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Abstract The aim of this work is to study a system of variational inclusions
involving generalized Yosida and Cayley operators through inertial extrap-
olation scheme in real Banach space. To obtain faster convergence of the
sequences generated by algorithm, we use one inertial extrapolation scheme,
although we have established some more iterative schemes. To achieve our
goal, we prove an important Lemma ensuring the convergence of sum of two
sequences. We provide a numerical example.
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1. Introduction

Variational inclusions are application oriented and can be treated as mathematical
version of many problems of day-to-day life, such as economics, physics, engineering
and space sciences, etc.. The system of variational inclusions extends the concept of
variational inequalities. These systems have applications across various fields such
as mathematical analysis, biological sciences, elasticity, image processing, biomed-
ical sciences, and optimization. Furthermore, investigating variational inclusion
systems provides novel methods for tackling analytical problems. For more liter-
ature on system of variational inclusions, one can see [1, 5, 7, 10–13, 22, 24, 27] and
references therein.
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Yosida approximation operator are of great importance due to their applications.
In the study of wave equations, heat equations and heat flow, etc., one can found
the clear applications of Yosida approximation operators. For more details, we refer
to [4, 14,21].

The Cayley transform is a mapping that connects skew-symmetric matrices to
special orthogonal matrices and is utilized in real, complex, and quaternionic analy-
sis. In the context of Hilbert spaces, it serves as a mapping between linear operators.
Considering the real projective line, the Cayley transform permutes the elements
1, 0,−1,∞ in sequence and maps the positive real numbers to the interval [−1, 1].
Consequently, the Legendre polynomials can be applied to functions on the positive
real numbers using the Cayley transform, resulting in Legendre rational functions.

On the Riemann sphere, the Cayley transform is given by

f(z) =
z − i

z + i
.

This transform maps the points {∞, 1,−1} to {1,−i, i}. As a Möbius transforma-
tion, it permutes generalized circles in the complex plane, mapping the real line
onto the unit circle. For more details, see [6, 8, 9, 15,18,19].

Various iterative algorithms appeared in the literature using proximal opera-
tors, resolvent operators, projection operators as well as sub-differential operator.
In order to obtain faster convergence of the sequences generated by the considered
algorithm, we have to choose such a scheme which expedite the speed of convergence.
Several authors have used inertial extrapolation scheme using inertial extrapolation
term γ(un − un−1), where γ is the extrapolation factor which accelerates the con-
vergence rate of the method. While dealing with heavy ball method, Polyak [23],
introduced inertial-type algorithm. There are two steps in the inertial-type algo-
rithm, through these two steps consecutive iterations are gained by using former
two terms, for reference see [20,25,26].

In view of the above mentioned facts, in this paper, we study a system of vari-
ational inclusions involving generalized Yosida and Cayley operators using inertial
extrapolation scheme in real Banach space. Simultaneously, we have developed some
more iterative schemes for our problem. The existence of a solution and the con-
vergence of the sequences produced by our scheme are demonstrated. We construct
a numerical example.

2. Preliminary tools and hypothesis

Let X̂ be a real Banach space with its topological dual X̂ ∗. We denote the norm on
X̂ by ∥·∥ and duality pairing by ⟨·, ·⟩ between X̂ and X̂ ∗. The class of all non-empty

subsets of X̂ are denoted by 2X̂ .

Definition 2.1. The normalized duality mapping J : X̂ → X̂ ∗ is defined by

J(p̂) = {q̂ ∈ X̂ ∗ : ⟨p̂, q̂⟩ = ∥p̂∥2, ∥p̂∥ = ∥q̂∥}, for all p̂ ∈ X̂ .

Definition 2.2. The operator Ã : X̂ → X̂ is said to be

(i) Accretive, if

⟨Ã(p̂)− Ã(q̂), J(p̂− q̂)⟩ ≥ 0, for all p̂, q̂ ∈ X̂ .
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(ii) Strongly accretive, if

⟨Ã(p̂)− Ã(q̂), J(p̂− q̂)⟩ ≥ r1∥p̂− q̂∥2, for all p̂, q̂ ∈ X̂ ,

where r1 > 0 is a constant.

