumed

η1 Viral shedding rate of exposed individuals 0 ∼ 0.6/day Assumed

η2 Viral shedding rate of infected individuals 0.6/day [33]

µ Environmental clearance rate 0 ∼ 1/day Assumed

ζ Scale parameter 0 ∼ 1/day Assumed

Adding the first five equations of the model (2.1), we obtain

dN

dt
= A− ϵ(Sn + Sa + E + I +R) = A− ϵN. (2.2)

Therefore, we have

N(t) = N(0)e−ϵt +
A

ϵ
(1− e−ϵt) and lim

t→∞
N(t) =

A

ϵ
.
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From the last equation of the model (2.1), we obtain

dW

dt
= ζ(η1E + η2I − µW )

≤ ζ

[
(η1 + η2)

A

ϵ
− µW

]
.

Hence, the biological feasible region of model (2.1) is given as

Ω =

{
(Sn, Sa, E, I, R,W ) ∈ R6

+ | 0 ≤ Sn + Sa + E + I +R ≤ A

ϵ
,

0 ≤W ≤ A(η1 + η2)

ϵµ

}
.

Throughout this paper, the dynamical behaviors of system (2.1) will be discussed
in the region Ω.

3. Model analysis

In this section, we shall calculate the basic reproduction number and analyze the
existence and stability of the disease-free equilibrium and the endemic equilibrium
of model (2.1).

Letting the right-hand sides of model (2.1) be 0, it is obvious that the disease-free

equilibrium E0 = (S0
n, S

0
a, 0, 0, 0, 0) = ( A(θ+ϵ)

ϵ(a+θ+ϵ) ,
Aa

ϵ(a+θ+ϵ) , 0, 0, 0, 0) always exists.

The basic reproduction number R0 gives the average number of secondary infection
caused by a single infected individual in a whole susceptible population [11]. Ac-
cording to the next-generation matrix method illustrated by van den Driessche and
Watmough [13, p4], the transmission (F ) and transition (V ) matrix of system (2.1)
evaluated in E0 as follows:

F =


β1S

0
n + (1− σ)β1S

0
a β2S

0
n + (1− σ)β2S

0
a β3S

0
n + (1− σ)β3S

0
a

0 0 0

0 0 0

 ,

and

V =


δ + ϵ 0 0

−δ γ + ϵ 0

−ζη1 −ζη2 ζµ

 .

Then, R0 can be calculated by

R0 = ρ(FV −1) = R0E +R0I +R0W =
Ahδ[θ + ϵ+ (1− σ)a]

ϵ(δ + ϵ)(γ + ϵ)(a+ θ + ϵ)
, (3.1)

where

h = β1
γ + ϵ

δ
+ β2 + β3

η1(γ + ϵ) + η2δ

δµ
,



Impact of disease awareness on transmission 1379

R0E = [β1S
0
n + (1− σ)β1S

0
a]

1

δ + ϵ
,

R0I = [β2S
0
n + (1− σ)β2S

0
a]

δ

(δ + ϵ)(γ + ϵ)
,

R0W = [β3S
0
n + (1− σ)β3S

0
a]
η1(γ + ϵ) + δη2
µ(δ + ϵ)(γ + ϵ)

.

Here, R0E and R0I are the average number of secondary infections caused by the
exposed and infected individuals, respectively. And R0W measures the contribution
of indirect transmission by contacting the contaminated environment.

3.1. Existence of endemic equilibria

Let Q∗(S∗
n, S

∗
a , E

∗, I∗, R∗,W ∗) be an arbitrary endemic equilibrium of system (2.1),
we have

S∗
n =

A[(1− σ)hI∗ + θ + ϵ]

(hI∗ + a+ ϵ)[(1− σ)hI∗ + θ + ϵ]− aθ
,

S∗
a =

Aa

(hI∗ + a+ ϵ)[(1− σ)hI∗ + θ + ϵ]− aθ
,

E∗ =
γ + ϵ

δ
I∗, R∗ =

γ

ϵ
I∗, W ∗ =

η1(γ + ϵ) + η2δ

δµ
I∗.

Here, I∗ satisfies

m(I∗)2 + nI∗ + c = 0, (3.2)

where

m = (δ + ϵ)(γ + ϵ)(1− σ)h2,

n = (γ + ϵ)(δ + ϵ)[(1− σ)(a+ ϵ) + θ + ϵ]h−Aδ(1− σ)h2,

c = ϵ(a+ ϵ+ θ)(δ + ϵ)(γ + ϵ)(1−R0).

Note that m > 0 and

c < 0 ⇔ R0 > 1; c = 0 ⇔ R0 = 1; c > 0 ⇔ R0 < 1.

According to the discriminant of equation (3.2) that △ = n2−4mc = n2−4mϵ(a+
ϵ+ θ)(δ + ϵ)(γ + ϵ)(1−R0), solving for △ = 0 by R0, we have R0 = Rc, where

Rc = 1− n2

4mϵ(a+ ϵ+ θ)(δ + ϵ)(γ + ϵ)
.

Clearly, Rc < 1, and the following equivalent relations are true:

R0 < Rc ⇔ △ < 0; R0 = Rc ⇔ △ = 0; R0 > Rc ⇔ △ > 0.

Through detailed analyses, the following conclusions on the existence of endemic
equilibria are obtained.

Theorem 3.1. System (2.1) has
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(i) If n > 0, system (2.1) has one unique endemic equilibrium Q∗
1(S

∗
n1, S

∗
a1, E

∗
1 , I

∗
1 ,

R∗
1,W

∗
1 ) for R0 > 1, but no endemic equilibrium for R0 ≤ 1;

(ii) If n < 0, system (2.1) has one endemic equilibrium Q∗
1(S

∗
n1, S

∗
a1, E

∗
1 , I

∗
1 , R

∗
1,

W ∗
1 ) for R0 ≥ 1, two unequal endemic equilibria Q∗

1(S
∗
n1, S

∗
a1, E

∗
1 , I

∗
1 , R

∗
1,W

∗
1 )

and Q∗
2(S

∗
n2, S

∗
a2, E

∗
2 , I

∗
2 , R

∗
2,W

∗
2 ) for Rc < R0 < 1, and the two equilibria

degenerates to one unique endemic equilibrium Q3(S
∗
n3, S

∗
a3, E

∗
3 , I

∗
3 , R

∗
3,W

∗
3 )

for Rc = R0 < 1, where

I∗1 =
−n+

√
△

2m
, I∗2 =

−n−
√
△

2m
, I∗3 =

−n
2m

.

