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THE COLLISION-AVOIDING FINITE-TIME
FLOCKING OF A CUCKER-SMALE MODEL
WITH PINNING CONTROL AND EXTERNAL

PERTURBATION
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Abstract The Cucker-Smale model plays a vital role in analyzing flocking be-
havior. To investigate the impact of pinning control and external perturbation
on finite-time flocking behavior, a modified Cucker-Smale model that incorpo-
rates these factors is proposed in this paper. Initially, by imposing appropriate
restrictions on external perturbation, the system can achieve finite-time flock-
ing, and the upper bound of settling time is derived explicitly. Subsequently, a
new sufficient condition is given to ensure collision-avoiding during the flock-
ing process. The results show that the convergence time depends on control
parameters and the convergence speed of the perturbation. Lastly, numerical
simulations are provided to illustrate the derived results.

Keywords Cucker-Smale model, pinning control, external perturbation, finite-
time flocking, collision-avoiding.
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1. Introduction

Among many different types of dynamical behavior in the model, a noteworthy one is
flocking, where the individual state eventually converges to a desired common state,
such as bird flocks, locusts swarming, fish schools, and more. This phenomenon has
captivated researchers for decades due to its inherent self-organizing and emergent
properties.

Recently, some admirable results have been derived about flocking behavior. In
1995, Vicsek et al. proposed a novel type model in which each particle adjusts its
velocity in response to its neighbors’ states [27]. The results showed that motion
becomes easily organized at larger densities and lower particle noise levels. Based on
the Vicsek model, a second-order dynamic model was first proposed by Cucker and
Smale in 2007 [14]. Different from [27], each agent modifies their velocity based on
a weighted average of the discrepancies with others’ velocities. The Cucker-Smale
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(in short C-S) model is taken as
dxi
dt

= vi, i = 1, · · · , N,

dvi
dt

=
1

N

N∑
j=1

ψ(||xi − xj ||)(vj − vi),

where xi ∈ Rd denote the position of ith particle and vi ∈ Rd indicate velocity, and
|| · || denotes Euclidean norm. The communication rate ψ quantifies the strength of
influence between two particles. For different parameters, conditional flocking and
unconditional flocking are achieved in both continuous and discontinuous models,
respectively. Very recently, the C-S model has attracted the interest of many schol-
ars in various fields.

It is noted that some studies only focus on maintaining bounded position and
consistent velocity, without considering collision-avoiding. However, it is crucial to
ensure that there are no collisions between any two agents, which is often referred
to as maintaining a safety distance. To the best of our knowledge, the collision-
avoiding issue in the C-S model can be studied through two primary methods. The
first is to introduce inter-particle bonding forces [6, 8, 9, 11–13]. The second is to
apply the singular communication weight [2, 5, 31]. Currently, there is a lack of
research on the modeling of collision-avoiding problems with global external per-
turbations.

In most studies, a control strategy is implemented for each agent. However, when
dealing with significantly large group sizes, controlling each individual becomes im-
practical. To tackle this challenge, the pinning control scheme was proposed and
relevant results were obtained [7, 20, 26]. The major advantage of pinning control
lies in its capacity to drive the system towards the desired state by only controlling
a small proportion of nodes, and it also effectively reduces a lot of unnecessary
resource consumption. For instance, it is remarkable that synchronization can be
achieved by controlling only a single controller in both continuous and discontinu-
ous systems [29]. In [30], two different pinning strategies were compared: randomly
pinning and selective pinning. The findings showed that the pinning strategy based
on the highest connection is more efficient than randomly pinning.