(iii) Lipschitz continuous, if

∥Ã(p̂)− Ã(q̂)∥ ≤ λÃ∥p̂− q̂∥, for all p̂, q̂ ∈ X̂ ,

where λÃ > 0 is a constant.

Definition 2.3. A multi-valued mapping M : X̂ → 2X̂ is said to be accretive, if
for all p̂, q̂ ∈ X̂

⟨u− v, J(p̂− q̂)⟩ ≥ 0, for all u ∈ M(p̂), v ∈ M(q̂).

Definition 2.4. [16, 28] Let Ã : X̂ → X̂ be a mapping. A multi-valued mapping

M : X̂ → 2X̂ is said to be Ã-accretive if M is accretive and

[Ã+ ρM](X̂ ) = X̂ , where ρ > 0 is a constant.

Definition 2.5. [16] Let Ã : X̂ → X̂ be a mapping and M : X̂ → 2X̂ be A-

accretive multi-valued mapping. The generalized resolvent operator RM
Ã,ρ

: X̂ → X̂
associated with Ã, is defined as:

RM
Ã,ρ

(p̂) = [Ã+ ρM]−1(p), for all p̂ ∈ X̂ and ρ > 0 is a constant.

Theorem 2.1. [2] Let Ã : X̂ → X̂ be strongly accretive operator with constant r1
and M : X̂ → 2X̂ be Ã-accretive multi-valued mapping. Then∥∥∥RM

Ã,ρ
(p̂)−RM

Ã,ρ
(q̂)

∥∥∥ ≤ 1

r1
∥p̂− q̂∥, for all p̂, q̂ ∈ X̂ .

That is, the generalized resolvent operator RM
Ã,ρ

is Lipschitz continuous.

Definition 2.6. [2] Let B̃ : X̂ → X̂ be a mapping and RN
B̃,γ

: X̂ → X̂ is the

generalized resolvent operator associated with B̃. The generalized Cayley operator
CN

B̃,γ
: X̂ → X̂ is defined as

CN
B̃,γ

(p̂) =
[
2RN

B̃,γ
− B̃

]
(p̂), for all p̂ ∈ X̂ and γ > 0 is a constant.

Proposition 2.1. [2, 17] The generalized Cayley operator CN
B̃,γ

: X̂ → X̂ is Lips-

chitz continuous with constant λC , that is∥∥∥CN
B̃,γ

(p̂)− CN
B̃,γ

(q̂)
∥∥∥ ≤ λC∥p̂− q̂∥, for all p̂, q̂ ∈ X̂ ,

where λC =
2 + λB̃r2

r2
and the generalized resolvent operator RN

B̃,γ
: X̂ → X̂ is

1

r2
-Lipschitz continuous.



Inertial extrapolation scheme for SVI using Y-C operators 1401

Definition 2.7. [3] The generalized Yosida approximation operator Y M
Ã,ρ

: X̂ → X̂
is defined as

Y M
Ã,ρ

(p̂) =
1

ρ

[
Ã −RM

Ã,ρ

]
(p̂), for all p̂ ∈ X̂ and ρ > 0 is a constant.

Proposition 2.2. [3] The generalized Yosida approximation operator Y M
Ã,ρ

: X̂ →
X̂ is Lipschitz continuous with constant λY , that is∥∥∥Y M

Ã,ρ
(p̂)− Y M

Ã,ρ
(q̂)

∥∥∥ ≤ λY ∥p̂− q̂∥, for all p̂, q̂ ∈ X̂ ,

where λY =
λÃr1 + 1

ρr1
and the generalized resolvent operator RM

Ã,ρ
: X̂ → X̂ is

1

r1
-Lipschitz continuous.

Lemma 2.1. Let {sn} and {tn} be sequences of non-negative real numbers such
that

sn+1 ≤ (1− an)sn + anα̂n + ξn,

and tn+1 ≤ (1− an)tn + anβ̂n + δn, for all n ≥ 1,

where

(i) {an} ⊂ [0, 1],
∑∞

n=1 an = ∞ or equivalently Π∞
n=1(1− an) = 0,

(ii) lim sup(α̂n + β̂n) ≤ 0,

(iii) ξn ≥ 0, δn ≥ 0,
∑∞

n=1 ξn < ∞,
∑∞

n=1 δn < ∞.

