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1. Introduction

Consider the following 2× 2 block saddle point problems

A

x

y

 ≡

 A BT

−B C

x

y

 =

f

g

 = b, (1.1)

where A ∈ Rn,n is a positive definite matrix,B ∈ Rm,n,m ≤ n, is of full rank,
BT ∈ Rn,m is the transpose of B, C ∈ Rm,m is positive definite and f ∈ Cn, g ∈ Cm

are two given vectors. It appears in many different applications of scientific com-
puting, such as constrained optimization [60], the finite element method for solving
the Navier-Stokes equation [28,29,31], and constrained least squares problems and
generalized least squares problems [2,37,46,47] and so on; see [4–7,10,11,13–15,19,
20,39,41,45,46,49–59,61] and references therein.

In recent years, there has been a surge of interest in the saddle point prob-
lem of the form (1.1), and a large number of stationary iterative methods have
been proposed. For example, Santos et al. [37] studied preconditioned iterative
methods for solving the singular augmented system with A = I. Golub et al. [32]
presented SOR-like algorithms for solving linear systems (1). Darvishi et al. [27]
studied SSOR method for solving the augmented systems. Bai et al. [16, 17, 25, 60]
presented GSOR method, parameterized Uzawa (PU) and the inexact parameter-
ized Uzawa (PIU) methods for solving linear systems (1.1). Zhang and Lu [48]
showed the generalized symmetric SOR method for augmented systems. Peng and
Li [35] studied the unsymmetric block overrelaxation-type methods for saddle point.
Bai and Golub [3, 8–10, 18, 33, 40] presented splitting iteration methods such as
Hermitian and skew-Hermitian splitting (HSS) iteration scheme and its precondi-
tioned variants, Krylov subspace methods such as preconditioned conjugate gradi-
ent (PCG), preconditioned MINRES (PMINRES) and restrictively preconditioned
conjugate gradient (RPCG) iteration schemes, and preconditioning techniques re-
lated to Krylov subspace methods such as HSS, block-diagonal, block-triangular
and constraint preconditioners and so on.

Recently, based on a new matrix splitting method, Fan, Zhu and Zheng [30]
proposed a generalized double shift-splitting (GDSS) preconditioner induced by a
new matrix splitting method for nonsymmetric generalized saddle point problems,
and gave the corresponding theoretical analysis and numerical experiments.

For large, sparse or structure matrices, iterative methods are an attractive op-
tion. In particular, Krylov subspace methods apply techniques that involve orthog-
onal projections onto subspaces of the form

K(A, b) ≡ span
{
b,Ab,A2b, ...,An−1b, ...}.

The conjugate gradient method (CG), minimum residual method (MINRES)
and generalized minimal residual method (GMRES) are common Krylov subspace
methods. The CG method is used for symmetric, positive definite matrices, MIN-
RES for symmetric and possibly indefinite matrices and GMRES for unsymmetric
matrices [39].

In this paper, based on the generalized double shift-splitting (GDSS) precondi-
tioner by Fan, Zhu and Zheng [30], we generalize the GDSS algorithms and further
present the modified double shift-splitting (MDSS) preconditioner for nonsymmet-
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ric generalized saddle point problems having a nonsymmetric positive definite (1,1)-
block and a positive definite (2,2)-block. Moreover, by similar theoretical analysis,
we analyze the convergence conditions of the corresponding matrix splitting iter-
ation methods and preconditioning properties of the MDSS preconditioned saddle
point matrices. In final, one example is provided to confirm the effectiveness.