In fact, external perturbation is also a non-negligible factor in the model, such
as wind interference, electromagnetic interference, etc. These disruptions can po-
tentially undermine flocking behavior partially or completely, affecting its rate of
convergence or even rendering it nonexistent. For example, under the random effect
of strong winds or water currents, birds or fishes will separate and fail to form a flock
or school. Recently, some fruitful results about noise were received [3, 15, 17, 18].
However, some measurable disturbances are also worth studying, such as wind, wa-
ter flow, and artificial thrust to avoid obstacles. Some researchers have obtained re-
sults in asymptotic flocking behavior with deterministic disturbances [21,34]. Zhao
et al. discussed collision avoidance and the effects of different types of disturbance
on flocking behavior [34]. In [21], Lian et al. proved that the flocking of the model
depends on the perturbed conditions and initial conditions.

For flocking behavior, the convergence time is a very significant index. Previous
studies on the flocking of the C-S model mainly focus on asymptotic flocking [1,
4, 23], which means that the flocking can only occur as time approaches infinity.
To conquer this drawback, the finite-time control technology was proposed [16].
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Different from the asymptotic flocking, the finite-time flocking has an upper bound
of the settling time. To date, lots of contributions have been devoted to the finite-
time flocking issue of the C-S model [10, 22]. For example, Zhang et al. showed
that the finite-time and fixed-time flocking of the C-S model can be reached under
pinning control [33]. Furthermore, the finite-time flocking problem for a modified C-
S model with unknown Hölder continuous intrinsic dynamics was investigated [24].
By utilizing the energy method, the occurrence of conditional finite-time flocking
was demonstrated under specific conditions that depend on the initial data.

However, there are few studies addressing the collision-avoiding finite-time flock-
ing issue of the leader-follower C-S model with pinning control and external per-
turbation. Inspired by the previously mentioned works, we propose a modified C-S
model as follows.

The virtual leader is described by
dx0(t)

dt
= v0(t),

dv0(t)

dt
= g(t, v0),

(1.1)

which are subject to initial condition (x0(0), v0(0)).
The ith follower can be described by

dxi(t)

dt
= vi(t), i = 1, · · · , N,

dvi(t)

dt
=
K

N

N∑
j=1

ψ(||xi − xj ||)sig(vj − vi)
θ − βisig(vi − v0)

θ + g(t, vi),
(1.2)

with some given initial conditions

(xi(0), vi(0)) := (xi0, vi0), (1.3)

where (xi(t), vi(t)) ∈ Rd × Rd, are position and velocity of the ith agent at time

t, 0 < θ < 1, and sig(vj − vi)
θ = (sign(vj1 − vi1) |vj1 − vi1|θ , · · · , sign(vjd −

vid) |vjd − vid|θ)T , K is the coupling strength. The connectivity function ψij =
ψ(||xi − xj ||) measures the interaction strength between agents depending on the
distance between ith and jth agents. βi is pinning control gain, given by,

βi =

{
0, i = 1, 2, · · · , l,
β > 0, i = l + 1, l + 2, · · · , N.

(1.4)

In addition, these functions are further assumed to satisfy the following conditions.

Assumption 1.1. [33] ψij is assumed to be non-increasing, satisfying

inf
r≥0

ψ(r) ≥ ψ∗ > 0. (1.5)

Assumption 1.2. The external perturbation satisfies the following condition

||g(t, vi(t))− g(t, v0(t))|| ≤ αi||vi − v0||, i = 1, 2, · · · , N, (1.6)

where αi is a positive constant.
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For Assumption 1.1, the existence of a lower bound means that communication
among individuals always exists. For Assumption 1.2, the external force difference
is related to its velocity difference.

Definition 1.1. System reaches a finite-time flocking if the solutions {xi, vi}(i =
1, · · · , N) satisfy

||vi − vj || = 0,∀t ≥ T, and sup
0≤t≤+∞

||xi − xj || <∞, (1.7)

for xi(0), vi(0) and 1 ≤ i, j ≤ N , where T is called the settling time. Moreover, if
the minimum distance between particles meets

inf
t≥0

||xi(t)− xj(t)|| > 0, i ̸= j, (1.8)

then we say that the system reaches the collision-avoiding finite-time flocking.