Then
sn + tn → 0, as n → ∞.

Proof. For any ϵ > 0, let N be an integer such that

αn <
ϵ

2
, βn <

ϵ

2
,

∞∑
n=N

ξn <
ϵ

2
and

∞∑
n=N

δn <
ϵ

2
, n ≥ N.

Given,
sn+1 ≤ (1− an)sn + anα̂n + ξn, (2.1)

so, we have

s1 ≤ (1− a0)s0 + a0α̂0 + ξ0,

s2 ≤ (1− a1)s1 + a1α̂1 + ξ1,

...

sN ≤ (1− aN−1)sN−1 + aN−1α̂N−1 + ξN−1,

...

sn ≤ (1− an−1)sn−1 + an−1α̂n−1 + ξn−1. (2.2)

Combining (2.1) and (2.2), we obtain

sn+1 ≤ (1− an) {(1− an−1)sn−1 + an−1α̂n−1 + ξn−1}+ anα̂n + ξn. (2.3)
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Rearranging the terms and using all the previous inequalities with (2.3), we have

sn+1 ≤ (Πn
k=N (1− ak)) sN + (1−Πn

k=N (1− ak))
ϵ

2
+

n∑
k=N

ξk. (2.4)

Similarly, we can write

tn+1 ≤ (Πn
k=N (1− ak)) tN + (1−Πn

k=N (1− ak))
ϵ

2
+

n∑
k=N

δk. (2.5)

Adding (2.4) and (2.5), we obtain

(sn+1+tn+1) ≤ (Πn
k=N (1− ak)) (sN+tN )+(1−Πn

k=N (1− ak)) ϵ+

n∑
k=N

ξk+

n∑
k=N

δk.

(2.6)
Using conditions (ii) and (iii), we obtain

sn + tn → 0, as n → ∞.

3. Phrasing of problem and iterative schemes

Let Ã, B̃ : X̂ → X̂ be single-valued mappings. Suppose that M,N : X̂ → CB(X̂ )

are multi-valued mappings, Y M
Ã,ρ

: X̂ → X̂ and CN
B̃,γ

: X̂ → X̂ are generalized

Yosida approximation operator and generalized Cayley operator, respectively. We
will study the following system of variational inclusions involving generalized Yosida
and Cayley operators.

Find p̂, q̂ ∈ X̂ such that

0 ∈ Y M
Ã,ρ

(p̂) +M(q̂),

0 ∈ CN
B̃,γ

(q̂) +N (p̂).
(3.1)

If Y M
Ã,ρ

(p̂) = 0 = CN
B̃,γ

(q̂), then the problem (3.1) reduces to the system of variational

inclusions, that is, find p̂, q̂,∈ X̂ such that

0 ∈ M(q̂),

0 ∈ N (p̂).
(3.2)

One can obtain many previously studied systems of variational inclusions from
system (3.1).

The fixed point formulation of system (3.1) is given below.

Lemma 3.1. The system of variational inclusions involving generalized Yosida and
Cayley operators (3.1) has a solution p̂, q̂ ∈ X̂ if and only if the following system
of fixed point equations is satisfied:

q̂ = RM
Ã,ρ

[
Ã(q̂)− ρY M

Ã,ρ
(p̂)

]
, (3.3)

p̂ = RN
B̃,γ

[
B̃(p̂)− γCN

B̃,γ
(q̂)

]
. (3.4)
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Proof. Proof is easy and hence omitted.

Using Lemma 3.1, we suggest the following iterative scheme for solving system
(3.1).

Iterative Scheme 3.1. For any p̂0, q̂0 ∈ X̂ , compute sequences {p̂n} and {q̂n} by
the following scheme:

q̂n+1 = (1− αn)q̂n + αnR
M
Ã,ρ

[
A(q̂n)− ρY M

Ã,ρ
(p̂n)

]
, (3.5)

p̂n+1 = (1− βn)p̂n + βnR
N
B̃,γ

[
B̃(p̂n)− γCN

B̃,γ
(q̂n)

]
, (3.6)

where n = 0, 1, 2, · · · , αn, βn ∈ [0, 1], ρ > 0 and γ > 0 are constants.