By Theorem 1, we summarize the conditions for the existence of endemic equi-
libria in Table 2 to facilitate subsequent analysis and discussion.

Table 2. Existence of endemic equilibria for the system (2.1).

Cases Ranges of Threshold Existence of Endemic Equilibria

(1) n > 0 and R0 ≤ 1 -

(2) n > 0 and R0 > 1 Q∗
1

(3) n < 0 and R0 ≥ 1 Q∗
1

(4) n < 0 and Rc < R0 < 1 Q∗
1, Q

∗
2

(5) n < 0 and Rc = R0 < 1 Q∗
3

(6) n < 0 and R0 < Rc -

Due to the complexity of the n form, we further simplify it to (3.3) in order to
observe its biological significance, where (3.3) is as follows:

n > 0 ⇔ (γ + ϵ)(δ + ϵ)[(1− σ)(a+ ϵ) + θ + ϵ]h−Aδ(1− σ)h2 > 0,

⇔ (γ + ϵ)(δ + ϵ)[(1− σ)(a+ ϵ) + θ + ϵ]−Aδ(1− σ)h > 0,

⇔ Aδ(1− σ)h

(γ + ϵ)(δ + ϵ)[(1− σ)(a+ ϵ) + θ + ϵ]
< 1. (3.3)

It is evident that as h increases, the left-hand side of the last equation of (3.3)
becomes larger, making it more likely that the value of n is greater than 0. Since h
reflects the transmission intensity of the disease per unit time to a certain extent,
it follows that the weaker the transmission intensity per unit time, the more likely
it is for the coexistence of a disease-free equilibrium and an endemic equilibrium,
presenting a bistable phenomenon.

3.2. Stability of the disease-free equilibrium

Theorem 3.2. The disease-free equilibrium E0 of system(2.1) is locally asymptot-
ically stable if R0 < 1 and is unstable if R0 > 1.

Proof. Let a1 = β1[S
0
n + (1 − σ)S0

a] − δ − ϵ, a2 = β2[S
0
n + (1 − σ)S0

a], a3 =
β3[S

0
n + (1− σ)S0

a]. The Jacobian matrix of the system (2.1) at E0 is calculated as
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follows:

J(E0) =



−a− ϵ θ −β1S0
n −β2S0

n 0 −β3S0
n

a −θ − ϵ −(1− σ)β1S
0
a −(1− σ)β2S

0
a 0 −(1− σ)β3S

0
a

0 0 a1 a2 0 a3

0 0 δ −γ − ϵ 0 0

0 0 0 γ −ϵ 0

0 0 ζη1 ζη2 0 −ζµ


.

Its characteristic equation is

λ3 + b1λ
2 + b2λ+ b3 = 0.

Here, b1 = ζµ+γ+ ϵ+(δ+ ϵ)(1−R0E), b2 = ζµ(γ+ ϵ)+(γ+ ϵ)(δ+ ϵ)(1−R0E−
R0I)+ ζµ(δ+ ϵ)(1−R0E − η1(γ+ϵ)

η1(γ+ϵ)+η2δ
R0W ), b3 = ζµ(δ+ ϵ)(γ+ ϵ)(1−R0). Clearly,

when R0 < 1, we have b1 > 0, b2 > 0, b3 > 0 and b1b2 − b3 > 0. According to
the Routh-Hurwitz criteria, we conclude that all eigenvalues of the Jacobian matrix
J(E0) have negative real parts, which means E0 is locally asymptotically stable
when R0 < 1. If R0 > 1, then E0 is unstable as b3 < 0 holds.

Theorem 3.3. The disease-free equilibrium E0 of system (2.1) is globally asymp-
totically stable if R∗

0 < 1, where R∗
0 = Aδh

ϵ(δ+ϵ)(γ+ϵ) .

Proof. Define the Lyapunov function V (t) as follows:

V (t) = E(t) +
A(β2µ+ η2β3)

ϵµ(γ + ϵ)
I(t) +

Aβ3
ϵζµ

W (t).

Clearly, V (t) ≥ 0, and V (t) = 0 holds only at E0. Along the solution of the model
(2.1), the derivative of V (t) is given as

dV (t)

dt
=
dE

dt
+
A(β2µ+ η2β3)

ϵµ(γ + ϵ)

dI

dt
+
Aβ3
ϵζµ

dW

dt

=[(β1E + β2I + β3W )(Sn + (1− σ)Sa)− (δ + ϵ)E]

+
A(β2µ+ η2β3)

ϵµ(γ + ϵ)
[δE − (γ + ϵ)I] +

Aβ3
ϵµ

(η1E + η2I − µW )

=[β1(Sn + (1− σ)Sa) +
A(β2µ+ η2β3)

ϵµ(γ + ϵ)
δ +

Aβ3η1
ϵµ

− (δ + ϵ)]E

+ [β2(Sn + (1− σ)Sa) +
Aβ3η2
ϵµ

− A(β2µ+ η2β3)

ϵµ
]I

+ [β3(Sn + (1− σ)Sa)−
Aβ3
ϵ

]W

≤[β1
A

ϵ
+
A(β2µ+ η2β3)

ϵµ(γ + ϵ)
δ +

Aβ3η1
ϵµ

− (δ + ϵ)]E + [β2
A

ϵ

+
Aβ3η2
ϵµ

− A(β2µ+ η2β3)

ϵµ
]I + [β3

A

ϵ
− Aβ3

ϵ
]W
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=[
A

ϵ
(β1 + β2

δ

(γ + ϵ)
+ β3

η1(γ + ϵ) + η2δ

µ(γ + ϵ)
)− (δ + ϵ)]E

=(δ + ϵ)[
Aδh

ϵ(δ + ϵ)(γ + ϵ)
− 1]E

=(δ + ϵ)(R∗
0 − 1)E.