The remainder of this work is structured as follows. In Section 2, as proof of our
main conclusion, we provide some key lemmas and definitions. In Section 2.1, we
prove the finite-time flocking result and establish the upper bound for settling time
by imposing appropriate restrictions on the external perturbation, and sufficient
conditions are given to ensure that there is no collision during the flocking process.
In Section 3, we demonstrate our main results by numerical simulations. Finally,
the conclusions are presented in Section 4.

2. Finite-time flocking with collision-avoidance

In this part, we will provide some important definitions and lemma for our subse-
quent research.

2.1. Lemmas

We give the following important lemmas to better prove the main results in this
Section.

Lemma 2.1. [19] Let a1, a2, . . . , an > 0, and 0 < p < r. Then the following norm
equivalence property holds(

n∑
i=1

|ai|r
) 1

r

≤

(
n∑
i=1

|ai|p
) 1

p

, (2.1)

and (
1

n

n∑
i=1

|ai|r
) 1

r

≥

(
1

n

n∑
i=1

|ai|p
) 1

p

. (2.2)

Lemma 2.2. [28] If the graph G(A) is strongly connected, then the eigenvalue 0
of the graph Laplacian LA is algebraically simple and all other eigenvalues are with

positive real parts. If G(A) is also undirected then ωTLAω = 1
2

N∑
i,j=1

aij(ωj − ωi)
2,

where ω = (ω1, . . . , ωN )T ∈ Rn.
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Lemma 2.3. [32] Let B be a m × m(m ≥ 2) diagonal matrix with diagonal el-
ements bi ≥ 0. Set A = (aij)m×m(aij ≥ 0) to be a weighted adjacency matrix
of a connected symmetric graph. Let L = D − A the Laplace matrix of A, where

D = diag(d1, d2, · · · , dm) and di =
m∑
j=1

aij. If there exists some bi0 > 0, then the

minimal eigenvalue of B + L has the following estimate:

λmin(B + L) ≥ min

{
λ2
4m

,
bi0
2m

}
, (2.3)

where λ2 is the second eigenvalue of L, called the Fiedler number of A.

Lemma 2.4. [25] Suppose there is a Lyapunov function V (x) defined on a neigh-
borhood U ⊂ Rn of the origin, and

V̇ (x) ≤ −lV α(x) + kV (x),∀x ∈ U\ {0} . (2.4)

Then, the origin is finite-time stable. The set

Ω =

{
x|V 1−α(x) <

l

k

}
∩ U , (2.5)

is contained in the domain of attraction of the origin. The settling time satisfies

T (x) ≤ In(1− k
l V

1−α(x))

k(α−1) , x∈ Ω.

2.2. Finite-time flocking

In this section, by imposing some specific restrictions on the external perturbation,
we prove that the system can achieve finite-time flocking.

Theorem 2.1. For system (1.2), if inf
r≥0

ψ(r) ≥ ψ∗ > 0, gi(t) satisfies Assumption

1.1, and the initial state satisfies

V
1−θ
2 (0) <

1

2α
λ1

θ+1
2 , (2.6)

where λ1 is the smallest eigenvalue of (2LA + Dβ), LA is the Laplacian matrix

of A = (aij)

(
aij =

(
Kψ∗

N

) 2
θ+1

)
, and Dβ = diag(0, · · · , 0︸ ︷︷ ︸

l

, (2β)
2

θ+1 , · · · , (2β)
2

θ+1 ).

Then the system can achieve finite-time flocking and an upper bound of the settling
time is given by

T1 =
ln
(
1− 2αλ1

− θ+1
2 V

1−θ
2 (0)

)
α(θ − 1)

, (2.7)

where V (0) =
N∑
i=1

∥v̂i(0)∥2 and v̂i(0) = vi(0)− v0(0) is the initial value of v̂i(t).

Proof. Let

x̂i = xi − x0,

v̂i = vi − v0,

ĝi = gi − g0, (2.8)
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the error system equation is written as
dx̂i(t)

dt
= v̂i(t), i = 1, · · · , N,

dv̂i(t)

dt
=
K

N

N∑
j=1

ψijsig(v̂j − v̂i)
θ − βisigv̂

θ
i + ĝ(t, vi).