Equations (3.3) and (3.4) can be rewritten as

q̂ = RM
Ã,ρ

[
Ã(q̂) + Ã(q̂)

2
− ρY M

Ã,ρ
(p̂)

]
, (3.7)

and p̂ = RN
B̃,γ

[
B̃(p̂) + B̃(p̂)

2
− γCN

B̃,γ
(q̂)

]
. (3.8)

Based on (3.7) and (3.8), we suggest the following iterative scheme to solve the
system (3.1).

Iterative Scheme 3.2. For any p̂0, q̂0 ∈ X̂ , compute the sequences {p̂n+1} and
{q̂n+1} by the recurrence relations:

q̂n+1 = (1− αn)q̂n + αnR
M
Ã,ρ

[
Ã(q̂n) + Ã(q̂n+1)

2
− ρY M

Ã,ρ
(p̂n+1)

]
, (3.9)

p̂n+1 = (1− βn)p̂n + βnR
N
B̃,γ

[
B̃(p̂n) + B̃(p̂n+1)

2
− γCN

B̃,γ
(q̂n+1)

]
. (3.10)

Where n = 0, 1, 2, · · · , αn, βn ∈ [0, 1], ρ > 0 and γ > 0 are constants.

We established the following inertial extrapolation scheme.

Iterative Scheme 3.3. For any p̂0, q̂0 ∈ X̂ , compute the sequences {p̂n+1} and
{q̂n+1} by the recurrence relations:

ŵn = q̂n + γ′
n(p̂n − p̂n−1), (3.11)

q̂n+1 = (1− αn)q̂n + αnR
M
Ã,ρ

[
Ã(q̂n) + Ã(ŵn)

2
− ρY M

Ã,ρ
(ŵn)

]
, (3.12)

v̂n = p̂n + γ′′
n(q̂n − q̂n−1), (3.13)

p̂n+1 = (1− βn)p̂n + βnR
N
B̃,γ

[
B̃(p̂n) + B̃(v̂n)

2
− γCN

B̃,γ
(v̂n)

]
. (3.14)

Where αn, βn, γ
′
n, γ

′′
n ∈ [0, 1], γ′

n and γ′′
n are the extrapolating terms for n ≥ 1, ρ > 0

and γ > 0 are constants.
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4. Existence and convergence results

Existence and convergence results for the system (3.1) discussed below.

Theorem 4.1. Let X̂ be a real Banach space. Let Ã : X̂ → X̂ be the single-
valued mappings such that Ã is λÃ-Lipschitz continuous, strongly accretive with

constant r1; B̃ is λB̃-Lipschitz continuous and strongly accretive with constant r2.

Let M,N : X̂ → 2X̂ be the multi-valued mappings such that M is Ã-accretive and
N is B̃-accretive. Let RM

Ã,ρ
, RN

B̃,γ
: X̂ → X̂ be the generalized resolvent operators

such that RM
Ã,ρ

is 1
r1
-Lipschitz continuous and RN

B̃,γ
is 1

r2
-Lipschitz continuous. Let

Y M
Ã,ρ

: X̂ → X̂ be the generalized Yosida approximation operator and CN
B̃,γ

: X̂ → X̂
be the generalized Cayley operator such that Y M

Ã,ρ
is λY -Lipschitz continuous and

CN
B̃,γ

is λC-Lipschitz continuous. Suppose that the following conditions are satisfied

for αn, βn, γ
′
n, γ

′′
n ∈ [0, 1], for all n ≥ 1 such that

r1 + λÃ
r1

> 1,
r2 + λB̃

r2
> 1,

∞∑
n=1

αn = ∞,

∞∑
n=1

βn = ∞, (4.1)

∞∑
n=1

γ′
n

[
ξ(θ1)∥p̂n − p̂n−1∥

]
< ∞

∞∑
n=1

γ′′
n

[
ξ(θ2)∥q̂n − q̂n−1∥

]
< ∞

 , (4.2)

lim sup[αnθρλY ] ≤ 0, lim sup[βnθ
′γλC ] ≤ 0

}
, (4.3)

where θ = 1
r1
, θ′ = 1

r2
, λY =

λÃr1+1

ρr1
, λC =

2+λB̃r2
r2

, all the constants are positive

and γ′
n, γ

′′
n are the extrapolating terms.

