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ITERATIVE METHOD FOR THE THERMALLY
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Abstract In this paper, we designed an Uzawa iterative method for solv-
ing the thermally coupled stationary incompressible magnetohydrodynamics
system, where a decoupled discrete system is obtained and no saddle point
problem is required to deal with at each iterative step except the initial guess.
Then, the convergence analysis of the presented method is provided. Finally,
the effectiveness of the proposed method is illustrated with some numerical
examples.
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1. Introduction

This paper is concerned with numerical methods for solving the thermally coupled
incompressible magnetohydrodynamics (MHD) flow for applications like the design
of electromagnetic pumps, nuclear reactor cooling, steel casting, and crystal growth.
The thermally coupled MHD model can describe buoyancy effects due to temper-
ature differences in the MHD flow. The governing equations of this model are the
MHD equations coupled with the heat equation by the Boussinesq approximation.
The strong coupling between the saddle-point subproblems, the nonlinearity, and
the extra temperature field needed for the MHD flow make accurate simulation of
the MHD flow challenging.

Although multi-physical field coupling of the stationary thermally coupled in-
compressible magnetohydrodynamics model makes its numerical simulation chal-
lenging, the research is of great significance due to the wide applications of the
model. There have been many literatures on numerical investigations for the consid-
ered equations in recent years. For example, the thermally coupled MHD problem is
studied initially by Meir [19,20], where the existence and uniqueness of the solutions
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to the considered equations are addressed, and the finite element approximation for
the problem is studied. Further, Meir and Schmidt [21] have proposed a general ap-
proach to stationary, electromagnetically, and thermally driven liquid-metal flows.
Some existence results of weak solutions to two stationary MHD systems of equa-
tions including Joule heating have been given in [4]. Ravindran [26] has investigated
and proposed an efficient partitioned time-stepping scheme for solving the MHD sys-
tem with temperature-dependent coefficients. Badia et al. [3] have extended block
preconditioning techniques to the thermally coupled incompressible inductionless
MHD problem. Additionally, a stabilized finite element method is designed to solve
thermally coupled MHD flows [8]. Sheikholeslami [27] has conducted an investi-
gation into the importance of the generated magnetic field in enhancing Brownian
diffusion and its profound influence on the hydrothermal analysis of the base liq-
uid. This stabilized method is based on splitting the unknown into a finite element
component and a subscale and on giving an approximation for the latter. Recently,
Yang and Zhang [29] have proposed three iterative finite element methods for the
thermally coupled stationary incompressible MHD equations. Zhang et al. [30] have
designed the two-level finite element iterative methods for the stationary thermally
coupled incompressible MHD equations. Keram et al. [16] have designed an itera-
tive method based on linearization approach for the thermally coupled stationary
incompressible MHD equations at high physical parameters. A decoupled Crank-
Nicolson time-stepping scheme is designed in [25], and the unconditional stability
and optimal order error estimates of the scheme are proved. In addition, for the
non-stationary equations, Ding et al. [9] have given the Crank-Nicolson extrapo-
lated fully discrete scheme based on the finite element method and obtained some
optimal error estimates for the velocity, magnetic induction, and temperature un-
der a weak regularity hypothesis. Moreover, Qiu et al. [24] have studied a fully
discrete Euler semi-implicit scheme for the nonstationary electromagnetically and
thermally driven flow, which is describing the motion of a nonisothermal incom-
pressible magnetohydrodynamics fluid subject to generalized Boussinesq problem
with temperature dependent parameters. Ma et al. [18] have proposed a fully dis-
crete decoupled finite element method for the thermally coupled incompressible
magnetohydrodynamic problem. In addition, Liu et al. [17] have presented a grad-
div stabilization with the Jacobi iteration to the thermally coupled incompressible
MHD system. Yang et al. [29] have proved existence and uniqueness of weak so-
lution to a Voigt regularization of the three-dimensional thermally coupled MHD
equations and proposed a fully discrete scheme that has unconditional stability and
is convergent. Although the previous works obtain many efficient numerical results,
relatively little attention is given to the development of efficient numerical methods
to deal with the strong coupling between the saddle-point subproblems.

As is known, the Uzawa iterative method [2] is first proposed to solve the con-
strained optimization problems, where the saddle point problem naturally arises.
Since it is simple, efficient, and has minimal computer memory requirements, it
has been widely used in computational science and engineering. For the nonlinear
partial differential equations, Chen et al. [6] have constructed some Uzawa-type it-
erative methods for solving the steady incompressible Navier-Stokes equations and
have proved that the methods converge geometrically with a contraction number.
Further, the steady-state MHD equations are solved by applying some Uzawa-type
iterative algorithms [31]. The lines of arguments in the presented paper follow
closely those used in [31]. Recently, Hong et al. [15] have presented an augmented
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Lagrangian Uzawa-type method for qquasi-static multiple-network poroelasticity
equations and the robust uniform linear convergence of its parameters is proved.
Moreover, Çıbık et al. [7] have constructed the Ramshaw-Mesina iteration to solve
some saddle-point problems. Ouertani et al. [23] have presented two algorithms for
the resolution of the time-dependent Stokes problem with nonstandard boundary
conditions by the domain-decomposition spectral element method.