(2.9)

We define the Lyapunov function

V (t) =

N∑
i=1

∥v̂i(t)∥2 , (2.10)

the derivative of V (t) along the trajectories of (2.9) gives

dV (t)

dt
= 2

N∑
i=1

〈
v̂i(t), ˙̂vi(t)

〉
= 2

N∑
i=1

〈
v̂i(t),

K

N

N∑
j=1

ψijsig(v̂j − v̂i)
θ − βisigv̂

θ
i + ĝ(t, vi)

〉

= 2
K

N

N∑
i=1

〈
v̂i(t),

N∑
j=1

ψijsig(v̂j − v̂i)
θ

〉
− 2

N∑
i=1

〈
v̂i(t), βisigv̂

θ
i

〉
+ 2

N∑
i=1

⟨v̂i(t), ĝ(t, vi)⟩

≤ 2
K

N

N∑
i,j=1

ψij
〈
v̂i(t), sig(v̂j − v̂i)

θ
〉
− 2

N∑
i=1

βi||v̂i(t)||θ+1 + 2

N∑
i=1

αi||v̂i(t)||2,

(2.11)
using the symmetry indicates that

N∑
i,j=1

ψij
〈
v̂i(t), sig(v̂j − v̂i)

θ
〉
=

N∑
i,j=1

ψij
〈
v̂i(t)− v̂j(t), sig(v̂j − v̂i)

θ
〉

+

N∑
i,j=1

ψij
〈
v̂j(t), sig(v̂j − v̂i)

θ
〉

= −
N∑

i,j=1

ψij
〈
v̂j(t)− v̂i(t), sig(v̂j − v̂i)

θ
〉

−
N∑

i,j=1

ψij
〈
v̂j(t), sig(v̂i − v̂j)

θ
〉
,

(2.12)

which implies that

N∑
i,j=1

ψij
〈
v̂i(t), sig(v̂j − v̂i)

θ
〉
= −1

2

N∑
i,j=1

ψij
〈
v̂j(t)− v̂i(t), sig(v̂j − v̂i)

θ
〉

= −1

2

N∑
i,j=1

ψij

d∑
k=1

|v̂jk(t)− v̂ik(t)|θ+1
.

(2.13)
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By Lemma 2.1, we obtain

(
d∑
k=1

|v̂jk(t)− v̂ik(t)|θ+1

) 1
θ+1

≥

(
d∑
k=1

|v̂jk(t)− v̂ik(t)|2
) 1

2

= ||v̂j − v̂i||, (2.14)

that is
d∑
k=1

|v̂jk(t)− v̂ik(t)|θ+1 ≥ ||v̂j − v̂i||θ+1. (2.15)

From (2.13) and (2.15), we can deduce that

dV (t)

dt
≤ −K

N

N∑
i,j=1

ψij ||v̂j − v̂i||θ+1 − 2

N∑
i=1

βi||v̂i(t)||θ+1 + 2

N∑
i=1

αi||v̂i(t)||2

≤ −
N∑
i=1

K
N

N∑
j=1

ψij ||v̂j − v̂i||θ+1 + 2βi||v̂i(t)||θ+1

+ 2

N∑
i=1

αi||v̂i(t)||2

≤ −
N∑
i=1

 N∑
j=1

((
Kψij
N

) 1
θ+1

||v̂j − v̂i||

)θ+1

+
(
(2βi)

1
θ+1 ||v̂i(t)||

)θ+1


+ 2

N∑
i=1

αi||v̂i(t)||2

≤ −
N∑
i=1

 N∑
j=1

(
Kψij
N

) 2
θ+1

||v̂j − v̂i||2 + (2βi)
2

θ+1 ||v̂i(t)||2


θ+1
2

+ 2

N∑
i=1

αi||v̂i(t)||2.

