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Abstract In this paper, we study the dissipative property of the first order
3×3 hyperbolic system with constant coefficients. For the corresponding n×n
system, when the coefficients matrices are symmetric, it has been studied
in [16] and the well-know Kawashima-Shizuta condition is obtained. When
n = 3 and for asymmetric system, we give a sufficient condition for the system
to be strictly dissipative.
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1. Introduction

In this paper, we study the dissipative property of the following first order 3 × 3
strictly hyperbolic system with constant coefficients

∂U

∂t
+A

∂U

∂x
+ FU = 0, (1.1)

where x ∈ R, U(x, t) = (u1, u2, u3)
⊤, A = (aij)3×3 and F = (fij)3×3 are two

constant matrices. Since (1.1) is strictly hyperbolic, A has three distinct real eigen-
values: µ1 < µ2 < µ3.

Consider the Cauchy problem of system (1.1) with the initial data

U0(x) = (u1(x, 0), u2(x, 0), u3(x, 0))
⊤ ∈ L1(R) ∩ Cα(R) (1.2)

for some α ∈ R+.
For n ∈ R+, U(x, t) = (u1, · · · , un)

⊤ ∈ Rn, A = (aij)n×n and F = (fij)n×n,
(1.1) represents an n × n hyperbolic system. A more general case is the following
quasilinear hyperbolic system

∂U

∂t
+A(U)

∂U

∂x
+ F (U) = 0, (1.3)
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where x ∈ R, U ∈ Rn, A(U) and F (U) are two smooth function matrices vanishing
at the origin. Generally speaking, for n dimension(n-d), the dissipative condi-
tions of (1.1) can be directly generalized to system (1.3) when the initial data are
small. An important dissipative condition of (1.1) is the strongly dissipative condi-
tion, namely, the matrix P−1∇FP is strictly row or column-diagonally dominant,
where P = (R1, · · · , Rn) is the n × n matrix composed of the right eigenvectors
Ri (i = 1, · · · , n) of matrix A, and P−1 is the inverse matrix of P . Similarly, if the
matrix P−1(0)∇F (0)P (0) is strictly row or column-diagonally dominant, then (1.3)
is strongly dissipative, where P (U) = (R1(U), · · · , Rn(U)) is the n×n matrix com-
posed of the right eigenvectors Ri(U) (i = 1, · · · , n) of matrix A(U), and P−1(U)
is the inverse matrix of P (U). Strongly dissipative condition can be further gen-
eralized to matrices positively diagonally similar to a strictly diagonally dominant
matrix, see Section 2 below or [9,14] for more details. In [2–4], strongly dissipative
condition was used to study the global existence of weak solutions to systems of
conservation laws.

Another important dissipative condition is the well-known Kawashima-Shizuta
algebraic condition (see [11]), which can be used to study the decay properties of
solutions to hyperbolic-parabolic coupled systems. Kawashima-Shizuta condition
has several equivalent formulations (see [17]). For some applications of Kawashima-
Shizuta condition, see [3, 6, 8, 10, 12, 13, 19]. Recently, systems with much weaker
dissipations which violate Kawashima-Shizuta condition have attracted a lot of
attentions, see [5, 7, 19,22,24].

In [23], for (1.1) in 2-d, we proposed a dissipative condition which can be re-
garded as a generalization of Kawashima-Shizuta condition to asymmetric system.

In [18], the authors obtained the pointwise estimates of the one-dimensional
thermoelastic system with second sound, which is hyperbolic with a damping term.
The higher dimensional systems were also studied by many authors (see [15,19–21]).

However, strongly dissipative condition is somehow too strong as a dissipative
condition (see [9]). Kawashima-Shizuta condition is weaker, but it is applicable only
for system which is symmetric or symmetrizable. The main purpose of the present
paper is to find sufficient conditions for system (1.1) to be strictly dissipative. In
fact, for system (1.1), we will propose a new dissipative condition (see (2.9), (2.10))
which can be used for asymmetric system.

The rest of the paper is organized as follows. In Section 2, we review the concepts
of strongly dissipative condition and Kawashima-Shizuta condition and give a new
dissipative condition for the first order 3×3 hyperbolic system. We also explain the
relations among these conditions. In Section 3, we verify that the new dissipative
condition implies the strictly dissipative property of (1.1), even if it is not symmetric
or symmetrizable. In Section 4, we give the pointwise estimates to the solution of
Cauchy problem (1.1), (1.2). Finally, in Section 5, we discuss some critical cases.

2. Dissipative conditions

We first review the concept of strictly diagonally dominant of a matrix. A matrix
B = (bij)n×n is called strictly row-diagonally dominant if

bii >
∑
j ̸=i

|bij |, i = 1, · · · , n (2.1)



Dissipative property of hyperbolic system 1485

or strictly column-diagonally dominant if

bii >
∑
j ̸=i

|bji|, i = 1, · · · , n. (2.2)

Denote µi (i = 1, · · · , n) as the n distinct eigenvalues of A, and Ri (i = 1, · · · , n)
are the corresponding eigenvectors, P = (R1, · · · , Rn), and P−1 is the inverse matrix
of P . For (1.1) in n-d, let Ri = (Ri1, · · · , Rin)

⊤ (i = 1, · · · , n) be right eigenvectors
corresponding to the eigenvalues µi (i = 1, · · · , n) of matrix A respectively. Denote

P = (R1, · · · , Rn), Λ = P−1AP = diag{µ1, · · · , µn}, B = P−1FP ≜ (bij)n×n.
(2.3)

Definition 2.1. The n× n hyperbolic system (1.1) is called strongly dissipative if
B = P−1FP is strictly diagonally dominant.

If (1.1) is strongly dissipative, then (1.1) with initial data U(x, 0) = φ(x) admits
a unique global C1 solution U = U(x, t) for t ≥ 0, which decays exponentially in
time, provided that the C1 norm of φ(x) is suitably small (see [14]).

Definition 2.2. Two matrices B and B̃ are called to be positively diagonally sim-
ilar if there exists a diagonal matrix γ > 0 such that B = γB̃γ−1.

Denote

˜̃B = (
˜̃
bij)n×n,

˜̃
bij =

 bii for i = j;

−|bij | for i ̸= j.