It is clear that if R∗
0 < 1, dV (t)

dt ≤ 0 holds, and dV (t)
dt = 0 if and only if E =

I =W = 0. Consequently, E0 is globally asymptotically stable for R∗
0 < 1 by using

LaSalle’s invariance principle [19]. It needs to mention that n = (γ+ ϵ)(δ+ ϵ)h[(1−
σ)a+ ϵ +θ+ ϵ(1− σ)(1−R∗

0)], thus n > 0 holds if R∗
0 < 1. Meanwhile, it is simple

to calculate that R0 < R∗
0 always holds. Hence, if R∗

0 < 1, then n > 0 and R0 < 1
hold, and E0 is globally asymptotically stable.

3.3. Stability of the endemic equilibrium

Firstly, by studying the Jacobian matrix of the system (2.1) at the endemic equilib-
rium Q∗

1, we can get the local stability of the equilibrium by Routh-Hurwitz criteria,
as given in the following theorem.

Theorem 3.4. The endemic equilibrium Q∗
1 of system (2.1) is locally asymptoti-

cally stable if B3(B1B2−B3) > B1(B1B4−B5) and (B4B3−B2B5)(B1B2−B3) >
(B1B4 −B5)

2.

See the appendix A.1 for the proof and expressions of Bi (i = 1, 2, · · · , 5).
Note that by Theorem 3.1, E0 is locally asymptotically stable when R0 < 1.

Therefore, if n < 0, then E0 and Q∗
1 may be bistable for Rc < R0 < 1. This

bistable phenomenon is caused by the backward bifurcation at R0 = 1, which we
will investigate later.

In the following, we shall construct a Lyapunov function to analyze the global
stability of equilibrium Q∗

1 for R0 > 1.

Theorem 3.5. The unique endemic equilibrium Q∗
1 of system (2.1) is globally

asymptotically stable if R0 > 1.

Proof. Define the Lyapunov function L(t) as follows:

L(t) =Sn(t)− S∗
n1 − S∗

n1 ln
Sn(t)

S∗
n1

+ Sa(t)− S∗
a1 − S∗

a1 ln
Sa(t)

S∗
a1

+ E(t)− E∗
1

− E∗
1 ln

E(t)

E∗
1

+ ℓ1(I(t)− I∗1 − I∗1 ln
I(t)

I∗1
) + ℓ2(W (t)−W ∗

1 −W ∗
1 ln

W (t)

W ∗
1

),

where

ℓ1 =
(µβ2 + η2β3)[S

∗
n1 + (1− σ)S∗

a1]

µ(γ + ϵ)
, ℓ2 =

β3[S
∗
n1 + (1− σ)S∗

a1]

ζµ
.

Then, the derivative of L(t) is given as

dL(t)
dt

=
dSn

dt
(1− S∗

n1

Sn
) +

dSa

dt
(1− S∗

a1

Sa
) +

dE

dt
(1− E∗

1

E
) + ℓ1

dI

dt
(1− I∗1

I
)

+ ℓ2
dW

dt
(1− W ∗

1

W
)
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=(1− S∗
n1

Sn
)[A− (β1E + β2I + β3W )Sn− aSn + θSa − ϵSn] + (1− S∗

a1

Sa
)[aSn

− (1− σ)(β1E + β2I + β3W )Sa − θSa − ϵSa] + (1− E∗
1

E
)[(β1E + β2I

+ β3W )Sn + (1− σ)(β1E + β2I + β3W )Sa − δE − ϵE] + ℓ1(1−
I∗1
I
)[δE

− γI − ϵI] + ℓ2(1−
W ∗

1

W
)ζ(η1E + η2I − µW ).

By denoting Sn

S∗
n1

= y1,
Sa

S∗
a1

= y2,
E
E∗

1
= z1,

I
I∗
1
= z2,

W
W∗

1
= z3, we obtain

dL(t)
dt

=A+ (ϵ+ a)S∗
n1 + (θ + ϵ)S∗

a1 + (δ + ϵ)E∗
1 + ℓ1(γ + ϵ)I∗1 + ℓ2ζµW

∗
1

− y1(ϵS
∗
n1 + β1E

∗
1S

∗
n1)−

1

y1
A− y2

y1
θS∗

a1 −
y1
y2
aS∗

n1 − y2[ϵS
∗
a1 + (1

− σ)β1E
∗
1S

∗
a1]−

y1z2
z1

β2I
∗
1S

∗
n1 −

y1z3
z1

β3W
∗
1 S

∗
n1 −

y2z2
z1

(1− σ)β2I
∗
1S

∗
a1

− y2z3
z1

(1− σ)β3W
∗
1 S

∗
a1 − ℓ1

z1
z2
δE∗

1 − z1
z3
ℓ2ζη1E

∗
1 − z2

z3
ℓ2ζη2I

∗
1

=(ϵS∗
n1 + β1E

∗
1S

∗
n1)(2− y1 −

1

y1
) + [ϵS∗

a1 + (1− σ)β1E
∗
1S

∗
a1](3− y2 −

y1
y2

− 1

y1
) + θS∗

a1(2−
y2
y1

− y1
y2

) + β2I
∗
1S

∗
n1(3−

y1z2
z1

− z1
z2

− 1

y1
)

+
η1(γ + ϵ)

µδ
β3S

∗
n1I

∗
1 (3−

y1z3
z1

− z1
z3

− 1

y1
) + (1− σ)β2I

∗
1S

∗
a1(4−

y2z2
z1

− y1
y2

− z1
z2

− 1

y1
) + (1− σ)

η1(γ + ϵ)

µδ
β3S

∗
a1I

∗
1 (4−

y2z3
z1

− z1
z3

− y1
y2

− 1

y1
)

+
η2
µ
β3S

∗
n1I

∗
1 (4−

y1z3
z1

+
z2
z3

− z1
z2

− 1

y1
) + (1− σ)

η2
µ
β3S

∗
a1I

∗
1 (5−

y2z3
z1

− z2
z3

− z1
z2

− y1
y2

− 1

y1
).

Since the arithmetic mean is greater than the geometric mean, according to the

above analysis, we have dL(t)
dt ≤ 0. And dL(t)

dt = 0 if and only if yi = 1 (i = 1, 2),

z1 = 1, z1 = z2 = z3, that is,
dL(t)
dt = 0 if and only if Sn = S∗

n1, Sa = S∗
a1, E = E1

∗,
I = I∗1 , W = W ∗

1 . Substituting relations I = I∗1 into the fifth equation of system
(2.1), we get γI∗1 − ϵR = 0, then we have R = R∗

1 = γ
ϵ I

∗
1 . Consequently, we obtain

that Q∗
1 is globally asymptotically stable if R0 > 1 by using LaSalle’s invariance

principle [19].
Based on the detailed analysis of the dynamics of system (2.1), the stability

of the relevant equilibria is summarized in Table 3. The asterisk (*) in Table 3
indicates that the result is numerically verified.