(2.16)
Consequently, from inf

r≥0
ψij(r) ≥ ψ∗ it follows that

dV (t)

dt
≤−

N∑
i=1

 N∑
j=1

(
Kψ∗

N

) 2
θ+1

||v̂j − v̂i||2 + (2βi)
2

θ+1 ||v̂i(t)||2


θ+1
2

+ 2

N∑
i=1

αi||v̂i(t)||2. (2.17)

Define a new matrix A = (aij) whose elements aij =
(
Kψ∗

N

) 2
θ+1

, and the matrix

A is the adjacency matrix of the graph G(A). Then LA is regarded as the Laplacian
matrix of G(A). Applying Lemma 2.2, we have

N∑
i,j=1

(
Kψ∗

N

) 2
θ+1

||v̂j − v̂i||2 = 2v̂TLAv̂. (2.18)
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Let Dβ = diag(0, · · · , 0︸ ︷︷ ︸
l

, (2β)
2

θ+1 , · · · , (2β)
2

θ+1 ), we get

N∑
i=1

(2βi)
2

θ+1 ||v̂i(t)||2 = v̂TDβ v̂. (2.19)

Then, the inequality (2.17) now reads,

dV (t)

dt
≤ −(2v̂TLAv̂ + v̂TDβ v̂)

θ+1
2 + 2

N∑
i=1

αi||v̂i(t)||2

≤ −(v̂T (2LA +Dβ)v̂)
θ+1
2 + 2

N∑
i=1

αi||v̂i(t)||2

≤ −(λ1v̂
T v̂)

θ+1
2 + 2

N∑
i=1

αi||v̂i(t)||2

≤ −λ1
θ+1
2 V

θ+1
2 (t) + 2αV (t),

(2.20)

where α = max {α1, α2, · · · , αN} and λ1 is the smallest eigenvalue of (2LA +Dβ).
According to Lemma 2.3, we know that λ1 > 0 when 0 ≤ l < N . From Lemma 2.4
and (2.6), this implies that V (t) < V (0). It immediately follows that

V (t) ≡ 0, t ≥ T1, (2.21)

where

T1 =
ln
(
1− 2αλ1

− θ+1
2 V

1−θ
2 (0)

)
α(θ − 1)

, (2.22)

thus

vi ≡ v0, ∀t ≥ T1. (2.23)

We know that in finite time the speed of the follower can converge to the speed of
the leader.

Then, we will prove that the distance is bounded. Let X(t) =
N∑
i=1

∥x̂i(t)∥2,

dX(t)

dt
= 2

N∑
i=1

⟨x̂i, v̂i⟩

≤ 2X
1
2 (t)V

1
2 (t).

(2.24)

It leads to ∣∣∣∣∣dX
1
2 (t)

dt

∣∣∣∣∣ ≤ V
1
2 (t), (2.25)

then

X
1
2 (t) ≤ X

1
2 (0) +

∫ t

0

V
1
2 (τ)dτ. (2.26)
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From (2.23), we know that the velocity of all agents remains consistent in finite
time and T1 is the settling time. By Theorem 2.1, we obtain

X
1
2 (t) ≤ X

1
2 (0) +

∫ T1

0

V
1
2 (τ)dτ

≤ X
1
2 (0) + T1V

1
2 (0),

(2.27)

that is
X

1
2 (t) ≤ X

1
2 (0) + T1V

1
2 (0), (2.28)

i.e.,

sup
0≤t≤+∞

∥xi − xj∥ ≤ sup
0≤t≤+∞

∥xi − x0∥+ sup
0≤t≤+∞

∥xj − x0∥ ≤ 2X
1
2 (t) < +∞.

(2.29)
There is an upper bound on the distance between any two agents. Combining (2.23)
and (2.29), the finite-time flocking behavior can be achieved. This concludes the
proof of Theorem 2.1.

Remark 2.1. Obviously, the eigenvalue λ1 depends on both β and l. Additionally,
from (2.20) and Assumption 1.1 it follows that the convergence time is related to
λ1, as will be shown in Section 3 .