As stated in Theorem 2.1 of Chapter 4.2 in [14], B = (bij)n×n is positively diagonally
similar to a strictly row (or column)-diagonally dominant matrix if and only if the

real parts of all the eigenvalues of ˜̃B are positive. Thus strongly dissipative condition
(in Definition 2.1) can be generalized to the matrices which are positively diagonally
similar to a strictly diagonally dominant matrix.

Using the same notation in (2.3) for n = 3, by using of the transformation
U = PV , V = (v1, v2, v3)

⊤, (1.1) can be rewritten as

∂V

∂t
+ Λ

∂V

∂x
+BV = 0. (2.4)

Meanwhile, the initial data (1.2) are transformed into

V (x, 0) = P−1U0(x) ≜ V0(x). (2.5)

Definition 2.3. ( [16]). System (1.1) is called strictly dissipative if the real parts
of all eigenvalues of matrix F +iξA (or equivalently B+iξΛ, see Remark 2.1 below)
are positive for any ξ ∈ R \ {0}.

In [16], the authors proved that, when A and F are both real symmetric matrices
and F is nonnegative definite, system (1.1) is strictly dissipative if and only if

FRi ̸= 0, i = 1, 2, 3. (2.6)

In fact, (2.6) is an equivalent form of Kawashima-Shizuta condition. The cor-
responding right eigenvectors to the eigenvalues µ1, µ2 and µ3 of matrix Λ are
obviously R̃1 = (0, 0, 1)⊤, R̃2 = (0, 1, 0)⊤ and R̃3 = (1, 0, 0)⊤ respectively.
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Remark 2.1. System (1.1) is strictly dissipative if and only if system (2.4) is
strictly dissipative. In fact, with the transformation U = PV , we have ΛR̃i =
P−1APR̃i = µiR̃i (i = 1, 2, 3), then APR̃i = µiPR̃i, i.e., PR̃i = Ri. We also
obtain BR̃i = P−1FPR̃i = P−1FRi. Hence FRi ̸= 0 (i = 1, 2, 3) if and only if
BR̃i ̸= 0 (i = 1, 2, 3).

For system (2.4), condition (2.6) shows when B is real symmetric and nonneg-
ative definite, (2.4) is strictly dissipative if and only if all the right eigenvectors
R̃i (i = 1, 2, 3) of Λ are not in the kernel of B, namely,

BR̃4−i = (b1i, b2i, b3i)
⊤ ̸= 0, i = 1, 2, 3.

Hence for system (2.4), Kawashima-Shizuta condition takes the form

b21i + b22i + b23i ̸= 0, i = 1, 2, 3. (2.7)

Recall the strictly dissipative condition of (1.1) for n = 2. Denote B = P−1FP .
In [23], we have shown that the strictly hyperbolic system (1.1) for n = 2 is strictly
dissipative if and only if B satisfies

a > 0, d > 0; ad ≥ bc. (2.8)

According to (2.8), a quite natural dissipative condition for system (2.4) can be
given as follows.

Condition 1.
bii > 0, i = 1, 2, 3,

Bii ≜ bjjbkk − bjkbkj > 0, i, j, k = 1, 2, 3 and i ̸= j ̸= k ̸= i,

|B| > 0.

(2.9)

Formally, (2.9) is stronger than (2.8) since there is no equality included in (2.9).
The characteristic polynomial of B can be written as

λ̂3 − (b11 + b22 + b33)λ̂
2 + (B11 +B22 +B33)λ̂− |B| = 0.

Under condition (2.9), it can be easily verify if the eigenvalues of B are all real, then
they must be nonnegative. Even so, however, (2.9) is far from sufficient to assure
that the real parts of all the eigenvalues of B+ iξΛ are positive for any ξ ∈ R \ {0}.

Example 2.1. ( [23]) For system (2.4) with

Λ =


1 0 0

0 2 0

0 0 3

 , B =


1 50 0

0 2 1

1 0 3

 ,

it can be easily verified that B satisfies (2.9). In [23], we have showed that there
exists some ξ0 ∈ R \ {0} such that B + iξ0Λ has a pure imaginary root λ(ξ0) =
9ξ30−34ξ0
5(ξ20+3)

i.



Dissipative property of hyperbolic system 1487

In this paper, besides condition (2.9), we propose the following additional con-
dition.

Condition 2. √
|B| <

√
b11B11 +

√
b22B22 +

√
b33B33. (2.10)

In Section 3, we will prove that (2.9) and (2.10) are sufficient to assure that
(1.1) is strictly dissipative.

The following lemma shows that conditions (2.9) and (2.10) are weaker than the
strongly dissipation condition.

Lemma 2.1. If (1.1) is strongly dissipative, then (2.9) and (2.10) hold true.

Proof. Since (1.1) is strongly dissipative, assume that B is strictly row-diagonally
dominant, there hold

b11 > |b12|+ |b13|, b22 > |b21|+ |b23|, b33 > |b31|+ |b32|, (2.11)

which imply that bii > 0 (i = 1, 2, 3) and

b11b22 > (|b12|+ |b13|)(|b21|+ |b23|) ≥ |b12||b21| ≥ b12b21.

Similarly, we have b22b33 > b23b32 and b11b33 > b13b31, thus both (2.9)1 and (2.9)2
hold. By Gerschgorin’s disk theorem, the three eigenvalues of B lie in the union of
the disks

|z − bii| ≤
∑
j ̸=i

|bij |, i = 1, 2, 3.

Combining with (2.1), we obtain that the real parts of three eigenvalues λ̂i (i =

1, 2, 3) of B are all positive. Thus if λ̂1, λ̂2 and λ̂3 are all real numbers, then we

have |B| = λ̂1λ̂2λ̂3 > 0. If λ̂1 > 0 and λ̂2 = a + bi, λ̂3 = a − bi, for some a > 0,

b ∈ R, we have |B| = λ̂1(a
2 + b2) > 0. Thus (2.9) holds true.

By using of (2.11), we have

b11b22b33 > (|b12|+ |b13|)(|b21|+ |b23|)(|b31|+ |b32|) ≥ b12b23b31,

b11b22b33 > (|b12|+ |b13|)(|b21|+ |b23|)(|b31|+ |b32|) ≥ b21b13b32.