2. Modified double shift-splitting (MDSS) precon-
ditioner

Recently, for the coefficient matrix of the augmented system (1.1), Fan, Zhu and
Zheng [30] made the following splitting

A =
1

2
(Σ +A)− 1

2
(Σ−A)

=
1

2

αΛ1 +A BT

−B βΛ2 + C

− 1

2

αΛ1 −A −BT

B βΛ2 − C

 ,
(2.1)

where α > 0, β > 0 are two constant numbers, Σ =

αΛ1 0

0 βΛ2

 , and the parameter

matrices Λ1 and Λ2 are both symmetric positive definite. Based on the iteration
methods studied in [30], we establish the modified double shift-splitting (MDSS) of
the saddle point matrix A, which is as follows:

A =
1

2
(Σ + γA)− 1

2
[Σ− (2− γ)A]

= PMDSS −RMDSS

=
1

2

αΛ1 + γA γBT

−γB βΛ2 + γC

− 1

2

αΛ1 − (2− γ)A −(2− γ)BT

(2− γ)B βΛ2 − (2− γ)C

 ,

(2.2)

where α > 0, β > 0, γ > 0 are three constant numbers, Σ =

αΛ1 0

0 βΛ2

 , and

the parameter matrices Λ1 and Λ2 are both symmetric positive definite. By this
special splitting, the following modified double shift-splitting (MDSS) method can
be defined for solving the saddle point problem (1):

Modified double shift-splitting (MDSS) method: Given initial vectors u0 ∈
Rm+n, and three relaxed parameters α > 0, β > 0 and γ > 0. For k = 0, 1, 2, ...
until the iteration sequence {uk} converges, compute

1

2

αΛ1 + γA γBT

−γB βΛ2 + γC

uk+1

=
1

2

αΛ1 − (2− γ)A −(2− γ)BT

(2− γ)B βΛ2 − (2− γ)C

uk +

f

g

 . (2.3)
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It is easy to see that the iteration matrix of the MDSS iteration is

ΓMDSS =

αΛ1 + γA γBT

−γB βΛ2 + γC

−1 αΛ1 − (2− γ)A −(2− γ)BT

(2− γ)B βΛ2 − (2− γ)C

 . (2.4)

If we use a Krylov subspace method such as GMRES (Generalized Minimal
Residual) method or its restarted variant to approximate the solution of this system
of linear equations, then

PMDSS =
1

2

αΛ1 + γA γBT

−γB βΛ2 + γC

 , (2.5)

can be served as a preconditioner. We call PMDSS the MDSS preconditioner for
the generalized saddle point matrix A.

In every iteration of the MDSS iteration (4) or the preconditioned Krylov sub-
space method, we need solve a residual equation

PMDSSz =
1

2

αΛ1 + γA γBT

−γB βΛ2 + γC

 z

=
1

2

I γBT (βΛ2 + γC)−1

0 I


×

G 0

0 βΛ2 + γC

 I 0

−γ(βΛ2 + γC)−1B I

 z

= r

(2.6)

needs to be solved for a given vector r at each step, where G = αΛ1+γA+BT (βΛ2+
γC)−1B is called the modified double shift-splitting (MDSS) preconditioner for the
saddle point matrix A and is induced by the modified double shift-splitting iteration
(4). Hence, analogous to Algorithm 1 in [30], we can derive the following algorithmic
version of the MDSS iteration method.

Algorithm 2.1. For a given vector r = [rT1 , r
T
2 ]

T , the vector z = [zT1 , z
T
2 ]

T can be
computed by (7) from the following steps:

Step 1. Solve (βΛ2 + γC)w = 2r2 for w;

Step 2. Compute w1 = 2r1 − γBTw;

Step 3. Solve (αΛ1 + γA+ γ2BT (βΛ2 + γC)−1B)z1 = w1 for z1;

Step 4. Solve (βΛ2 + γC)v = Bz1 for v;

Step 5. Compute z2 = v + wγ.

Remark 2.1. On the modified double shift-splitting (MDSS) method, when A
is symmetric (or nonsymmetric) positive definite, C is positive semidefinite, and
Λ1 = Λ2 = I, γ = 1 with α = β = 0, the MDSS method reduces to the method
in [36]; When γ = 1 the MDSS method reduces to the GDSS method in [30]. So,
the MDSS method is the generalization of existing iteration algorithm.
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3. Covergence of MDSS method

Now, we turn to study the convergence of the MDSS iteration for solving saddle
point problems (1). It is well known that the iteration method 2.3 is convergent for
every initial guess if and only if ρ(Γ) < 1, where ρ(Γ) denotes the spectral radius
of Γ. In [30], based on the GDSS method, Fan, Zhu and Zheng established the
spectral properties of the iteration matrix P−1

GDSSR. In this section, we will obtain
that the MDSS iteration method is unconditionally convergent.