4. Backward bifurcation analysis

In this section, combined with the previous analysis of the existence of endemic
equilibria, we shall discuss the backward bifurcation problem of system (2.1). In
addition, the influence of disease awareness on backward bifurcation is investigated.
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Table 3. Stability of equilibria for the system (2.1).

Ranges of Threshold E0 Q∗
1 Q∗

2 Q∗
3

n > 0 and R0 < 1 LAS – – –

n > 0 and R∗
0 < 1 GAS – – –

n > 0 and R0 > 1 Unstable GAS – –

n < 0 and R0 > 1 Unstable GAS – –

n < 0 and Rc < R0 < 1 LAS LAS∗ Unstable∗ –

n < 0 and Rc = R0 < 1 LAS – – LAS∗

• LAS: Locally asymptotically stable; GAS: Globally asymptotically stable.

From Theorem 3.1, it shows that if n < 0, there exists a unique endemic equi-
librium of the system (2.1) for R0 ≥ 1, and there are two endemic equilibria for
Rc < R0 < 1, which indicates that the system (2.1) may occur backward bifurcation.
Thus, based on the general center manifold theory proposed by Castillo-Chavez and
Song [8, p13], the threshold conditions under which backward bifurcation may ex-
hibit in the system (2.1) are investigated.

Firstly, we consider the following ordinary system with a parameter ψ:

dX

dt
= f(X,ψ), (4.1)

where f : Rn ×R → R and f ∈ C2(Rn ×R). Without loss of generality, we assume
that 0 is an equilibrium of system (4.1) with the parameter ψ, that is, f(0, ψ) = 0,
for all ψ.

Lemma 4.1 (Lemma 4.1, [8]). Assume that

(H1) G = DXf(0, 0) =
∂fi
∂Xi

(0, 0) is the Jacobian matrix of system (4.1) around the
equilibrium X=0. 0 is a simple eigenvalue of G and all other eigenvalues of
G have negative real parts;

(H2) A right eigenvector w and a left eigenvector v of matrix G, corresponding to
zero eigenvalues, respectively.

Let fk be the kth component of f and

α =

n∑
k,i,j=1

vkwiwj
∂2fk
∂xi∂xj

(0, 0) ,

b =

n∑
k,i=1

vkwi
∂2fk
∂xi∂ψ

(0, 0) .

Then, the local dynamics of system (4.1) around X = 0 are totally determined by
α and b.

(i) α > 0, b > 0. If ψ < 0 with |ψ| ≪ 1, X = 0 is locally asymptotically stable and
there exists a positive unstable equilibrium; if 0 < ψ ≪ 1, X = 0 is unstable
and there exists a negative and locally asymptotically stable equilibrium;

(ii) α < 0, b < 0. If ψ < 0 with |ψ| ≪ 1, X = 0 is unstable; if 0 < ψ ≪ 1, X = 0
is locally asymptotically stable and there exists a positive unstable equilibrium;
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(iii) α > 0, b < 0. If ψ < 0 with |ψ| ≪ 1, X = 0 is unstable and there exists
a locally asymptotically stable negative equilibrium; if 0 < ψ ≪ 1, X = 0 is
stable and a positive unstable equilibrium appears;

(iv) α < 0, b > 0. When ψ changes from negative to positive, X = 0 changes its
stability from stable to unstable. Correspondingly, a negative unstable equilib-
rium becomes a locally asymptotically stable positive equilibrium.

Next, by using Lemma 4.1, we shall discuss the conditions under which system
(2.1) undergoes backward bifurcation.

Theorem 4.1. If n < 0, system (2.1) exhibits a backward bifurcation at R0 = 1.

Proof. Introducing change of variables: Sn = x1, Sa = x2, E = x3, I = x4, R =
x5, W = x6. Further, using the vector notation X = (x1, x2, x3, x4, x5, x6)

T, our
system (2.1) can be rewritten in the form as dX

dt = f(X) with f(X) = (f1, f2, f3, f4,
f5, f6)

T, where

f1 = A− (β1x3 + β2x4 + β3x6)x1 − ax1 + θx2 − ϵx1,

f2 = ax1 − (1− σ)(β1x3 + β2x4 + β3x6)x2 − (θ + ϵ)x2,

f3 = (β1x3 + β2x4 + β3x6)x1 + (1− σ)(β1x3 + β2x4 + β3x6)x2 − (δ + ϵ)x3,

f4 = δx3 − (γ + ϵ)x4,

f5 = γx4 − ϵx5,

f6 = ζ(η1x3 + η2x4 − µx6).

We focus on the case where R0 = 1, choosing β2 as a bifurcation parameter. Solving
for β2 from the formula (3.1), we obtain

β2 = β∗
2 =

ϵ(δ + ϵ)(γ + ϵ)(a+ θ + ϵ)

δA[θ + ϵ+ (1− σ)a]
− β1

(γ + ϵ)

δ
− β3

η1(γ + ϵ) + δη2
δµ

.

Further, the Jacobian matrix J(E0, β
∗
2) at E0 is given as

J(E0, β
∗
2)=



−a− ϵ θ −β1S0
n −β∗

2S
0
n 0 −β3S0

n

a −θ − ϵ −(1− σ)β1S
0
a −(1− σ)β∗

2S
0
a 0 −(1− σ)β3S

0
a

0 0 a1 β∗
2 [S

0
n + (1− σ)S0

a] 0 a3

0 0 δ −γ − ϵ 0 0

0 0 0 γ −ϵ 0

0 0 ζη1 ζη2 0 −ζµ


.

So we obtain that the Jacobian matrix J(E0, β
∗
2) has a simple zero eigenvalue if and

only if R0 = 1 and all the other eigenvalues have negative real parts. Thus, E0 is
a nonhyperbolic equilibrium when β2 = β∗

2 . It is evident that model (2.1) satisfies
assumption (H1) in Lemma 4.1.