Thus we obtain

|B| = b11(b22b33 − b23b32) + b12b23b31 − b12b21b33 + b21b13b32 − b31b13b22

< b11B11 + b11b22b33 − b12b21b33 + b11b22b33 − b31b13b22

= b11B11 + b22B22 + b33B33, (2.12)

i.e.,
√
|B| <

√
b11B11 + b22B22 + b33B33. By using of inequality

√
a+ b+ c ≤√

a+
√
b+

√
c for a, b, c ≥ 0, we have√

|B| <
√
b11B11 +

√
b22B22 +

√
b33B33.

Thus (2.10) holds true. The case of strictly column-diagonally dominant can be
similarly discussed. This completes the proof of Lemma 2.1.

Remark 2.2. (2.9) and (2.10) do not indicate strongly dissipative condition.
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For example, for system (2.4) with B =


1 1 1

ε 2 1

1 1 3

, we have bii > 0 (i = 1, 2, 3),

B11 = 5, B22 = 2, B33 = 2− ε, and |B| = 4− 2ε. It is easy to verify that both (2.9)
and (2.10) hold when ε ∈ (−∞, 2). However, when ε ∈ (−∞, 0) ∪ (0, 2), we have
b11 = 1 < |b21|+ |b31| = 1 + |ε|, and (2.1) does not hold.

Lemma 2.2. If B is nonnegative definite and symmetric, then there holds√
|B| ≤

√
b11B11 +

√
b22B22 +

√
b33B33. (2.13)

Proof. Since B is nonpositive definite and symmetric, there hold bii ≥ 0, Bii ≥ 0,
bij = bji (i, j = 1, 2, 3) and |B| ≥ 0. Then we have b211b

2
22b

2
33 ≥ b212b

2
23b

2
31 = b221b

2
13b

2
32

and

b11b22b33 ≥ b12b23b31 = b21b32b13. (2.14)

Direct calculation gives(
3∑

i=1

√
biiBii

)2

=

3∑
i=1

biiBii + 2

3∑
j,k=1

j ̸=k

√
bjjBjjbkkBkk

= 2b11b22b33 − 2b12b23b31 + |B|+ 2

3∑
j,k=1

j ̸=k

√
bjjBjjbkkBkk

≥ |B|+ 2

3∑
j,k=1

j ̸=k

√
bjjBjjbkkBkk

≥ |B|, (2.15)

where in the second-to-last inequality, we have used the inequality (2.14). Thus
(2.13) holds.

To analyze the relation between conditions (2.9), (2.10) with Kawashima-Shizuta
condition; We take some critical cases into account.

Lemma 2.3. Suppose that B is nonnegative definite and symmetric, if (2.4) is
strictly dissipative, then either

bii > 0, Bii = 0, i = 1, 2, 3, |B| = 0 (2.16)

or 
bii > 0, i = 1, 2, 3,

for some fixed i, Bii ≥ 0 and Bjj > 0 for j ̸= i,

|B| ≥ 0

(2.17)

holds.
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Proof. Since B is nonpositive definite and symmetric, there hold bii ≥ 0, Bii ≥ 0,
bij = bji (i, j = 1, 2, 3) and |B| ≥ 0. If (2.4) is strictly dissipative, to prove (2.16)
or (2.17), we need to show that bii ̸= 0 (i = 1, 2, 3) and it is not true that B11 =
B22 = 0, B33 > 0. Similarly, B11 > 0, B22 = B33 = 0 and B22 > 0, B11 = B33 = 0
are also impossible. In fact, if B11 = B22 = 0, B33 > 0, and B is symmetric, we
get b22b33 = b223, b11b33 = b213 and b11b22 > b212, thus we have

0 ≤ |B|
= b11b22b33 + 2b12b13b23 − b11b

2
23 − b22b

2
13 − b33b

2
12

= 2b12b13b23 − b11b22b33 − b33b
2
12

= ±2b12b33
√
b11b22 − b11b22b33 − b33b

2
12

= −b33(b12 ±
√
b11b22)

2

< 0,

which is obviously a contradiction.
If b11 = 0, we obtain B22 = b11b33 − b231 ≥ 0, B33 = b11b22 − b221 ≥ 0, then

b21 = b31 = 0, which contradicts with (2.7) for i = 1. If the case of b22 = 0 or
b33 = 0 can be similarly discussed.

When bii > 0, Bii = 0, i = 1, 2, 3, we have b11b22 = b212, b22b33 = b223 and
b11b33 = b213. By direct calculation, we get

0 ≤ |B| = 2b12b13b23 − 2b11b22b33 = 2(±b11b22b33 − b11b22b33) ≤ 0.

Obviously, |B| = 0.
Thus if (2.4) is strictly dissipative, either (2.16) or (2.17) holds.

Remark 2.3. By multiplying both sides of (2.4) from the left by diag{m,n, p} (m,
n, p ∈ R \ {0}), when bijbji > 0 (i, j = 1, 2, 3, i ̸= j), it is easy to verify that
(2.4) is symmetrizable. Thus Kawashima-Shizuta condition is still applicable in
this case. However, if one inequality of bijbji < 0 (i, j = 1, 2, 3, i ̸= j) holds, (2.4)
is nonsymmetrizable and Kawashima-Shizuta condition fails. In this paper, we will
show that (2.9) and (2.10) can still assure the dissipative property of (2.4) (or (1.1))
even if it is not symmetrizable.

3. Main result

Denote λ1(ξ), λ2(ξ) and λ3(ξ) as the three eigenvalues of matrix B + iξΛ, where B
and Λ are given in (2.4). The following theorem shows that conditions (2.9) and
(2.10) are sufficient to assure the dissipative property of system (1.1). Here we need
not require that B is symmetric or symmetrizable.

Theorem 3.1. If B = P−1FP satisfies (2.9) and (2.10), then system (1.1) is
strictly dissipative in the sense of Definition 2.3.

Simple calculation shows that λ1(ξ), λ2(ξ) and λ3(ξ) satisfy

λ3 −
3∑

i=1

(bii + µiξi)λ
2 +

3∑
i,j,k=1

i ̸=j ̸=k ̸=i

(Bii + bii(µj + µk)ξi− µjµkξ
2)λ
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−
3∑

i,j,k=1

i ̸=j ̸=k ̸=i

(Biiµiξi− biiµjµkξ
2)− |B|+ µ1µ2µ3ξ

3i = 0. (3.1)

We divide the proof of Theorem 3.1 into several lemmas.
First we review Argument principle and a generalization of Argument principle

in the complex analysis.