Lemma 3.1. Assume that A is positive definite, B has full row rank, and C
is positive definite. Let λ be an eigenvalue of the iteration matrix ΓMDSS of the
MDSS iteration (5). Then λ ̸= ±1.

Proof. Similar to the proving process of Lemma 2.1 in [30], we obviously can get
the above Lemma.

Theorem 3.2. Let A ∈ Rn,n be positive definite, B ∈ Rn,m be of row full rank
matrix, and C ∈ Rm,m be positive definite. Let α, β and γ be positive real numbers.
Let ΓMDSS be the iterative matrix defined above. Then

ρ(ΓMDSS) < 1,

i.e., the modified double shift-splitting iteration method 2.3 converges uncondition-
ally to the exact solution of the nonsymmetric generalized saddle point problems
1.1.

Proof. If we let the u = (xT , yT )T be an eigenvector corresponding to the eigen-
value λ of ΓMDSS , then we get

RMDSSu = λPMDSSu,

which can be equivalently expanded as follows:αΛ1 − (2− γ)A −(2− γ)BT

(2− γ)B βΛ2 − (2− γ)C

u = λ

αΛ1 + γA γBT

−γB βΛ2 + γC

u. (3.1)

Then we have [αΛ1 − (2− γ)A]x− (2− γ)BT y = λ(αΛ1 + γA)x+ λγBT y,

(2− γ)Bx+ [βΛ2 − (2− γ)C]y = −λγBx+ λ(βΛ2 + γC)y.
(3.2)

Left-multiplying both sides of (3.2) by x∗ yields

αx∗Λ1x− γx∗Ax− (2− γ)(Bx)∗y = λ(αx∗Λ1x+ γx∗Ax) + λγ(Bx)∗y. (3.3)

The cases, Bx = 0 and Bx ̸= 0, are considered.
Suppose Bx ̸= 0. In this case, from the second formula in Eq. (3.3), we obtain

Bx =
β(λ− 1)Λ2y

2− γ + λγ
+ Cy. (3.4)
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Substituting Eq. into yields

(1− λ)αx∗Λ1x− (1 + λ)γx∗Ax = (2− γ + λγ)(
β(λ̄− 1)

λ̄γ + 2− γ
y∗Λ2y + y∗Cy). (3.5)

We need to go a step further to consider the two cases according to whether the
matrix C is symmetric or not.

Case I. If C is nonsymmetric. The matrix A is nonsymmetric positive definite. By
letting

x∗Ax = ξ + iη, y∗Cy = µ+ iv, x∗Λ1x = s, y∗Λ2y = ϕ,

then we can obtain from Eq. (3.5)

αφs+ βϕφ̄ = φ
′
γ(ξ + iη) + µ+ iv, with φ =

1− λ

2− γ + λγ
, φ

′
=

1 + λ

2− γ + λγ
. (3.6)

Since α, β, γ > 0 and s, ϕ, µ > 0, from (3.6) we can obtain

Re(φ) =
γφ

′
ξ + µ

αs+ βϕ
.

So, we have

|λ| =
∣∣∣∣1− φ

1 + φ

∣∣∣∣ =
√

(1−Re(φ))2 + Im(φ)2

(1 +Re(φ))2 + Im(φ)2
< 1,

where the real part and the imaginary part of a complex number z are denoted as
Re(z) and Im(z), respectively.

Case II. If C is symmetric. Using the same notation as in Case I, then it is not
hard to find that

x∗Ax = ξ + iη, y∗Cy = µ, y∗Λ2y = ϕ,

then we can obtain from Eq. (3.5)

αφs+ βϕφ̄ = φ
′
γ(ξ + iη) + µ, with φ =

1− λ

2− γ + λγ
, φ

′
=

1 + λ

2− γ + λγ
. (3.7)

Since α, β, γ > 0 and s, ϕ, µ > 0, from (3.7) we can obtain

Re(φ) =
γφ

′
ξ + µ

αs+ βϕ
.