Assume that the right eigenvector of the matrix J(E0, β
∗
2) is w = (w1, w2, w3, w4,



1386 S. Li, Y. Tan, X. Sun & Y. Mu

w5, w6)
T, which is given by

(−a− ϵ)w1 + θw2 − β1S
0
nw3 − β2

∗S0
nw4 − β3S

0
nw6 = 0,

aw1 − (θ + ϵ)w2 − (1− σ)β1S
0
aw3 − (1− σ)β2

∗S0
aw4 − (1− σ)β3S

0
aw6 = 0,

(β1w3 + β2
∗w4 + β3w6)[S

0
n + (1− σ)S0

a]− (δ + ϵ)w3 = 0,

δw3 − (γ + ϵ)w4 = 0,

γw4 − ϵw5 = 0,

ζ(η1w3 + η2w4 − µw6) = 0.

(4.2)

Solving the equation (4.2), we get

w1 =
(1− σ)δϵh1S

0
a − (γ + ϵ)(δ + ϵ)(θ + ϵ)

δϵ(a+ ϵ+ θ)
w4,

w2 =
δϵh1S

0
n − (γ + ϵ)(δ + ϵ)(a+ ϵ)

δϵ(a+ ϵ+ θ)
w4, (4.3)

w3 =
(γ + ϵ)

δ
w4, w4 = w4, w5 =

γ

ϵ
w4,

w6 =
η1(γ + ϵ) + η2δ

δµ
w4,

where

h1 = β1
(γ + ϵ)

δ
+ β∗

2 + β3
η1(γ + ϵ) + η2δ

δµ
.

By calculation, we have h1 = h
R0

, then h1 = h when R0 = 1. Additionally, the
left eigenvector v = (v1, v2, v3, v4, v5, v6) of the matrix J(E0, β

∗
2), which satisfies

v · w = 1, is given by

(−a− ϵ)v1 + av2 = 0,

θv1 + (−θ − ϵ)v2 = 0,

− β1S
0
nv1 − (1− σ)β1S

0
av2 + [β1(S

0
n + (1− σ)S0

a)− δ − ϵ]v3 + δv4 + ζη1v6 = 0,

− β∗
2S

0
nv1 − (1− σ)β∗

2S
0
av2 + β∗

2 [S
0
n + (1− σ)S0

a]v3

− (γ + ϵ)v4 + γv5 + ζη2v6 = 0,

− ϵv5 = 0,

− β3S
0
nv1 − (1− σ)β3S

0
av2 + β3[S

0
n + (1− σ)S0

a]v3 − ζµv6 = 0.

(4.4)

Solving the equation (4.4), we get

v1 = v2 = v5 = 0, v3 = v3,

v4 =
δζµ2 − v3w4[ζµ

2(γ + ϵ) + β3(η1(γ + ϵ) + η2δ)(S
0
n + (1− σ)S0

a)]

δζw4µ2
, (4.5)

v6 =
β3[S

0
n + (1− σ)S0

a]

ζµ
v3.
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Because v1, v2, and v5 are zero and the second-order partial derivatives of f4
and f6 are zero, only nonzero partial derivatives of f3 need to be calculated. Then,
we obtain

∂2f3
∂x1∂x3

(E0, β
∗
2) = β1,

∂2f3
∂x1∂x4

(E0, β
∗
2) = β∗

2 ,
∂2f3
∂x1∂x6

(E0, β
∗
2) = β3,

∂2f3
∂x2∂x3

(E0, β
∗
2) = (1− σ)β1,

∂2f3
∂x2∂x4

(E0, β
∗
2) = (1− σ)β∗

2 ,

∂2f3
∂x2∂x6

(E0, β
∗
2) = (1− σ)β3,

∂2f3
∂x4∂β2

(E0, β
∗
2) = S0

n + (1− σ)S0
a.

Next, we calculate the bifurcation coefficients α and b, it follows that

α =

6∑
k,i,j=1

vkwiwj
∂2fk
∂xi∂xj

(E0, β
∗
2)

=2v3w1w3
∂2f3
∂x1∂x3

(E0, β
∗
2) + 2v3w1w4

∂2f3
∂x1∂x4

(E0, β
∗
2)

+ 2v3w1w6
∂2f3
∂x1∂x6

(E0, β
∗
2) + 2v3w2w3

∂2f3
∂x2∂x3

(E0, β
∗
2)

+ 2v3w2w4
∂2f3
∂x2∂x4

(E0, β
∗
2) + 2v3w2w6

∂2f3
∂x2∂x6

(E0, β
∗
2) ,

and

b =

6∑
k,i=1

vkwi
∂2fk
∂xi∂β2

(E0, β
∗
2) = v3w4

∂2f3
∂x4∂β2

(E0, β
∗
2) .

In view of (4.3) and (4.5), we obtain

α =2v3[β1w1w3 + β∗
2w1w4 + β3w1w6 + (1− σ)(β1w2w3 + β∗

2w2w4 + β3w2w6)]

=2v3(β1w3 + β∗
2w4 + β3w6)[w1 + (1− σ)w2]

=
2h

δϵ(a+ ϵ+ θ)
[

(1− σ)δϵh(S0
n + S0

a)

(γ + ϵ)(δ + ϵ)[θ + ϵ+ (1− σ)(a+ ϵ)]
− 1]

=
2h

δϵ(a+ ϵ+ θ)
[

(1− σ)δAh2

(1− σ)δAh2 + n
− 1], (4.6)

and

b =S0
n + (1− σ)S0

a =
A[θ + ϵ+ (1− σ)a]

ϵ(θ + ϵ+ a)
. (4.7)

Obviously, b is positive. And from the expression (4.6), we can observe that if
n < 0, we have α > 0. Hence, it follows from Lemma 4.1 that system (2.1) occurs
backward bifurcation at R0 = 1 if n < 0.

The emergence of backward bifurcation makes the disease control strategy more
challenging, the elimination of epidemics cannot be guaranteed even if R0 is below 1.
From the expressions (4.6) of the bifurcation coefficient α, we find that α decreases
with the increase of the disease awareness impact factor σ, indicating that α is a
decreasing function of σ. Hence, the possibility of backward bifurcation in system
(2.1) is influenced by disease awareness, that is, it decreases with the increase of
disease awareness.
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5. Numerical simulation

In this section, we numerically verify the theoretical results and analyze the impact
of disease awareness on disease transmission. The values of parameters are provided
in Table 1.