Theorem 3.2. (Argument Principle, [1]) If f(z) is a meromorphic in Ω with the
zeros aj and the poles bk, then

1

2πi

∫
γ

f ′(z)

f(z)
d =

∑
j

n(γ, aj)−
∑
k

n(γ, bk)z

=
△γargf(z)

2π

for every cycle γ which is homologous to zeros in Ω and does not pass through
any of the zeros or poles, where n(γ, aj) =

1
2πi

∫
γ

dz
z−aj

and n(γ, bk) =
1

2πi

∫
γ

dz
z−bk

.

△γargf(z) represents the change of argf(z) after z travels around the positive di-
rection of γ, which must be an integral multiple of 2π.

As a corollary of Theorem 3.2, we have

Lemma 3.1. Assume that

P (z) = a0z
n + a1z

n−1 + · · ·+ an

is an n−th order polynomial, and P (z) has no zero on the imaginary axis, then its
zeros are all in the right half plane Rez > 0 if and only if

∆arg
y(−∞↗+∞)

P (iy) = −nπ.

Namely, as the point z goes from −∞ to ∞ along the imaginary axis from top to
bottom, P (z) goes around the origin n

2 times.

Lemma 3.2. If both (2.9) and (2.10) hold, then the real parts of three eigenvalues

λ̂i (i = 1, 2, 3) of B are all positive.

Proof. Simple calculation shows that λ̂1, λ̂2 and λ̂3 satisfy

λ̂3 − (λ̂1 + λ̂2 + λ̂3)λ̂
2 + (λ̂1λ̂2 + λ̂2λ̂3 + λ̂1λ̂3)λ̂− λ̂1λ̂2λ̂3 = 0. (3.2)

Since both (2.9) and (2.10) hold, we have

a ≜ λ̂1 + λ̂2 + λ̂3 =

3∑
i=1

bii > 0,

b ≜ λ̂1λ̂2 + λ̂2λ̂3 + λ̂1λ̂3 =

3∑
i=1

Bii > 0,

c ≜ λ̂1λ̂2λ̂3 = |B| > 0

(3.3)

and

c = |B|
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< (
√
b11B11 +

√
b22B22 +

√
b33B33)

2

≤ (b11 + b22 + b33)(B11 +B22 +B33)

= ab. (3.4)

The second inequality in (3.4) is due to Cauchy’s inequality.

If matrix B has a pure imaginary eigenvalue λ̂ = mi (m ̸= 0), plug it into (3.2),
then we have

m(m2 − b) = 0, am2 = c, (3.5)

which implies c = ab since m ̸= 0 and this contradicts with (3.4). Hence B has no
pure imaginary root. Define

f(λ̂) = λ̂3 − aλ̂2 + bλ̂− c.

By Argument Principle, we have Reλ̂i > 0 (i = 1, 2, 3). In fact, we obtain that the

slope tanθ = −(y3−by)
ay2−c of f(iy) = −(y3 − by)i + ay2 − c has two asymptotes and

three zeros. Then if λ̂ goes from −∞ to ∞ along the imaginary axis, f(λ̂) goes
around the origin 3

2 times. Hence ∆arg
y(−∞↗+∞)

f(iy) = −3π. By Lemma 3.1, we have

Reλ̂i > 0 (i = 1, 2, 3). The proof of Lemma 3.2 is complete.

The following property is a corollary of Lemma 3.2:

Lemma 3.3. If (2.9) holds, then the real parts of λ1(ξ), λ2(ξ) and λ3(ξ) are all
positive near ξ = 0.

Proof. Set λ = a0 + a1ξ + a2ξ
2 + O(ξ3) near ξ = 0 and substitute it into (3.1),

then we can get

a30 −
3∑

i=1

biia
2
0 +

3∑
i=1

Biia0 − |B| = 0. (3.6)

Since (2.9) holds, we have a0 ̸= 0. Obviously, (3.6) has the same form as the
characteristic polynomial of B in (3.2). Hence, by Lemma 3.2, we obtain Rea0 > 0,
then Reλi(ξ) > 0 (i = 1, 2, 3) near ξ = 0.

Lemma 3.4. The real parts of λ1(ξ), λ2(ξ) and λ3(ξ) are all positive near ξ = ∞
if and only if bii > 0, i = 1, 2, 3.

Proof. Let us first consider the approximate expressions of λi(ξ) (i = 1, 2, 3) near
ξ = ∞. Set ξ = 1

η , then (3.1) becomes

η3λ3 −
3∑

i=1

(biiη
3 + µiη

2i)λ2 +

3∑
i,j,k=1

i ̸=j ̸=k ̸=i

(Biiη
3 + bii(µj + µk)η

2i− µjµkη)λ

−
3∑

i,j,k=1

i ̸=j ̸=k ̸=i

(Biiµiη
2i− biiµjµkη)− |B|η3 + µ1µ2µ3i = 0. (3.7)
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Set λ = a0
i
η + a1 + a2ηi +O(η2) and substitute it into (3.7), then one obtains

3a0a
2
1 − 3a20a2 −

3∑
i=1

(2a0a1bii + a21µi − 2a0a2µi +Bii(µi − a0))

+

3∑
i,j,k=1

i ̸=j ̸=k ̸=i

(a1bii(µj + µk)− a2µjµk) = 0,

3a20a1 −
3∑

i=1

(a20bii + 2a0a1µi) +

3∑
i,j,k=1

i ̸=j ̸=k ̸=i

(a0bii(µj + µk) + a1µjµk − biiµjµk) = 0,

(a0 − µ1)(a0 − µ2)(a0 − µ3) = 0.

(3.8)

Choose λ = λi(ξ) (i = 1, 2, 3) in turn, we get a0 = µi and a1 = bii, i = 1, 2, 3,
respectively. Thus we conclude that Reλi(ξ) = bii +O(ξ−1) > 0 near ξ = ∞ if and
only if bii > 0, i = 1, 2, 3.