In this paper, to conquer the numerical difficulties mentioned earlier and find
an efficient and accurate approximation of the thermally coupled stationary incom-
pressible MHD problem, we are going to devise an Uzawa iterative method for the
considered problem based on a mixed finite element method, where a decoupled
discrete system is solved and no saddle-point system is required to solve at each
iterative step except the initial guess. The remainder of the paper is organized as
follows. In Section 2, we describe the problem to be solved, some notations, and
the basic facts to be used throughout the paper. The method is proposed and fully
analyzed for the considered problem in Section 3. Numerical examples are presented
in the final section.

2. Problem statement

Let Ω be a bounded, simple-connected domain in R2, which is convex or has a C1,1

boundary ∂Ω. In this paper, we consider the following thermally coupled stationary
incompressible MHD equations [19, 20], i.e., the stationary incompressible Navier-
Stokes equations and Maxwell’s equations coupled to the heat equation by the
Boussinesq approximation

−Re−1∆u+ (u · ∇)u+∇p+ sH× curlH = f + βT j, in Ω,

sRm−1curl(curlH)− scurl(u×H) = g, in Ω,

− κ∆T + u · ∇T = γ, in Ω,

divu = 0, divH = 0, in Ω,

(2.1)

where u = (u1(x), u2(x), 0), H = (H1(x), H2(x), 0), p and T are the velocity field,
magnetic field, pressure and temperature, respectively. Several coefficients appeared
in (2.1) are the hydrodynamic Reynolds number Re, the magnetic Reynolds num-
ber Rm, the thermal expansion coefficient β, the thermal conductivity κ and the
coupling number s. In addition, g = (g1(x), g2(x), 0) represents the known applied
current with divg = 0, f = (f1(x), f2(x), 0), is a force term for the magnetic induc-
tion, γ is a given heat source, and j denotes a unit vector in the direction opposite
to the direction of gravity for u.

Furthermore, the system (2.1) is considered in conjunction with the following
boundary conditions [5, 9, 14,19]:

u|∂Ω = 0, (no-slip condition),

H · n|∂Ω = 0, n× curlH|∂Ω = 0, (perfectly conducting wall),

T |ΓD
= 0, ∇T · n|ΓN

= 0, (insulated wall),

(2.2)

where n the outer unit normal vector to ∂Ω and ΓD = ∂Ω \ ΓN is a regular open
subset of ∂Ω.

For 1 ≤ q ≤ ∞ and m ∈ N+, we define the usual Sobolev space Wm,q(Ω)
norm and Lebegue space Lq(Ω) norm by∥ · ∥Wm,q(Ω) and ∥ · ∥Lq(Ω), respectively.
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Particularly, L2(Ω) norm and its inner product are denoted by ∥ · ∥0 and (·, ·). In
addition, we write Hm(Ω) for Wm,2(Ω) and ∥ · ∥m represents the norm in Hm(Ω).
Next, to write the variational form of the system (2.1)-(2.2), we introduce the
following necessary function spaces:

X = {v ∈ H1(Ω)2 : v|∂Ω = 0}, W = {B ∈ H1(Ω)2 : B · n|∂Ω = 0},
Q = {S ∈ H1(Ω) : S|ΓD

= 0}, M = {q ∈ L2(Ω) : (q, 1) = 0}.

Now, we introduce the product space D = X×W, which is equipped with the norm
for all (w,Φ) ∈ D, ∥∇(w,Φ)∥20 = ∥∇w∥20 + ∥∇Φ∥20.

Moreover, we define three continuous bilinear forms a0(·, ·), a1(·, ·) and a2(·, ·)
on Q×Q, X×X and W ×W, respectively, by

a0(T, S) = κ(∇T,∇S), ∀T, S ∈ Q, a1(u,v) = Re−1(∇u,∇v), ∀u,v ∈ X,

a2(H,B) = sRm−1
(
(curlH, curlB) + (divH,divB)

)
, ∀H,B ∈ W,

and three trilinear forms b0(·, ·, ·), b1(·, ·, ·) and b2(·, ·, ·) on X×Q×Q, X×X×X
and W ×W ×X, by

b0(u, T, S) = (u · ∇T, S) +
1

2
((divu)T, S)

=
1

2
(u · ∇T, S)− 1

2
(u · ∇S, T ), ∀u ∈ X, T, S ∈ Q,

b1(u,w,v) = ((u · ∇)w,v) +
1

2
((divu)w,v)

=
1

2
((u · ∇)w,v)− 1

2
((u · ∇)v,w), ∀u,v,w ∈ X,

b2(H,B,v) = s(H× curlB,v), ∀v ∈ X, H,B ∈ W.