5.1. The impact of disease awareness on disease transmission

To assess the effect of disease awareness on both direct and indirect transmission,
we set A = 2, β1 = 3 × 10−3, β2 = 3.6 × 10−3, β3 = 1.5 × 10−3, δ = 0.16,
θ = 0.3, γ = 0.28 and µ = 0.33. The curves of the number of exposed and infected
individuals and the virus concentration in the environment under different values of
the disease awareness impact factor σ over time are plotted in Figure 1. As shown
in Figure 1, the number of exposed individuals and infected individuals and the
virus concentration in the environment all decrease significantly when the value of
σ changes from 0.3 to 0.8. Moreover, the increased disease awareness impact factor
σ decreases the peak level of the number of exposed individuals, infected individuals,
and virus concentration. This illustrates that when people have a higher level of
awareness, they are motivated to take preventive measures, thereby slowing virus
transmission. Thus, increasing disease awareness helps prevent and control direct
and indirect disease transmission.

Figure 1. Variation in the number of exposed and infected people and virus concentration in the
environment under different values of σ.

5.2. The effect of environmental clearance and viral shedding
on R0

Set A = 1, β1 = 0.4 × 10−3, β2 = 0.5 × 10−3, β3 = 0.2 × 10−3, δ = 0.35, γ = 0.26
and σ = 0.36, the change of the basic reproduction number R0 under various
environmental clearance rates µ and various viral shedding rates ηi is drawn, as
shown in Figure 2. It shows that as the environmental clearance rate µ increases
and the viral shedding rate ηi (i = 1, 2) decreases, R0 decreases significantly (as
shown in Figure 2(c-e)). This illustrates that strengthening environmental health
management and improving the personal hygiene of exposed and infected people
can effectively reduce disease transmission.
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(a) (b)

(c) (d) (e)

Figure 2. The impact of µ and ηi (i = 1, 2) on R0.

5.3. The stability of the equilibrium

Firstly, the stability of the disease-free equilibrium E0 is verified. We take the
parameter values A = 2, β1 = 0.4 × 10−3, β2 = 0.5 × 10−3, β3 = 0.3 × 10−3,
δ = 0.42, γ = 0.25, σ = 0.45, θ = 0.2 and µ = 0.23, then we have R∗

0 = 0.6926 < 1,
R0 = 0.4915 < 1 and n = 1.0319×10−4 > 0, which obviously satisfies the condition
that equilibrium E0 global stability in Theorem 3.3. The simulation result is shown
in Figure 3(a), where the number of exposed and infected individuals and the virus
concentration decrease over time and eventually approach to 0. Thus, E0 is globally
asymptotically stable and the disease will become extinct when the condition R∗

0 < 1
is satisfied.

Next, we verify the globally stability of the endemic equilibriumQ∗
1 whenR0 > 1.

Set A = 2, β1 = 2×10−3, β2 = 3×10−3, β3 = 1×10−3, δ = 0.45, γ = 0.18, σ = 0.41,
θ = 0.2 and µ = 0.25, then we get R0 = 2.5272 > 1, which satisfies the condition
that equilibrium Q∗

1 global stability in Theorem 3.5. As illustrated in Figure 3(b),
exposed people, infected people, and viruses in the environment persist, while the
number of unaware susceptible and aware susceptible decreases rapidly over time
and then increases slowly. Finally, system (2.1) is stabilized to the unique endemic
equilibrium Q∗

1, which verifies Theorem 3.5.
Further, we verify that E0 and Q∗

1 are bistable for Rc < R0 < 1. Set A = 1,
β1 = 0.815× 10−3, β2 = 0.91× 10−3, β3 = 0.76× 10−3, σ = 0.3, δ = 0.36, γ = 0.28
and µ = 0.23, then we have n = −4.0088 × 10−5 < 0, R0 = 0.6642 < 1, Rc =
−0.1272 < 0, which obviously satisfies the condition (ii) in Theorem 3.1. Thus,
we obtain two edemic equilibriaQ∗

1(5.4881, 8.2816, 6.5868, 18.5254, 11.1152, 10.9183)
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(a) (b)

Figure 3. (a) shows that E0 is globally asymptotically stable if R∗
0 < 1. (b) shows that Q∗

1 is globally
asymptotically stable if R0 > 1.

and Q∗
2(19.7058, 17.2252, 1.3857, 1.6629, 10.0204, 7.3504). For Q∗

1, we have B1 =
0.9499, B5 = 3.2117×10−5, B1B2−B3 = 0.2557, B3(B1B2−B3)−B1(B1B4−B5) =
0.0091 and (B4B3−B2B5)(B1B2−B3)−B1B4(B1B4−B5) = 2.0024×10−5. For Q∗

2,
we have B1 = 0.7865, B5 = 5.6351× 10−6, B1B2 −B3 = 0.1313, B3(B1B2 −B3)−
B1(B1B4 −B5) = −0.0017 and (B4B3 −B2B5)(B1B2 −B3)−B1B4(B1B4 −B5) =
−7.5077 × 10−7. Consequently, we conclude that system (2.1) possesses a locally
asymptotically stable endemic equilibrium Q∗

1 and an unstable endemic equilibrium
Q∗

2 if n < 0 and Rc < R0 < 1. And as illustrated in Figure 4, the system (2.1)
stabilizes to equilibrium Q∗

1 and equilibrium E0, which verifies Theorem 3.2 and
Theorem 3.4 and shows that E0 and Q∗

1 are bistable when n < 0 and Rc < R0 < 1.

Figure 4. Taking different initial values, E0 and Q∗
1 are bi-stable when n < 0 and Rc < R0 < 1.
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5.4. Backward bifurcation

Let A = 0.1 β1 = 0.045, β2 = 0.053, β3 = 0.023, σ = 0.3, δ = 0.42, γ = 0.45,
µ = 0.12, we have n = −0.0015 < 0, R0 = 0.9248, and Rc = 0.1240. It is
evident that condition (ii) in Theorem 3.1 and the condition that system (2.1) occurs
backward bifurcation in Theorem 4.1 are satisfied, and the backward bifurcation
diagram is depicted in Figure 5(a). We can observe that E0 andQ

∗
1 are stable andQ

∗
2

is unstable when n < 0 and Rc < R0 < 1 from Figure 5(a). Moreover, numerically,
E0 = (1.4706, 3.5294, 0, 0, 0, 0), Q∗

1 = (0.5994, 0.4080, 0.8739, 0.7809, 2.3378, 0.2112)
and Q∗

2 = (1.4151, 3.2141, 0.0196, 0.0175, 0.3337, 0.0047), where E0 and Q∗
1 satisfy

the locally stable condition, while Q∗
2 does not. Hence, E0 and Q∗

1 are bistable for
Rc < R0 < 1. As R0 increases, when R0 > 1, only the large endemic equilibrium Q∗

1

exists and is stable, while the small endemic equilibrium Q∗
2 does not exist and E0

become unstable. The bifurcation diagram in Figure 5(a) verifies the conclusions of
Theorem 3.1 and Theorem 4.1 and shows that when Rc < R0 < 1, the disease will
not be extinct.