Lemma 3.5. Under conditions (2.9) and (2.10), one of the following three inequal-
ities must hold: √

b11B11 +
√
b22B22 > |

√
b33B33 −

√
|B||; (3.9)√

b22B22 +
√
b33B33 > |

√
b11B11 −

√
|B||; (3.10)√

b11B11 +
√
b33B33 > |

√
b22B22 −

√
|B||. (3.11)

Proof. The inequalities (3.9)-(3.11) are equivalent to√
b33B33 −

√
b11B11 −

√
b22B22 <

√
|B| <

√
b11B11 +

√
b22B22 +

√
b33B33;√

b11B11 −
√
b22B22 −

√
b33B33 <

√
|B| <

√
b11B11 +

√
b22B22 +

√
b33B33;√

b22B22 −
√
b11B11 −

√
b33B33 <

√
|B| <

√
b11B11 +

√
b22B22 +

√
b33B33.

Due to (2.10), the right haves of the three inequalities obviously hold. Thus if
neither of the inequalities (3.9)-(3.11) holds, we have√

b33B33 ≥
√
b11B11 +

√
b22B22 +

√
|B|,√

b11B11 ≥
√
b22B22 +

√
b33B33 +

√
|B|,√

b22B22 ≥
√
b11B11 +

√
b33B33 +

√
|B|.

By summing up the three inequalities, we have 0 < 3
√
|B|+

√
b11B11 +

√
b22B22 +√

b33B33 ≤ 0, which is clearly a contradiction.

Lemma 3.6. Under conditions (2.9) and (2.10), one of the following three inequal-
ities must hold: √

b33B33 +
√
|B| > |

√
b11B11 −

√
b22B22|; (3.12)√

b22B22 +
√
|B| > |

√
b33B33 −

√
b11B11|; (3.13)√

b11B11 +
√
|B| > |

√
b22B22 −

√
b33B33|. (3.14)
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Proof. The inequalities (3.12)-(3.14) are equivalent to√
b22B22 −

√
b33B33 −

√
|B| <

√
b11B11 <

√
b22B22 +

√
b33B33 +

√
|B|;√

b11B11 −
√
b22B22 −

√
|B| <

√
b33B33 <

√
b11B11 +

√
b22B22 +

√
|B|;√

b33B33 −
√
b11B11 −

√
|B| <

√
b22B22 <

√
b11B11 +

√
b33B33 +

√
|B|.

Obviously the right haves of the three inequalities are equivalent to the left haves
in the three inequalities. Thus if neither of the inequalities (3.12)-(3.14) holds, we
get the conclusion as in the proof of Lemma 3.5.

Lemma 3.7. If B = P−1FP satisfies (2.9) and (2.10) for ξ ∈ R\{0}, then B+iξΛ
has no pure imaginary eigenvalue.

It suffices to prove that (3.1) has no pure imaginary solution. In fact, if there
exists some fixed ξ such that λ(ξ) = a(ξ)i and a(ξ) is a real number, by substituting
it to (3.1), we obtain

3∑
i=1

(a(ξ)− µiξ)Bii =

3∏
i=1

(a(ξ)− µiξ), (3.15)

3∑
i,j,k=1

i ̸=j ̸=k ̸=i

bii(a(ξ)− µjξ)(a(ξ)− µkξ) = |B|. (3.16)

Denote bi = a(ξ)− µiξ, i = 1, 2, 3. (3.15) and (3.16) can be respectively written as

b1B11 + b2B22 + b3B33 = b1b2b3, (3.17)

b2b3b11 + b1b3b22 + b1b2b33 = |B|. (3.18)

We assume that (3.9) and (3.12) in Lemmas 3.5 and 3.6 hold. Taking (3.17) ×
(b1b22 + b2b11) + (3.18)× (b1b2 −B33) to eliminate b3, we get

b33b
2
1b

2
2 + b22B11b

2
1 + b11B22b

2
2

+(b11B11 + b22B22 − b33B33 − |B|)b1b2 + |B|B33 = 0. (3.19)

Define

F (x, y) = b33x
2y2 + b22B11x

2 + b11B22y
2

+(b11B11 + b22B22 − b33B33 − |B|)xy + |B|B33. (3.20)

We will verify that F (x, y) > 0 for any x, y ∈ R, which implies that (3.19) does not
hold.

By direct calculation, we have

Fxx(x, y) = 2(b22B11 + b33y
2) > 0,

Fyy(x, y) = 2(b11B22 + b33x
2) > 0,

Fxy(x, y) = Fyx(x, y) = b11B11 + b22B22 − b33B33 − |B|+ 4b33xy.

We can verify that the sign of determinant of the Hessian HF ≜

Fxx Fxy

Fyx Fyy

 is

undetermined, so we are not able to determine its extreme values directly. Thus we
take a different approach to study the minimum value of F (x, y).
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Obviously, F (0, y) = b11B22y
2 + |B|B33 = |B|B33 > 0. Set y = kx and denote

t = x2, then (3.20) becomes

fk(t) ≜ b33k
2t2 + g(k)t+ |B|B33, (3.21)

where

g(k) = b11B22k
2 + (b11B11 + b22B22 − b33B33 − |B|)k + b22B11.

To finish the proof, we need only to prove fk(t) > 0 for any t ≥ 0 and k ∈ R
under conditions (2.9) and (2.10).

Obviously we have fk(0) = F (0, y) > 0. When t > 0, let us first see two simple
cases.

Case 1. When k = 0, by using of (2.9), we have f0(t) = b22B11t+ |B|B33 > 0 for
any t > 0.

Case 2. When k ̸= 0, g(k) is a quadratic function. If

∆g ≜ (b11B11 + b22B22 − b33B33 − |B|)2 − 4b11b22B11B22 ≤ 0, (3.22)

we have g(k) ≥ 0, which implies fk(t) > 0 for t > 0.
For the case of ∆g > 0, we have the following

Lemma 3.8. Under conditions (2.9), (2.10) and ∆g > 0, there holds fk(t) > 0 for
t > 0.

Proof. We divided the proof into two cases.