Remark 2.2. Note that the external perturbations are introduced in the model,
and in the absence of external perturbation, our conclusions degenerate to the
results in [33].

Remark 2.3. We note that when ψ∗ = 0, the matrix A becomes a zero matrix.

In this case, when l = 0, λ1 = (2β)
2

θ+1 , and if the system satisfies condition (2.6),
equations (2.23) and (2.29) hold, leading to the system achieving flocking. How-
ever, this approach requires controlling all nodes, which is impractical and leads to
unnecessary resource consumption when there are many agents in the group. When
0 < l < N , λ1 = 0, and conditions (2.6) and (2.23) do not hold, meaning that
the followers in the system do not converge to the leader’s velocity, and flocking
cannot be achieved. Therefore, based on the above discussion and Theorem 2.1, the
condition infr≥0 ψ(r) ≥ ψ∗ > 0 in Assumption 1.1 is more suitable for the model
proposed in this paper.

2.3. Collision-avoidance

Aside from bounded position and consistent velocity, collision avoidance is an essen-
tial component of safe and effective operations in real-world applications like UAV
cooperative operations and formation flying. We will provide sufficient conditions
for avoiding collisions during flocking in this section.

Theorem 2.2. Assuming the initial state of system (1.2) is non-collisional, and
the initial state satisfies

min
i̸=j

||xi(0)− xj(0)|| >
√
2V

1
2 (0)T1, (2.30)

then, the solution of system (1.2) meets

inf
t≥0

||xi(t)− xj(t)|| > 0, i ̸= j, (2.31)
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system (1.2) can achieve a finite-time flocking with non-collision, where V
1
2 (0) =√

N∑
i=1

∥v̂i(0)∥2 and T1 is defined in Theorem 2.1.

Proof. Let
Xij(t) = ||xi(t)− xj(t)||, (2.32)

and
Vij(t) = ||vi(t)− vj(t)|| = ||v̂i(t)− v̂j(t)||, (2.33)

where i ̸= j and i, j ∈ 0, 1, · · · , N . By using Cauchy Schwarz’s inequality, we have

Vij ≤ ||v̂i(t)||+ ||v̂j(t)||

≤
√
2
(
||v̂i(t)||2 + ||v̂j(t)||2

) 1
2

≤
√
2

(
N∑
i=1

||v̂i(t)||2
) 1

2

=
√
2V

1
2 (t).

(2.34)

For Xij(t), it is straightforward to get

d

dt
X2
ij(t) ≤ 2||xi(t)− xj(t)||||vi(t)− vj(t)|| = 2Xij(t)Vij(t), (2.35)

that is, ∣∣∣∣dXij(t)

dt

∣∣∣∣ ≤ Vij(t). (2.36)

Integrating both sides of the inequality above leads to

|Xij(t)−Xij(0)| =
∣∣∣∣∫ t

0

dXij(s)

ds
ds

∣∣∣∣
≤
∫ t

0

∣∣∣∣dXij(s)

ds

∣∣∣∣ds
≤
∫ t

0

Vij(s)ds

≤
√
2

∫ t

0

V
1
2 (s)ds.

(2.37)

Note that V (t) = 0 ⇒ Vij = 0, for t ≥ T1. Since V (t) < V (0) we have, for t ≥ 0

|Xij(t)−Xij(0)| ≤
√
2

∫ T1

0

V
1
2 (s)ds

≤
√
2

∫ T1

0

V
1
2 (0)ds

≤
√
2V

1
2 (0)T1,

(2.38)

by triangle inequality, it immediately follows that

|Xij(t)| ≥ |Xij(0)| − |Xij(t)−Xij(0)|

≥ min
i ̸=j

|Xij(0)| −
√
2V

1
2 (0)T1

> 0.

(2.39)
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Similarly, it is easy to know that

∥x̂i(t)− x̂i(0)∥ ≤
√
2V

1
2 (0)T1.