Then, the sequences {p̂n} and {q̂n} produced by scheme 3.1 converge strongly to
the solution of system (3.1).

Proof. Let p̂, q̂ ∈ X̂ be the solution of system of variational inclusions involving
generalized Yosida and Cayley operators (3.1). Using (3.7) and (3.8), we have

q̂∗ = (1− αn)q̂
∗ + αnR

M
Ã,ρ

[
Ã(q̂∗) + Ã(q̂∗)

2
− ρY M

Ã,ρ
(p̂∗)

]
, (4.4)

p̂∗ = (1− βn)p̂
∗ + βnR

N
B̃,γ

[
B̃(p̂∗) + B̃(p̂∗)

2
− γCN

B̃,γ
(q̂∗)

]
, (4.5)

where αn, βn ∈ [0, 1], for all n ≥ 1. Using (3.12), (4.4) and (3.11) and Lipschitz
continuity of the generalized resolvent operator RM

Ã,ρ
, we evaluate

∥q̂n+1 − q̂∗∥ =
∥∥∥{(1− αn)q̂n + αnR

M
Ã,ρ

[
Ã(q̂n) + Ã(ŵn)

2
− ρY M

Ã,ρ
(ŵn)

]}

−

{
(1− αn)q̂

∗ + αnR
M
Ã,ρ

[
Ã(q̂∗) + Ã(q̂∗)

2
− ρY M

Ã,ρ
(p̂∗)

]}∥∥∥
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≤ (1− αn)∥q̂n − q̂∗∥+ αnθ
∥∥∥[ Ã(q̂n) + Ã(ŵn)

2
− ρY M

Ã,ρ
(ŵn)

]

−

[
Ã(q̂∗) + Ã(q̂∗)

2
− ρY M

Ã,ρ
(p̂∗)

]∥∥∥
≤ (1− αn)∥q̂n − q̂∗∥+ αnθ

2
∥Ã(q̂n)− Ã(q̂∗)∥

+
αnθ

2
∥Ã(ŵn)− Ã(q̂∗)∥+ αnθρ

∥∥∥Y M
Ã,ρ

(ŵn)− Y M
Ã,ρ

(p̂∗)
∥∥∥ . (4.6)

Using the Lipschitz continuity of the mapping Ã and generalized Yosdia approxi-
mation operator Y M

Ã,ρ
, from (4.6), we obtain

∥q̂n+1 − q̂∗∥ ≤ (1− αn)∥q̂n − q̂∗∥+ αnθ

2
λÃ∥q̂n − q̂∗∥

+
αnθ

2
λÃ∥ŵn − q̂∗∥+ αnθρλY ∥ŵn − p̂∗∥ . (4.7)

Applying (3.11), we can write

∥ŵn − q̂∗∥ = ∥q̂n + γ′
n(p̂n − p̂n−1)− q̂∗∥

≤ ∥q̂n − q̂∗∥+ γ′
n∥p̂n − p̂n−1∥, (4.8)

and
∥ŵn − p̂∗∥ ≤ ∥q̂n − p̂∗∥+ γ′

n∥p̂n − p̂n−1∥. (4.9)

Making use of (4.8) and (4.9), (4.7) becomes

∥q̂n+1 − q̂∗∥ ≤ (1− αn)∥q̂n − q̂∗∥+ αnθ

2
λÃ∥q̂n − q̂∗∥+ αnθ

2
λÃ

[
∥q̂n − q̂∗∥

+γ′
n∥p̂n − p̂n−1∥

]
+ αnθρλY

[
∥q̂n − p̂∗∥+ γ′

n∥p̂n − p̂n−1∥
]