Case 1. b11B11 + b22B22 − b33B33 − |B| < 0. In this case, g(k) has two real roots
k1 and k2 satisfying 0 < k1 < k2. Thus for any k ∈ (−∞, k1]

⋃
[k2,+∞), we have

g(k) ≥ 0, thus fk(t) > 0 for t > 0.
For k ∈ (k1, k2), we have g(k) < 0. Since we have assumed that (3.9) holds, by

squaring it we get

b11B11 + b22B22 − b33B33 − |B|+ 2
√
b33B33|B|+ 2

√
b11b22B11B22 > 0

or

−
[
b11B11 + b22B22 − b33B33 − |B|+ 2

√
b33B33|B|

]
< 2
√

b11b22B11B22. (3.23)

Denote

h1(k) = g(k) + 2k
√
b33B33|B|

= b11B22k
2 + (b11B11 + b22B22 − b33B33 − |B|+ 2

√
b33B33|B|)k + b22B11.

(3.24)

If b11B11 + b22B22 − b33B33 − |B|+2
√
b33B33|B| ≥ 0, we have h1(k) > 0 for k > 0.

Conversely, if b11B11 + b22B22 − b33B33 − |B| + 2
√
b33B33|B| < 0, by squaring

the two sides of (3.23), we get

∆h1
≜ (b11B11+b22B22−b33B33−|B|+2

√
b33B33|B|)2−4b11b22B11B22 < 0, (3.25)
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thus we get h1(k) > 0, or −g(k) < 2k
√
b33B33|B|. Since g(k) < 0 for k ∈ (k1, k2),

we can further get ∆fk = g2(k)− 4k2b33B33|B| < 0, thus fk(t) > 0 for t > 0.

Case 2. b11B11 + b22B22 − b33B33 − |B| ≥ 0. Similarly, in this case, g(k) has two
roots k1 and k2 satisfying k1 < k2 < 0. Thus for k ∈ (−∞, k1]

⋃
[k2,+∞), we have

g(k) ≥ 0, thus fk(t) > 0 for t > 0.
For k ∈ (k1, k2), we have g(k) < 0. Since we have assumed that (3.12) holds, by

squaring it we get

−b11B11 − b22B22 + b33B33 + |B|+ 2
√
b33B33|B|+ 2

√
b11b22B11B22 > 0

or

−
[
b11B11 + b22B22 − b33B33 − |B| − 2

√
b33B33|B|

]
> −2

√
b11b22B11B22. (3.26)

Denote

h2(k) = g(k)− 2k
√
b33B33|B|

= b11B22k
2 + (b11B11 + b22B22 − b33B33 − |B| − 2

√
b33B33|B|)k + b22B11.

(3.27)

If b11B11 + b22B22 − b33B33 − |B| − 2
√
b33B33|B| ≤ 0, we have h2(k) > 0 for k < 0.

Conversely, if b11B11 + b22B22 − b33B33 − |B| − 2
√
b33B33|B| > 0, by squaring

both sides of (3.26), we get

∆h2 ≜ (b11B11+b22B22−b33B33−|B|−2
√
b33B33|B|)2−4b11b22B11B22 < 0, (3.28)

thus we have h2(k) > 0, or 0 > g(k) > 2k
√

b33B33|B|. Since g(k) < 0 for k ∈
(k1, k2), we can further obtain ∆fk = g2(k)− 4k2b33B33|B| < 0, thus fk(t) > 0 for
t > 0.

The conclusion of Theorem 3.1 follows from Lemma 3.3, Lemma 3.4 and Lemma
3.7.

4. Pointwise estimates on Green function

In this section, we establish the pointwise estimates of problem (1.1)-(1.2) under
conditions (2.9) and (2.10).

Recall that λ = a0 + a1ξ + a2ξ
2 + O(ξ3) near ξ = 0 as denoted in Lemma

3.3. Denote aim (m = 0, 1) as the coefficient of the m-th term in the approximate
expressions of λi(ξ) (i = 1, 2, 3) near ξ = 0.

Theorem 4.1. For any given nonnegative α, assume that U0 ∈ L1(R)∩Cα(R) with
compact support and B = P−1FP satisfies (2.9) and (2.10). Then for any positive
integer N , the solution U(x, t) to (1.1)−(1.2) satisfies the following estimate for
any (x, t) ∈ R× R+

|DαU(x, t)| ≤ Mt−
α+1
2

[
BN (x, t) + e−ϵt

3∑
i=1

BN (x+ tImai1, t)

]
∥U0(x)∥L1(R),

(4.1)

where BN (x, t) = (1 + x2

1+t )
−N , ϵ = 1

2min{a10, a20, a30}, M depends only on α, N
and the support of U0(x).
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Theorem 4.1 describes the decay rates as well as the directions of decay of the
solution. (4.1) show that the decay rates of the solution is t−

1
2 . Moreover, along

any direction except x ̸= 0, tImai1 (i = 1, 2, 3), the solution decays very fast.
The method of proving Theorem 4.1 is based on a delicate analysis for the Fourier

transform of the Green function of (1.1). In the sequel, we use f̂(ξ) to denote the
Fourier transform of f(x) and f̌(ξ) to denote the inverse Fourier transform of f(x),
that is,

f̂(ξ) =
1√
2π

∫ ∞

−∞
e−ixξf(x)dx, f̌(x) =

1√
2π

∫ ∞

−∞
eixξf(ξ)dξ.

Here the notation “i” denotes the imaginary unit satisfying i2 = −1.
Consider system (1.1) with initial data

U0(x) = (u1(x, 0), u2(x, 0), u3(x, 0))
⊤ = δ(x)I, (4.2)

where I is the identity matrix and δ(x) is the Dirac function. The solution to (1.1)
and (4.2), denoted as G(x, t), is called the Green function of Cauchy problem (1.1)
and (1.2). Taking Fourier transform with respect to x to (1.1) and (4.2), we get

∂Ĝ

∂t
(ξ, t) = −(F + iξA)Ĝ(ξ, t), Ĝ(ξ, 0) = I. (4.3)

Since P−1(F + iξA)P = B + iξΛ, λi(ξ) (i = 1, 2, 3) are also the eigenvalues of
F + iξA.

As is well known, the decay of the solution is mainly related to the properties
of Ĝ(ξ, t) near ξ = 0 in the frequency space. By studying the decay property for
the Fourier transform of the Green function, we can obtain the pointwise estimates
(4.1). Exactly, we find three directions out of which the solution decays of any
polynomial order, which shows the hyperbolic property of the problem. The proof
of Theorem 4.1 is similar to Theorem 3.1 of Section 3 in [23], so we will not state it
here for brevity.