Thus, we have
∥x̂i(t)∥ ≥ min

i ̸=j
∥x̂i(0)∥ −

√
2V

1
2 (0)T1 > 0,

i.e.,
∥xi(t)− xi(0)∥ ≥ min

i̸=j
∥xi(0)− x0(0)∥ −

√
2V

1
2 (0)T1 > 0.

This completes the proof of Theorem 2.2. There is a lower bound for the distance
between each agent, also known as the minimum safe distance in practical applica-
tion, so that collision avoidance can be achieved. By maintaining a minimum safe
distance, the follower can progressively adjust its speed to match that of the leader
while avoiding any potential collisions. This further enhances the feasibility and
practicality of achieving flocking in a controlled and safe manner.

3. Numerical simulations

The numerical simulations presented in this section lead to the verification of the
theoretical results. From a graph theory perspective, it is worth noting that the
graph topology used in all simulations is fully connected, which is different from
the Vicsek model [27]. The initial positions are generated by random real numbers
between 0 and 100, and the initial velocities are generated by random real numbers
between 0 and 1, as shown in Table 1. By calculation, the following examples
all satisfy the collision-avoiding condition (2.30). To more accurately describe the

flocking behavior, we define the following two indicators: δv(t) = (1/N)
∑N
i=1[vi(t)−

v0(t)]
2 and δx(t) = (1/N)

∑N
i=1[xi(t)− x0(t)]

2.
First, we set the simulation parameters as N = 9,K = 0.5, ψij = 1/(1 + ||xi −

xj ||2)η + ε, η = 0.3, ε = 0.5, α = 0.2× 10−3, θ = 0.1, β = 0.02 and l0 is the pinning
node number. In order to more accurately compare and illustrate the impact of
external perturbation, we simulate the system (1.2) in the absence of perturbations.
The position and velocity trajectories of the leader and follower are displayed in
Figure 1, and it is evident that the system is capable of achieving flocking without
collision, which is consistent with findings reported in [33]. Now, we give two types
of external perturbation functions.

Example 3.1. We give the first type of perturbation functions

g(t, vi) =(g1(t, vi), g
2(t, vi), g

3(t, vi))

=(0.01vi(t), 0.01vi(t), 0.01vi(t)), k = 1, 2, · · · , N,
g(t, v0) =0.

Figure 2 shows the position and velocity trajectory of agents with the first type
of perturbation.

Example 3.2. We give the second type of perturbation functions

g(t, vi) = (g1(t, vi), g
2(t, vi), g

3(t, vi))

= (0.01e−tvi(t), 0.01e
−tvi(t), 0.01e

−tvi(t)), i = 0, 1, · · · , N.
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Table 1. The initial data.

Agents Initial position Initial velocity

0 (23.35098822, 6.35806232, 1.35717253) (0.17892249, 0.12294130, 0.27377104)

1 (2.83716271, 63.82368204, 93.57764104) (0.21779096, 0.00195207, 0.23472881)

2 (51.17941080, 17.05384731, 63.46187937) (0.12425189, 0.05693580, 0.20066483)

3 (69.20627928, 97.70330225, 79.68958925) (0.28116679, 0.08984982, 0.27332209)

4 (41.33477110, 76.65635198, 37.02955415) (0.11090864, 0.15978806, 0.18450114)

5 (96.30840608, 53.83110701, 35.27054549) (0.12827346, 0.03878263, 0.19590807)

6 (76.05092786, 98.22827001, 38.13956569) (0.23094290, 0.15725701, 0.18537001)

7 (97.88899083, 8.12068720, 40.04691407) (0.09561159, 0.17805203, 0.26184265)

8 (17.48891001, 48.29038502, 8.05104128) (0.27520961, 0.08823129, 0.17659469)

9 (2.62736353, 56.22173639, 41.83644922) (0.12418765, 0.17052620, 0.22872895)
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Figure 1. The flocking without external perturbation.
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Figure 2. The flocking with the first type of external perturbation.