(a) (b)

Figure 5. Bifurcation diagram for different awareness impact factors. (a) shows the backward bifurca-
tion diagram of system (2.1), where the dash curve represents unstable equilibrium while the solid curve
represents stable equilibrium. (b) shows the influence of the value of different awareness impact factor
σ on the backward bifurcation curve.

In addition, Figure 5(b) shows that disease awareness has an impact on back-
ward bifurcation of the model (2.1). Figure 5(b) shows that as awareness impact
factor σ increases, the interval of backward bifurcation decreases, thereby the R0

interval in which the endemic equilibrium and the disease-free equilibrium showed
bistability gets smaller, and the R0 interval in which the disease-free equilibrium
showed global stability gets greater. Moreover, when the awareness impact fac-
tor σ increases, the number of infected people at the stable endemic equilibrium
also decreases. Therefore, it is necessary for society to strengthen health education
and promote effective disease information to raise public disease awareness so that
disease transmission can be effectively controlled.

6. Conclusion and discussion

In this paper, a coupled epidemic model with disease awareness is developed by con-
sidering both direct transmission between people and indirect transmission between
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people and the environment.

By analyzing the coupled model in detail, we find that it exhibits rich dynamic
behaviors. The basic reproduction number R0 is computed, which can be divided
into three parts: secondary infections caused by direct transmission from exposed
and infected individuals, and by indirect transmission from the contaminated en-
vironment. It is found that the disease-free equilibrium always exists, and system
(2.1) has at most two endemic equilibria. By using the Routh-Hurwitz criterion and
constructing Lyapunov functions, the local and global stability of the disease-free
and endemic equilibrium under certain conditions are proved. By using center man-
ifold theory, we verified that the system may undergo backward bifurcation, where
the bi-stability phenomenon of disease-free equilibrium E0 and endemic equilibrium
Q∗

1 can be observed.

Numerically, it is found that strengthening environmental clearance and reduc-
ing viral shedding from exposed and infected persons can reduce R0 (as shown in
Figure 2). This indicates that strengthening environmental health management,
as well as regular environmental cleaning and disinfection, can reduce the spread
and survival of viruses in the environment, thereby reducing new infections. Ex-
posed and infected individuals could improve their personal hygiene and actively
seek treatment to minimize environmental contamination, thereby reducing the risk
of virus transmission. We also observed that the number of exposed and infected
and the virus concentration in the environment show a decreasing trend with the
increase of the disease awareness influence factor σ (as shown in Figure 1). Interest-
ingly, increasing the value of σ decreases the backward regime of bifurcation curve
so that the bistable interval decreases and the globally stable interval of disease-free
equilibrium increases. Meanwhile, the number of infected people also decreases at
the stable endemic equilibrium (as shown in Figure 5(b)). These findings indicate
that enhancing the public’s disease awareness can effectively reduce the spread of
disease. Therefore, society should strengthen the publicity of disease information
in various information channels to raise more people’s disease awareness.

In summary, our findings show that disease awareness has a positive impact on
controlling the direct and indirect transmission of infectious diseases. By enhancing
disease awareness, the risk of direct and indirect transmission of diseases can be
effectively reduced, which provides new insights into controlling disease transmis-
sion with multiple modes of transmission. Meanwhile, this paper has shortcomings.
Firstly, as the disease spreads, the intensity of media promotion may vary, and
people may experience fatigue when facing the pandemic. Consequently, the rate
of change in people’s awareness, denoted as a, may no longer be a constant but
rather a variable. However, if we treat a as a variable, we need to introduce an in-
dependent compartment in our model to represent the dynamic changes in disease
information conveyed by media over time, allowing for a more accurate reflection
of the impact of disease transmission on awareness acquisition. Therefore, such
adjustments would significantly increase the complexity of the model and the dif-
ficulty of analysis. Secondly, random factors are common in disease transmission,
which may also impact disease transmission and awareness acquisition. Therefore,
it would be significant to develop a stochastic epidemic coupled model to further
investigate how disease awareness affects both the direct and indirect spread of dis-
eases. Based on these considerations, the model will become more complex, posing
various challenges during the computation and analysis. We will further explore
and address these issues in future research.
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A. Locally stability of endemic equilibrium of sys-
tem (2.1)

Theorem A.1. The endemic equilibrium Q∗
1 of system (2.1) is locally asymptoti-

cally stable if B3(B1B2−B3) > B1(B1B4−B5) and (B4B3−B2B5)(B1B2−B3) >
(B1B4 −B5)

2.

Proof. Let c1 = −(1 − σ)hI∗ − θ − ϵ, c2 = β1[S
∗
n1 + (1 − σ)S∗

a1] − δ − ϵ, c3 =
β2[S

∗
n1+(1−σ)S∗

a1], c4 = β3[S
∗
n1+(1−σ)S∗

a1], the Jacobian matrix of system (2.1)
at the endemic equilibrium Q∗

1 is given by

J(Q∗
1)

=



−hI∗ − a− ϵ θ −β1S∗
n1 −β2S∗

n1 0 −β3S∗
n1

a c1 −(1− σ)β1S
∗
a1 −(1− σ)β2S

∗
a1 0 −(1− σ)β3S

∗
a1

hI∗1 (1− σ)hI∗1 c2 c3 0 c4

0 0 δ −γ − ϵ 0 0

0 0 0 γ −ϵ 0

0 0 ζη1 ζη2 0 −ζµ


.