5. Critical cases

Critical case implies that at least one “<” in (2.9) and (2.10) is replaced by “=”.
According to Lemma 3.4, bii > 0 (i = 1, 2, 3) if and only if Reλi(ξ) > 0 (i = 1, 2, 3)
near ξ = ∞, hence bii = 0 (i = 1, 2, 3) are not critical cases. First, let us give some
examples to explain the complexity of the critical situation of conditions (2.9) and
(2.10).

Example 5.1. Consider system (2.4) with

Λ =


0 0 0

0 1 0

0 0 3

 , B =


1 m 3

1 2 2

1 3 3

 .

If m = 1, we have B11 = B22 = 0. When ξ = 1
3 , the characteristic polynomial

of B + iξΛ is

(λ− i)

(
λ2 −

(
i

3
+ 6

)
λ− 5i

3
+ 1

)
= 0,
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which has a pure imaginary roots λ = i.

If m = 3
2 , we have B11 = B22 = 0 and

√
|B| =

3∑
i=1

√
biiBii =

√
3
2 . When

ξ =
√
3
6 , we can similarly verify that λ =

√
3
2 i is an eigenvalue of B + iξΛ.

Remark 5.1. Example 5.1 shows that when B is asymmetric, conditions

bii > 0, Bii > 0, Bjj = Bkk = 0, i, j, k = 1, 2, 3, i ̸= j ̸= k ̸= i, |B| ≥ 0 (5.1)

and (2.13) do not imply that the characteristic polynomial of B + iξΛ has no pure
imaginary solution. Hence (2.13) and (5.1) do not imply that the real parts of λ1(ξ),
λ2(ξ) and λ3(ξ) are all positive for any ξ ∈ R \ {0}.

Example 5.2. Consider system (2.4) with

Λ =


3 0 0

0 1 0

0 0 2

 , B =


1 48 0

0 2 1

1 0 3

 .

By direct calculation, we have
√

|B| =
3∑

i=1

√
biiBii = 3

√
6. The characteristic

polynomial of B + iξΛ is

λ3 − 6λ2 + (11 + 2ξi + ξ2)λ− (4ξi + 2ξ2)− 54 = 0. (5.2)

We can verify that when ξ =
√
3 (or −

√
3), λ = 2

√
3i (or − 2

√
3i) is one of its

roots.

Set λ = a0 + a1ξ+ a2ξ
2 +O(ξ3) near ξ = 0 and substitute it into (3.1), then we

have

a30 −
3∑

i=1

biia
2
0 +

3∑
i=1

Biia0 − |B| = 0,

3a20a1 −
3∑

i=1

(a20µii + 2a0a1bii − a1Bii +Biiµii) + a0

3∑
i,j,k=1

i ̸=j ̸=k ̸=i

bii(µj + µk)i = 0,

3(a0a
2
1 + a20a2)−

3∑
i=1

((2a0a2 + a21)bii + 2a0a1µii− a2Bii)

+

3∑
i,j,k=1

i ̸=j ̸=k ̸=i

(a1bii(µj + µk)i + (bii − a0)µjµk) = 0,

a31 + 6a0a1a2 −
3∑

i=1

(2a1a2bii + (a21 + 2a0a2)µii)

+

3∑
i,j,k=1

i ̸=j ̸=k ̸=i

(a2bii(µj + µk)i− a1µjµk) + µ1µ2µ3i = 0.

(5.3)
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Example 5.3. Consider system (2.4) with

Λ =


−22 0 0

0 0 0

0 0 5

 , B =


1 1 0

0 1 −1

5 4 1

 .

By direct calculation, we have |B| = 0. Plugging it into (5.3)1 yields a0 = 0 or

a0 = 3±
√
19i

2 . When a0 ̸= 0, we have Rea0 = 3
2 > 0. When a0 = 0, by using of

(5.3)2,3, we have a1 = −15i, a2 = − 55
7 < 0. Thus λ = − 55

7 ξ2 − 15ξi + O(ξ3) near
ξ = 0, the principal part is − 55

7 ξ2, which is not strictly dissipative.

Nevertheless, we have

Proposition 5.1. (i) If B = P−1FP satisfies

bii > 0, i = 1, 2, 3, (5.4)

for some fixed i, Bii = 0 and Bjj > 0 for j ̸= i, (5.5)

0 <
√
|B| ≤

√
b11B11 +

√
b22B22 +

√
b33B33, (5.6)

then (1.1) is strictly dissipative.
(ii) If B = P−1FP satisfies (5.4) and

Bii = 0, i = 1, 2, 3, |B| = 0, (5.7)

then (1.1) is strictly dissipative.

Proof. Since bii > 0 (i = 1, 2, 3), Lemma 3.4 implies that Reλi(ξ) > 0 (i = 1, 2, 3)
near ξ = ∞.

(i) If B satisfies (5.5) and (5.6), we assume B11 = 0, B22 > 0 and B33 > 0 since

other cases can be similarly discussed. Then we have
3∑

i=1

bii > 0,
3∑

i=1

Bii > 0 and

|B| > 0. By Lemma 3.3, (5.5) indicates that the real parts of λ1(ξ), λ2(ξ) and λ3(ξ)
are all positive near ξ = 0.

In addition, we can show that B + iξΛ has no pure imaginary eigenvalue for
ξ ∈ R \ {0} by similar discussion as in the proof of Lemma 3.7. Denote fk(t), g(k),
h1 and h2 as in Lemma 3.7. Since B11 = 0, we have

fk(t) = b33k
2t2 + g(k)t+ |B|B33,

h1 = g(k) + 2k
√

b33B33|B|,
h2 = g(k)− 2k

√
b33B33|B|,

where g(k) = b11B22k
2+(b22B22− b33B33−|B|)k. Since B satisfies (5.5) and (5.6),

we have the same conclusions as Lemma 3.5 and Lemma 3.6. We still assume that
(3.9) and (3.12) hold, which can be written as√

b22B22 ≥ |
√

b33B33 −
√
|B||, (5.8)√

b33B33 +
√
|B| ≥

√
b22B22. (5.9)

Case 1. When k = 0, we have f0(t) = |B|B33 > 0 for any t > 0.