Then we have

|λ| =
∣∣∣∣1− φ

1 + φ

∣∣∣∣ =
√

(1−Re(φ))2 + Im(φ)2

(1 +Re(φ))2 + Im(φ)2
< 1.

If Bx = 0, then Eq. implies

|λ| =
∣∣∣∣αx∗Λ1x− γx∗Ax

αx∗Λ1x+ γx∗Ax

∣∣∣∣ < 1.

Remark 3.1. On the one hand, the MDSS method is the generalization of the
GDSS method. On the other hand, when the appropriate parameters are selected,
the MDSS method will have better convergence than the GDSS method.
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4. Numerical examples

In this section, we give numerical experiments to demonstrate the conclusions drawn
above. The numerical experiments were done by using MATLAB 7.1 and the matrix
of the numerical experiments were generated based on a two-dimensional time-
harmonic Maxwell equations in mixed form, respectively. In all our runs we used
as a zero initial guess and stopped the iteration when the relative residual had been
reduced by at least six orders of magnitude (i.e, when ∥b−Axk∥2 ≤ 10−6∥b∥2).

Example 4.1. In this section, to further assess the effectiveness of the new precon-
ditioned matrix P−1

MDSSA combined with Krylov subspace methods, we present a
sample of numerical examples which are based on a two-dimensional time-harmonic
Maxwell equations in mixed form in a square domain (−1 ≤ x ≤ 1,−1 ≤ y ≤ 1).
For the simplicity, we take the generic source: f = 1 and a finite element subdivi-
sion such as Figure 2 based on uniform grids of triangle elements. Three mesh sizes

are considered: h =
√
2
8 ,

√
2

12 ,
√
2

18 , and Figure 1 shows a uniform mesh with h =
√
2
4 ,

The solutions of the preconditioned systems in each iteration are computed exactly.
Information on the sparsity of relevant matrices on the different meshes is given in
Table 1, where nz(A) denote the nonzero elements of matrix A.

Figure 1. A uniform mesh with h =
√
2

4
.

Since the new preconditioners have two parameters, in numerical experiments we
will test different values. Numerical experiments show the spectrum of the MDSS
preconditioned matrix P−1

MDSSA and the GDSS preconditioned matrix P−1
GDSSA

when choosing different parameters, which coincides with theoretical analysis.
In Figures 2, 4 and 6 we display the eigenvalues of the iteration matrix P−1

MDSSR
in the case of h =

√
2
8 , h =

√
2

12 and h =
√
2

18 for different parameters. In Figures 3, 5

and 7 we display the eigenvalues of the iteration matrix P−1
GDSSR in the case of h =√

2
8 ,h =

√
2

12 and h =
√
2

18 for different parameters. In Tables 2 ∼ 4 we show iteration

counts about preconditioned matrices P−1
MDSSA and P−1

GDSSA, when choosing differ-
ent parameters and applying to BICGSTAB and GMRES Krylov subspace iterative
methods on three meshes, where ItBICGSTAB(P−1

MDSSA) andResBICGSTAB(P−1
MDSSA)

are the iteration numbers and relative residual of the preconditioned matrices
P−1
MDSSA when applying to BICGSTAB Krylov subspace iterative methods, re-

spectively. ItGMRES(P−1
MDSSA) and ResGMRES(P−1

MDSSA) are the iteration numbers
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and relative residual of the preconditioned matrices P−1
MDSSA when applying to

GMRES Krylov subspace iterative methods, respectively. ItBICGSTAB(P−1
GDSSA),

ResBICGSTAB(P−1
GDSSA), ItGMRES(P−1

GDSSA), ResGMRES(P−1
GDSSA) are similar defi-

nitions.

Remark 4.1. Figures 2 ∼ 7 show that the distribution of eigenvalues of the
iteration matrix confirm our above theoretical analysis.