Figure 3 shows the position and velocity trajectory of agents with the second
type of perturbation.
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Figure 3. The flocking with the second type of external perturbation.

From the two examples above, we can obtain that the two forms of external
perturbations have distinct impacts on the position and velocity, but the velocity of
different agents eventually tends to converge, and the system achieves the collision
avoiding flocking.

Next, the influence of parameter β and l0 on the eigenvalue λ1 = λmin(2LA+Dβ)
is analyzed. Based on the definition of LA, the connectivity function is ψ(r) =
1/(1+r2)η+ε ≥ 1/(1+d2max)

η+ε = ψ∗; here, dmax denotes the maximum distance
between any two followers. Through simple calculations, we find that dmax =
||x1 − x7|| = 122.4876 when β = 0.02. Similar to the conclusion of Lemma 2.3,
Figure 4 shows that λ1 is not only positive but also minimum when only one node
is controlled. The result indicates that λ1 is an increasing function of l0 for the
same control gain. Similarly, for a given pinning node number, a larger β yields a
greater eigenvalue λ1.

Then, in order to verify the influence of parameter β and l0 on convergence speed,
we conduct a simulation of the system (1.2) with the first type of perturbation
for different values of β and l0. For convenience, we present the computational
results only for β = 0.02, but the following condition holds for other cases as

well. Through a straightforward calculation, we deduce that V
1−θ
2 (0) = 0.3860 and

1
2αλ1

θ+1
2 = 29.6542 satisfy (2.6). From Figure 5, we observe that approximately

after t ≈ 4.3s, the velocities of all the followers converge to that of the leader, and
the settling time T1 ≈ 72.7937s is calculated by equation (2.7). This implies that
the system can achieve flocking without collisions in a finite time, and this result
aligns with the assertion presented in Theorem 2.1. Figure 5 suggests that the larger
the parameter β, the faster the flocking occurs. From Figure 6, it is evident that
when the number of pinning nodes increases, the flocking converges more quickly.
Consequently, it would be advised to increase β and l0 if collision-avoiding flocking
in real applications needs to be achieved in a shorter time. Combining Figure 4,
Figure 5, and Figure 6, it is shown that the convergence speed of flocking increases
as the eigenvalue λ1 increases, which explains Remark 2.1.

Finally, we use the same parameters, and choose appropriate initial data and
N = 10, 30, 50, respectively in Figure 7. We get the convergence time becomes
shorter as N increases. This aligns with the findings presented in [24].
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Figure 4. The eigenvalue λ1 with different l0 and β.
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Figure 5. The flocking for different control gain β.
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Figure 6. The flocking with different l0.

4. Conclusion

The collision-avoiding finite-time flocking of a leader-follower C-S model with pin-
ning control and external perturbation is investigated in this paper. When the
external perturbation function satisfies the specific conditions, the system can suc-
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Figure 7. The flocking with different N .

cessfully achieve a finite-time flocking; simultaneously, upper bounds on the relative
position and settling time are derived by means of the appropriate Lyapunov func-
tion. Then, a sufficient condition is provided by applying inequality techniques to
ensure that there are no collisions during the flocking process. To further validate
the derived results, some numerical simulations are conducted. These simulations
not only confirm the correctness of the theoretical results but also enable us to
analyze the influence of parameters such as β and l0, as well as different external
perturbations, on the speed of convergence. When subjected to smaller external
perturbations, we also observe that individuals quickly adjust their states to form
flocks.

In the analysis of flocking with collision avoidance, it is necessary for the system
to achieve finite-time flocking that g(t) must satisfy Assumption 1.1; by introducing
a pinning control strategy, a small percentage of nodes can be controlled to guide
the system towards the required target state, resulting in reduced energy consump-
tion and improved efficiency. If the model needs to quickly form a collision-avoiding
flocking, such as in UAV formation flight or target tracking scenarios, the relevant
parameters and perturbations can be adjusted. These findings are supported by
Remark 2.1 and numerical simulations. This highlights the practical engineering
significance of the main results presented in this paper.
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