Case 2. When k ̸= 0, we have ∆g ≜ (b22B22 − b33B33 − |B|)2 ≥ 0.
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(1) If ∆g = 0, we have fk(t) > 0 for any t > 0.
(2) If ∆g > 0 and b22B22−b33B33−|B| < 0, g(k) has two real roots 0 = k1 < k2.

Thus for any k ∈ (−∞, 0]
⋃
[k2,+∞), we have g(k) ≥ 0, and then fk(t) > 0 for t > 0.

For k ∈ (0, k2), we have g(k) < 0. By using of (5.8), we can get

b22B22 − b33B33 − |B|+ 2
√
b33B33|B| ≥ 0,

then we have h1(k) > 0 for k > 0. We can further get △fk = g2(k)−4k2b33B33|B| <
0, thus fk(t) > 0 for t > 0.

If ∆g > 0 and b22B22 − b33B33 − |B| > 0, g(k) has two roots k1 < k2 = 0. Thus
for k ∈ (−∞, k1]

⋃
[0,+∞), we have g(k) ≥ 0, and then fk(t) > 0 for t > 0. For

k ∈ (k1, 0), we have g(k) < 0. (5.9) can be written as

−b22B22 + b33B33 + |B|+ 2
√
b33B33|B| ≥ 0,

then we have h2(k) > 0 for k < 0. We can further get △fk = g2(k)−4k2b33B33|B| <
0, thus fk(t) > 0 for t > 0.

To sum up, we obtain that the real parts of λ1(ξ), λ2(ξ) and λ3(ξ) are all positive
for any ξ ∈ R \ {0}.

(ii) If B satisfies (5.4) and (5.7), we show that B + iξΛ has no pure imaginary
solution for any ξ ∈ R\{0}. In fact, plugging (5.7) into (3.15) and (3.16), we obtain

3∏
i=1

(a(ξ)− µiξ) = 0,

3∑
i,j,k=1

i ̸=j ̸=k ̸=i

bii(a(ξ)− µjξ)(a(ξ)− µkξ) = 0.
(5.10)

By using of (5.10)1 and µi ̸= µj (i ̸= j), we obtain that for any fixed ξ, only one of
the three equalities a(ξ)− µiξ = 0 (i = 1, 2, 3) holds. Suppose that a(ξ)− µ1ξ = 0
and a(ξ)−µ2ξ ̸= 0, a(ξ)−µ3ξ ̸= 0, by using of (5.10)2, we have (a(ξ)−µ2ξ)(a(ξ)−
µ3ξ)b11 = 0, which is impossible since b11 > 0.

Next we claim that Reλi(ξ) > 0 (i = 1, 2, 3) near ξ = 0. Denote α = µ3−µ2 ̸= 0,
β = µ2−µ1 ̸= 0. Note that α ̸= −β since µ1 ̸= µ3. Plugging (5.7) into (5.3)1 yields

a20(a0 −
3∑

i=1

bii) = 0. When a0 ̸= 0, we have a0 =
3∑

i=1

bii > 0. When a0 = 0, plug it

and (5.7) into (5.3)2,3,4, then we have

3∑
i=1

biia
2
1 −

3∑
i,j,k=1

i ̸=j ̸=k ̸=i

bii(µj + µk)a1i−
3∑

i,j,k=1

i ̸=j ̸=k ̸=i

biiµjµk = 0,

3∑
i,j,k=1

i ̸=j ̸=k ̸=i

bii(2a1i + (µj + µk))a2 + (a1i + µ1)(a1i + µ2)(a1i + µ3) = 0.

(5.11)

It is easy to check that (5.11)1 has two roots

a1 =

3∑
i,j,k=1

i ̸=j ̸=k ̸=i

bii(µj + µk)±
√
∆(α, β)

2
3∑

i=1

bii

i, (5.12)
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where ∆(α, β) = (b11+ b22)
2α2+2(b222+ b22b33+ b11b22− b11b33)αβ+(b22+ b33)

2β2

is a quadratic form with respect to α and β. Denote r = b11 + b22 + b33, the matrix
of ∆(α, β) can be written as

D =

 (b11 + b22)
2 b22r − b11b33

b22r − b11b33 (b22 + b33)
2

 ,

which is obviously positive definite. Hence, (5.12) implies that a1 is a pure imaginary
number. Plugging (5.12) into (5.11)2 yields

±
√
∆(α, β)a2 =

1

8r3

(
(b11 + b22)α− (b22 + b33)β ±

√
∆(α, β)

)
×
(
(b11 + b22)α+ (b22 + b33)β + 2b11β ±

√
∆(α, β)

)
×
(
(b11 + b22)α+ (b22 + b33)β + 2b33α∓

√
∆(α, β)

)
. (5.13)

Denote x = α
β (x ̸= 0,−1), then ∆(α, β) becomes

∆(x) = β2

(
(b11 + b22)

2x2 + 2(b22r − b11b33)x+ (b22 + b33)
2

)
. (5.14)

We consider the case of β > 0 since β < 0 can be similarly discussed. By using of
(5.14), (5.13) becomes

Q±(x) ≜ ±8r3
√
∆(x)a2 = 2β2[q1(x)± q2(x)], (5.15)

where

q1(x) = b33(b11 + b22)
2x3 + b33((b11 + 2b22)r − 3b11b33)x

2

−b11((b22 + 2b33)r − 3b11b33)x− b11(b22 + b33)
2, (5.16)

q2(x) =

(
b33(b11 + b22)x

2 + 2b11b33x+ b11(b22 + b33)

)√
∆(x). (5.17)

By direct calculations, we have b211b
2
33−b11b33(b11+b22)(b22+b33) = −b11b22b33r

< 0. It is easy to verify that q2(x) > 0 for any x ∈ R.
By some tedious but direct calculations, we have

q21(x)− q22(x) = −4b11b22b33rx
2(x2 − x+ 1) < 0. (5.18)

Then we have −q2(x) < q1(x) < q2(x). By observing of (5.15), we have Q+(x) > 0
and Q−(x) < 0.

To sum up, we have a2 > 0. Thus we have Reλi(ξ) > 0 (i = 1, 2, 3) near ξ = 0.
This completes the proof of Proposition 5.1.
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