≤
[
(1− αn) +

αnθ

2
λÃ +

αnθ

2
λÃ

]
∥q̂n − q̂∗∥

+
αnθ

2
λÃγ

′
n∥p̂n − p̂n−1∥+ αnθρλY ∥q̂n − p̂∗∥

+αnθρλY γ
′
n∥p̂n − p̂n−1∥

≤
[
(1− αn) + αnθ λÃ

]
∥q̂n − q̂∗∥

+
[(αnθ

2
λÃ + αnθρλY

)
γ′
n

]
∥p̂n − p̂n−1∥

+αnθρλY ∥q̂n − p̂∗∥. (4.10)

Using (3.14), (4.5) and using the Lipschitz continuity of generalized resolvent oper-
ator RM

B̃,γ
, we evaluate

∥p̂n+1 − p̂∗∥ =
∥∥∥{(1− βn)p̂n + βnR

N
B̃,γ

[
B̃(p̂n) + B̃(v̂n)

2
− γCN

B̃,γ
(v̂n)

]}

−

{
(1− βn)p̂

∗ + βnR
N
B̃,γ

[
B̃(p̂∗) + B̃(p̂∗)

2
− γCN

B̃,γ
(q̂∗)

]}∥∥∥
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≤ (1− βn)∥p̂n − p̂∗∥+ βnθ
′
∥∥∥[ B̃(p̂n) + B̃(v̂n)

2
− γCN

B̃,γ
(v̂n)

]

−

[
B̃(p̂∗) + B̃(p̂∗)

2
− γCN

B̃,γ
(q̂∗)

]∥∥∥
≤ (1− βn)∥p̂n − p̂∗∥+ βnθ

′

2
∥B̃(p̂n)− B̃(p̂∗)∥

+
βnθ

′

2
∥B̃(v̂n)− B̃(p̂∗)∥+ βnθ

′γ
∥∥∥CN

B̃,γ
(v̂n)− CN

B̃,γ
(q̂∗)

∥∥∥ .
(4.11)

Using the Lipschitz continuity of the mapping B̃ and generalized Cayley operator
CN

B̃,γ
, from (4.11), we obtain

∥p̂n+1 − p̂∗∥ ≤ (1− βn)∥p̂n − p̂∗∥+ βnθ
′

2
λB̃∥p̂n − p̂∗∥

+
βnθ

′

2
λB̃∥v̂n − p̂∗∥+ βnθ

′γλC ∥v̂n − q̂∗∥ . (4.12)

Applying (3.13), we can write

∥v̂n − p̂∗∥ = ∥p̂n + γ′′
n(q̂n − q̂n−1)− p̂∗∥

≤ ∥p̂n − p̂∗∥+ γ′′
n∥q̂n − q̂n−1∥, (4.13)

and
∥v̂n − q̂∗∥ ≤ ∥p̂n − q̂∗∥+ γ′′

n∥q̂n − q̂n−1∥. (4.14)

Making use of (4.13) and (4.14), (4.12) becomes

∥p̂n+1 − p̂∗∥ ≤ (1− βn)∥p̂n − p̂∗∥+ βnθ
′

2
λB̃∥p̂n − p̂∗∥+ βnθ

′

2
λB̃

[
∥p̂n − p̂∗∥

+γ′′
n∥q̂n − q̂n−1∥

]
+ βnθ

′γλC

[
∥p̂n − q̂∗∥+ γ′′

n∥q̂n − q̂n−1∥
]

≤
[
(1− βn) + βnθ

′λB̃

]
∥p̂n − p̂∗∥

+
[(βnθ

′

2
λB̃ + βnθ

′γλC

)
γ′′
n

]
∥q̂n − q̂n−1∥

+βnθ
′γλC∥p̂n − q̂∗∥. (4.15)

Adding (4.10) and (4.15), we obtain

∥q̂n+1 − q̂∗∥+ ∥p̂n+1 − p̂∗∥ ≤
[
(1− αn) + αnθ λB̃

]
∥q̂n − q̂∗∥

+
[(αnθ

2
λB̃ + αnθρλY

)
γ′
n

]
∥p̂n − p̂n−1∥

+αnθρλY ∥q̂n − p̂∗∥

+
[
(1− βn) + βnθ

′λB

]
∥p̂n − p̂∗∥

+
[(βnθ

′

2
λB̃ + βnθ

′γλC

)
γ′′
n

]
∥q̂n − q̂n−1∥
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+βnθ
′γλC∥p̂n − q̂∗∥