Remark 4.2. From Tables 2, 3 and 4, it is very easy to see that the preconditioner
PMDSS and PGDSS will improve the convergence of BICGSTAB and GMRES it-
eration efficiently when they are applied to the preconditioned BICGSTAB and
GMRES to solove two-dimensional time-harmonic Maxwell equations by choosing
different parameters.

Table 1. Datasheet for different grids.

Grid m n nz(A) nz(B) nz(W ) order of A
8× 8 176 49 820 462 217 225

16× 16 736 225 3556 2190 1065 961

32× 32 3008 961 14788 9486 4681 3969

64× 64 12160 3969 60292 39438 19593 16129
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Figure 2. The eigenvalue distribution for the MDSS iteration matrix Γ = P−1
MDSSRMDSS when

α = 0.3, β = 0.4, γ = 1.4(the first), α = 0.4, β = 0.8, γ = 1.1(the second),α = 0.6, β = 0.4, γ = 1.6(the

third) and α = 0.8, β = 0.2, γ = 1.3(the fourth), respectively. Here, h =
√

2
8 .
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Figure 3. The eigenvalue distribution for the GDSS iteration matrix Γ = P−1
GDSSRGDSS when α =

0.3, β = 0.4(the first), α = 0.4, β = 0.8(the second),α = 0.6, β = 0.4(the third) and α = 0.8, β = 0.2(the

fourth), respectively. Here, h =
√

2
8 .

Table 2. Iteration counts and relative residual about preconditioned matrices P−1
MDSSA and P−1

GDSSA
when choosing different parameters, where the unpreconditioned BICGSTAB and GMRES are divergent,

respectively. Here, h =
√

2
8 denotes the size of the corresponding grid.

α β γ ItBICGSTAB(P−1
MDSSA) ResBICGSTAB(P−1

MDSSA) α β ItBICGSTAB(P−1
GDSSA) ResBICGSTAB(P−1

GDSSA)

0.3 0.4 1.4 7.5 2.3518× 10−7 0.3 0.4 8 6.1707× 10−7

0.4 0.8 1.1 10.5 5.8265× 10−7 0.4 0.8 10.5 3.8835× 10−7

0.6 0.4 1.6 8 8.8470× 10−7 0.6 0.4 11 6.8382× 10−7

0.8 0.2 1.3 9 9.7976× 10−7 0.8 0.2 12 8.9706× 10−7

α β γ ItGMRES(P−1
MDSSA) ResGMRES(P−1

MDSSA) α β ItGMRES(P−1
GDSSA) ResGMRES(P−1

GDSSA)

0.3 0.4 1.4 13(1) 2.1762× 10−7 0.3 0.4 14(1) 7.2630× 10−7

0.4 0.8 1.1 16(1) 3.9411× 10−7 0.4 0.8 16(1) 9.5468× 10−7

0.6 0.4 1.6 13(1) 9.4223× 10−7 0.6 0.4 17(1) 5.9267× 10−7

0.8 0.2 1.3 15(1) 7.2074× 10−7 0.8 0.2 17(1) 7.5318× 10−7

Table 3. Iteration counts and relative residual about preconditioned matrices P−1
MDSSA and P−1

GDSSA
when choosing different parameters, where the unpreconditioned BICGSTAB and GMRES are divergent,

respectively. Here, h =
√

2
12 denotes the size of the corresponding grid.

α β γ ItBICGSTAB(P−1
MDSSA) ResBICGSTAB(P−1

MDSSA) α β ItBICGSTAB(P−1
GDSSA) ResBICGSTAB(P−1

GDSSA)

0.3 0.4 1.4 10 7.9753× 10−7 0.3 0.4 12.5 2.6569× 10−7

0.4 0.8 1.1 14 3.3046× 10−7 0.4 0.8 13 8.2725× 10−7

0.6 0.4 1.6 11 9.3725× 10−7 0.6 0.4 15 3.2842× 10−7

0.8 0.2 1.3 19.5 8.6923× 10−7 0.8 0.2 15 9.1484× 10−7

α β γ ItGMRES(P−1
MDSSA) ResGMRES(P−1

MDSSA) α β ItGMRES(P−1
GDSSA) ResGMRES(P−1

GDSSA)