Then, let

J(Q∗
1) =



k11 θ k13 k14 0 k15

a c1 k23 k24 0 k25

hI∗1 (1− σ)hI∗1 c2 c3 0 c4

0 0 δ −γ − ϵ 0 0

0 0 0 γ −ϵ 0

0 0 ζη1 ζη2 0 −ζµ


,

its characteristic equation is

(λ+ ϵ)(λ5 +B1λ
4 +B2λ

3 +B3λ
2 +B4λ+B5) = 0,

where

B1 =ζµ+ γ + ϵ− (k11 + c1 + k33)

=ζµ+ γ + ϵ− (k11 + c1) + (δ + ϵ)[1− β1
(γ + ϵ)

δh
]

>0,
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B2 =s1 + ζµ(γ + ϵ)− (ζµ+ γ + ϵ)(k11 + c1 + c2)− ζη1c4 − δc3

=s1 + ζµ(γ + ϵ)− (ζµ+ γ + ϵ)(k11 + c1) + ζµ(δ + ϵ)[1− β1
(γ + ϵ)

δh

− β3
η1(γ + ϵ)

δhµ
] + (γ + ϵ)(δ + ϵ)[1− β1

(γ + ϵ)

δh
− β2

h
]

>0,

B3 =s1(ζµ+ γ + ϵ) + s2 + ζη1q1 + q3δ − c4ζ[δη2 + (γ + ϵ)η1]− c3δζµ

− ζµ(k11 + c1 + c2)(γ + ϵ)

=s2 + (ζµ+ γ + ϵ)[(hI∗1 + ϵ)((1− σ)hI∗1 + θ + ϵ) + a((1− σ)hI∗1 + ϵ)]

+ ζµ(a+ θ + 2ϵ)[(δ + ϵ)− (β1 + β3
η1
µ
)(S∗

n1 + (1− σ)S∗
a1)] + [(δ + ϵ)

− (β1 + β3
η1
µ
)S∗

n1]ζµ(1− σ)hI∗1 + ζµhI∗1 [(δ + ϵ)− (β1 + β3
η1
µ
)(1− σ)S∗

a1]

+ (γ + ϵ)(a+ θ + 2ϵ)[(δ + ϵ)− (β1 + β2
δ

(γ + ϵ)
)(S∗

n1 + (1− σ)S∗
a1)]

+ (γ + ϵ)(1− σ)hI∗1 [(δ + ϵ)− (β1 + β2
δ

(γ + ϵ)
)S∗

n1] + (γ + ϵ)hI∗1 [(δ + ϵ)

− (β1 + β2
δ

(γ + ϵ)
)(1− σ)S∗

a1]− ζµ(k11 + c1)(γ + ϵ)

>0,

B4 =s1ζµ(γ + ϵ) + s2(ζµ+ γ + ϵ) + q1ζ[δη2 + (γ + ϵ)η1] + q2η1ζ + δq3ζµ+ δq4

=ζµ(γ + ϵ)[(hI∗1 + ϵ)((1− σ)hI∗1 + θ + ϵ) + a((1− σ)hI∗1 + ϵ)] + ζµ(γ + ϵ)hI∗1

× [(δ + ϵ)− δh

(γ + ϵ)
(1− σ)S∗

a1] + ζµ(γ + ϵ)(1− σ)[(δ + ϵ)− δh

(γ + ϵ)
S∗
n1]hI

∗
1

+ (δ + ϵ)hI∗1 [(1− σ)a+ θ + hI∗1 (1− σ)](ζµ+ γ + ϵ) + ζϵµ(a+ θ + ϵ)[(δ + ϵ)

− (β1 + β3
η1
µ
)(S∗

n1 + (1− σ)S∗
a1)] + ζϵµ(1− σ)hI∗1 [(δ + ϵ)− (β1 + β3

η1
µ
)S∗

n1]

+ ζϵµhI∗1 [(δ + ϵ)− (β1 + β3
η1
µ
)(1− σ)S∗

a1] + ϵ(γ + ϵ)(a+ θ + ϵ)[(δ + ϵ)

− (β1 + β2
δ

(γ + ϵ)
)(S∗

n1 + (1− σ)S∗
a1)] + ϵ(γ + ϵ)(1− σ)hI∗1 [(δ + ϵ)

− (β1 + β2
δ

(γ + ϵ)
)S∗

n1] + ϵ(γ + ϵ)hI∗1 [(δ + ϵ)− (β1 + β2
δ

(γ + ϵ)
)(1− σ)S∗

a1]

>0,

B5 =s2ζµ(γ + ϵ) + q2ζ[δη2 + (γ + ϵ)η1] + δq4ζµ

=ζµ(γ + ϵ)(δ + ϵ)hI∗1 [(1− σ)a+ θ + hI∗1 (1− σ)] + ζϵµ(γ + ϵ)hI∗1 [(δ + ϵ)

− δh

(γ + ϵ)
(1− σ)S∗

a1] + ζϵµ(γ + ϵ)(1− σ)hI∗1 [(δ + ϵ)− δh

(γ + ϵ)
S∗
n1]

>0,

s1 = k11c1 + (k11 + c1)c2 − k13hI
∗
1 − k23(1− σ)hI∗1 − aθ,

s2 = c1k13hI
∗
1 + c2θa+ k11k23(1− σ)hI∗1 − θk23hI

∗
1 − (1− σ)hI∗1ak13 − k11c1c2,

q1 = −β3[S∗
n1 + (1− σ)S∗

a1](a+ θ + 2ϵ)− (1− σ)β3hI
∗
1 (S

∗
n1 + S∗

a1),

q2 = −β3ϵ[S∗
n1 + (1− σ)S∗

a1](a+ θ + ϵ)− (1− σ)β3ϵhI
∗
1 (S

∗
n1 + S∗

a1),
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q3 = −β2[S∗
n1 + (1− σ)S∗

a1](a+ θ + 2ϵ)− (1− σ)β2hI
∗
1 (S

∗
n1 + S∗

a1),

q4 = −β2ϵ[S∗
n1 + (1− σ)S∗

a1](a+ θ + ϵ)− (1− σ)β2ϵhI
∗
1 (S

∗
n1 + S∗

a1).

By detailed calculation, we have B1B2 − B3 > 0. Thus, if the conditions
B3(B1B2−B3) > B1(B1B4−B5) and (B4B3−B2B5)(B1B2−B3) > (B1B4−B5)

2

are satisfied, then Q∗
1 is locally asymptotically stable according to the Routh-

Hurwitz criteria.
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