=
[
(1− αn(1− θλB̃)

]
∥q̂n − q̂∗∥

+
[
(1− βn(1− θ′λB̃)

]
∥p̂n − p̂∗∥

+ξ(θ1)γ
′
n∥p̂n − p̂n−1∥+ ξ(θ2)γ

′′
n∥q̂n − q̂n−1∥

+αnθρλY ∥q̂n − p̂∗∥+ βnθ
′γλC∥p̂n − q̂∗∥

= ξ(θ̂)[∥q̂n − q̂∗∥+ ∥p̂n − p̂∗∥]
+ξ(θ1)γ

′
n∥p̂n − p̂n−1∥+ ξ(θ2)γ

′′
n∥q̂n − q̂n−1∥

+αnθρλY ∥q̂n − p̂∗∥+ βnθ
′γλC∥p̂n − q̂∗∥,

(4.16)

where

ξ(θ̂) = map{[1− αn(1− θλÃ)], [1− βn(1− θ′λB̃)]},

ξ(θ1) =
αnθ

2
λÃ + αnθρλY , ξ(θ2) =

βnθ

2
λB̃ + βnθ

′γλC .

By condition (4.1),

1− θλÃ < 1, 1− θ′λB̃ < 1,

∞∑
n=1

αn = ∞ and

∞∑
n=1

βn = ∞.

By condition (4.2),

∞∑
n=1

γ′
n

[
ξ(θ1)∥p̂n − p̂n−1∥

]
< ∞

∞∑
n=1

γ′′
n

[
ξ(θ2)∥q̂n − q̂n−1∥

]
< ∞

 .

Also, applying condition (4.3), we have

lim sup[αnθρλY ] ≤ 0, lim sup[βnθ
′γλC ] ≤ 0.

Applying Lemma 2.1, we conclude that p̂n → p̂ and q̂n → q̂, as n → ∞. This
completes the proof.

The following numerical example is constructed showing that all the conditions
of Theorem 4.1 are satisfied. We also establish the convergence graph and compu-
tational table for illustration.

Example 4.1. Let X̂ = R with usual inner product and norm. Let Ã, B̃ : X̂ → X̂
be the mappings such that Ã(p̂) = ( 3p̂2 ) and B̃(p̂) = ( 7p̂6 ) and the multi-valued

mappings M,N : X̂ → CB(X̂ ) defined by M(p̂) = { 2p̂
5 } and N (p̂) = { 3p̂

7 }.

(i) Ã is λÃ-Lipschitz and r1-strongly accretive

∥Ã(p̂)− Ã(q̂)∥ = ∥3p̂
2

− 3q̂

2
∥ =

3

2
∥p̂− q̂∥ ≤ 2∥p̂− q̂∥,
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that is, Ã is λÃ = 2-Lipschitz continuous.

Ã is r1-strongly accretive.

⟨Ã(p̂)− Ã(q̂), p̂− q̂⟩ = ⟨3p̂
2

− 3q̂

2
, p̂− q̂⟩ = 3

2
∥p̂− q̂∥2 ≥ 2

3
∥p̂− q̂∥2,

that is, Ã is r1 = 2
3 strongly accretive.

(ii) Similarly, one can prove that B̃ is λB̃ = 8
6 -Lipschitz continuous and r2 = 3

4 -
strongly accretive.

(iii) For ρ = γ = 1, it is easy to show that M is Ã-accretive mapping and N is

B̃-accretive mapping.

(iv) For ρ = γ = 1, we calculate

RM
Ã,ρ

(p̂) = [Ã+ ρM]−1(p̂) =

(
10p

19

)
,

RN
B̃,γ

(p̂) = [B̃ + γN ]−1(p̂) =

(
42p̂

67

)
.

The Lipschitz continuity of RM
Ã,ρ

and RN
B̃,γ

is calculated below:

∥RM
Ã,ρ

(p̂)−RM
Ã,ρ

(q̂)∥ = ∥10p̂
19

− 10q̂

19
∥ ≤ 3

2
∥p̂− q̂∥.