0.3 0.4 1.4 17(1) 4.3051× 10−7 0.3 0.4 19(1) 6.9077× 10−7

0.4 0.8 1.1 22(1) 5.0893× 10−7 0.4 0.8 23(1) 5.0511× 10−7

0.6 0.4 1.6 18(1) 8.0440× 10−7 0.6 0.4 22(1) 9.5648× 10−7

0.8 0.2 1.3 21(1) 5.4387× 10−7 0.8 0.2 23(1) 8.0100× 10−7
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Figure 4. The eigenvalue distribution for the MDSS iteration matrix Γ = P−1
MDSSRMDSS when

α = 0.3, β = 0.4, γ = 1.4(the first), α = 0.4, β = 0.8, γ = 1.1(the second),α = 0.6, β = 0.4, γ = 1.6(the

third) and α = 0.8, β = 0.2, γ = 1.3(the fourth), respectively. Here, h =
√

2
12 .

Table 4. Iteration counts and relative residual about preconditioned matrices P−1
MDSSA and P−1

GDSSA
when choosing different parameters, where the unpreconditioned BICGSTAB and GMRES are divergent,

respectively. Here, h =
√

2
18 denotes the size of the corresponding grid.

α β γ ItBICGSTAB(P−1
MDSSA) ResBICGSTAB(P−1

MDSSA) α β ItBICGSTAB(P−1
GDSSA) ResBICGSTAB(P−1

GDSSA)

0.3 0.4 1.4 14.5 4.8759× 10−7 0.3 0.4 19 1.9873× 10−7

0.4 0.8 1.1 18 8.8497× 10−7 0.4 0.8 17.5 8.2854× 10−7

0.6 0.4 1.6 16 8.8967× 10−7 0.6 0.4 18.5 9.9327× 10−7

0.8 0.2 1.3 19.5 7.4226× 10−7 0.8 0.2 20.5 6.6475× 10−7

α β γ ItGMRES(P−1
MDSSA) ResGMRES(P−1

MDSSA) α β ItGMRES(P−1
GDSSA) ResGMRES(P−1

GDSSA)

0.3 0.4 1.4 23(1) 5.6343× 10−7 0.3 0.4 26(1) 9.5003× 10−7

0.4 0.8 1.1 31(1) 6.6961× 10−7 0.4 0.8 32(1) 8.2485× 10−7

0.6 0.4 1.6 24(1) 7.3405× 10−7 0.6 0.4 30(1) 8.1096× 10−7

0.8 0.2 1.3 29(1) 5.2812× 10−7 0.8 0.2 32(1) 9.1635× 10−7

5. Conclusions

In this paper, based on generalized double shift-splitting (GDSS) preconditioner by
Fan, Zhu and Zheng [30], we establish the modified double shift-splitting (MDSS)
preconditioner for nonsymmetric generalized saddle point problems. Furthermore,
we theoretically verify the convergence conditions of the corresponding matrix split-
ting iteration methods and preconditioning properties of the MDSS preconditioned
saddle point matrices. Finally, numerical examples show the spectrum of the new
preconditioned matrix for the different parameters.
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Figure 5. The eigenvalue distribution for the GDSS iteration matrix Γ = P−1
GDSSRGDSS when α =

0.3, β = 0.4(the first), α = 0.4, β = 0.8(the second),α = 0.6, β = 0.4(the third) and α = 0.8, β = 0.2(the

fourth), respectively. Here, h =
√

2
12 .
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Figure 6. The eigenvalue distribution for the MDSS iteration matrix Γ = P−1
MDSSRMDSS when

α = 0.3, β = 0.4, γ = 1.4(the first), α = 0.4, β = 0.8, γ = 1.1(the second),α = 0.6, β = 0.4, γ = 1.6(the

third) and α = 0.8, β = 0.2, γ = 1.3(the fourth), respectively. Here, h =
√
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Figure 7. The eigenvalue distribution for the GDSS iteration matrix Γ = P−1
GDSSRGDSS when α =
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