Similarly,

∥RN
B̃,γ

(p̂)−RN
B̃,γ

(q̂)∥ = ∥42p̂
67

− 42q̂

67
∥ ≤ 4

3
∥p̂− q̂∥,

that is, RM
Ã,ρ

is 1
(2/3) -Lipschitz continuous and RN

B̃,γ
is 1

(3/4) -Lipschitz contin-
uous.

(v) The generalized Yosida approximation operator and generalized Cayley oper-
ator are calculated as:

Y M
Ã,ρ

(p̂) =
1

ρ

[
Ã −RM

Ã,ρ

]
(p̂) =

(
37p̂

38

)
,

CN
B̃,γ

(p̂) =
[
2RN

B̃,γ
− B̃

]
(p̂) =

(
35p̂

402

)
.

Also, ∥Y M
Ã,ρ

(p̂)− Y M
Ã,ρ

(q̂)∥ =

∥∥∥∥37p̂38 − 37q̂

38

∥∥∥∥
≤ 75

76
∥p̂− q̂∥,

that is, Y M
Ã,ρ

is λY = 75
76 -Lipschitz continuous. And

∥CN
B̃,γ

(p̂)− CN
B̃,γ

(q̂)∥ =

∥∥∥∥35p̂402
− 35q̂

402

∥∥∥∥ ≤ 13

134
∥p̂− q̂∥,

that is, CN
B̃,γ

is λC = 13
134 -Lipschitz continuous.
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(vi) For αn = 1 − 1
n , βn = 1 − 1

n+2 , we compute the sequence p̂n and q̂n by the
Iterative scheme 3.1, in the following way:

q̂n+1 =

(
1

n

)
q̂n +

10

19

(
n− 1

n

)(
3q̂n
2

− 37p̂n
38

)
,

p̂n+1 =

(
1

n+ 2

)
p̂n +

42(n+ 1)

67(n+ 2)

(
7p̂n
6

− 35q̂n
402

)
.

(vii) It is easy to check that condition (4.1), (4.2) and (4.3) of Theorem 4.1 are
satisfied. Thus, system (3.1) admits a solution.

Figure 1. Convergence Graph for different initial values of p̂ and q̂.

5. Conclusions

Due to applications of Yosida approximation operator and Cayley operator in con-
temporary science, this paper is centered on solving a system of variational in-
clusions involving the generalized Yosida and the Cayley operators in real Banach
space. The solution to our problem has been achieved by developing an inertial
extrapolation scheme, although several other schemes have also been developed.
It is well-known that the inertial extrapolation scheme provides a faster rate of
convergence.

We remark that scientists of other discipline may use our results for practical
and applications purposes.
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Table 1. Computational Table showing the output for different initial values of p̂ and q̂.

No. of For p̂0 = 1 For q̂0 = −1. For p̂0 = −2 For q̂0 = 2

Iteration p̂n q̂n p̂n q̂n

n=1 1 -1 -2 2

n=2 0.56867229 -2.3285738 -1.1438657 4.6506265

n=3 0.25954374 -2.2475433 -0.5439893 4.4687547

n=4 0.10520368 -1.39417701 -0.229106768 2.7665369

n=5 0.03907625 -0.64115197 -0.085211068 1.2730781

n=10 6.3088058e-05 -0.0008671193 -0.0001278830 0.0085015

n=15 7.8936310e-09 -7.57314208e-08 -1.58118674e-08 1.5119973e-07

n=20 1.5590855e-13 -1.1832846e-12 -3.116451e-13 2.363213e-12

n=25 8.029934e-19 -5.2264155e-18 -1.60430115e-18 1.0439134e-17

n=30 1.447128e-24 -8.479071e-24 -2.8908184e-24 1.693656e-23

n=35 1.1019388e-30 -5.990450e-30 -2.2011664e-30 1.1965819e-29

n=40 4.0400406e-37 -2.07791406e-36 -8.07003053e-37 4.1506175e-36

n=45 7.848087e-44 -3.8693066e-43 -1.567657e-43 7.7289247e-43

n=50 8.6912112e-51 -4.1449943e-50 -1.736069e-50 8.27961e-50
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