These trilinear forms satisfy the following properties [11,12,14]:

|b0(u, T, S)| ≤ N0∥∇u∥0∥∇T∥0∥∇S∥0,
|b1(u,w,v)| ≤ N1∥∇u∥0∥∇w∥0∥∇v∥0, (2.3)

|b2(H,B,v)| ≤ sN2∥∇H∥0∥∇B∥0∥∇v∥0,

for all u,v,w ∈ X and H,B ∈ W, where Ni > 0, i = 0, 1, 2 are constants depending
on Ω. In addition, from Gerbeau et al. [11], Girault and Raviart [12], Nochetto and
Pyo [22] and Gunzburger et al. [13], it is seen that the following inequalities hold:
for all B ∈ W,

∥∇B∥20 ≤ c1(∥curlB∥20 + ∥divB∥20), (2.4)

∥curlB∥0 ≤
√
2∥∇B∥0, (2.5)

where c1 is positive constant and only dependent on Ω.
Then, the thermally coupled stationary incompressible MHD problem (2.1)-(2.2)

can be rewritten as: For all ((v,B), S, q) ∈ D×Q×M , search for ((u,H), T, p) ∈
D×Q×M such that

A0((u,H), (v,B)) +A1((u,H), (u,H), (v,B))− d((v,B), p)

= (F, (v,B)) +G(T, (v,B)),

d((u,H), q) = 0,

a0(T, S) + b0(u, T, S) = (γ, S),

(2.6)
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where
A1((u,H), (w,Φ), (v,B)) = b1(u,w,v) + b2(H,Φ,v)− b2(H,B,w),
A0((u,H), (v,B)) = a1(u,v) + a2(H,B), (F, (v,B)) = (f ,v) + (g,B),
G(T, (v,B)) = β(T j,v) and d((v,B), p) = (divv, p).

To discuss the well-posedness of the above mixed variational formulation, we
recall the coercive and continuous properties of A0((·, ·), (·, ·)) and the continuous
property of A1((·, ·), (·, ·), (·, ·)).

Lemma 2.1. [10, 31] For all (u,H), (w,Φ), (v,B) ∈ D, there hold

A0((u,H), (v,B)) ≤ cA∥∇(u,H)∥0∥∇(v,B)∥0,
A0((u,H), (u,H)) ≥ νA∥∇(u,H)∥20,
A1((u,H), (w,Φ), (v,B)) ≤ N∥∇(u,H)∥0∥∇(w,Φ)∥0∥∇(v,B)∥0,

where cA = max{Re−1, 4sRm−1}, νA = min{Re−1, sRm−1c−1
1 } and

N =
√
2max{N1, sN2}.

Now, we recall the following existence and uniqueness results for the problem
(2.1)-(2.2) [19,20,29].

Theorem 2.1. Let γ ∈ Q′, F ∈ D′ and νA satisfy the following uniqueness condi-
tion:

0 < δ < 1,

where δ=δ1+δ2 with δ1 := ν−2
A N(∥F∥−1+κ−1β∥γ∥−1) and δ2 := ν−1

A κ−2βN0∥γ∥−1,

∥γ∥−1 = sup
T∈Q,T ̸=0

(γ,T )
∥∇T∥0

, ∥F∥−1 = sup
(u,H)∈D,(u,H)̸=(0,0)

(F,(u,H))
∥∇(u,H)∥0

, and CF is the

Poincaré constant. Then the problem (2.1) and (2.2) admits a unique solution
((u,H), p, T ) ∈ D×M ×Q such that

νA∥∇(u,H)∥0 ≤ (∥F∥−1 + C2
Fβκ

−1∥γ∥−1), κ∥∇T∥0 ≤ ∥γ∥−1.

Noting that in the above theorem, one applies the fact that ∥v∥−1 ≤ C2
F ∥∇v∥0,

for all v ∈ H1
0 (Ω).

3. An Uzawa iterative method

From now on, let h be a real positive parameter. The conforming finite element
subspaces (Xh,Wh, Qh,Mh) of (X,W, Q,M) is characterized by Kh = Kh(Ω), a
partitioning of Ω into triangles K, assumed to be uniformly regular as h → 0. Next,
we define the product space Dh = Xh ×Wh. Further, we assume that the couple
Xh ×Mh admits the following discrete inf-sup condition: for each qh ∈ Mh, there
exists vh ∈ Xh, such that [12]

sup
0̸=vh∈Xh

∫
Ω
qh divvh dx

∥∇vh∥0
≥ β̃∥qh∥0, (3.1)

where β̃ > 0 is a constant depending on Ω.
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Then, according to the above finite element subspaces, the finite element ap-
proximation for (2.6) is to seek ((uh,Hh), Th, ph) ∈ Dh×Qh×Mh such that for all
((v,B), S, q) ∈ Dh ×Qh ×Mh

a0(Th, S) + b0(uh, Th, S) = (γ, S),

A0((uh,Hh), (v,B)) +A1((uh,Hh), (uh,Hh), (v,B))− d((v,B), ph)

= (F, (v,B)) +G(Th, (v,B)),

d((uh,Hh), q) = 0.

(3.2)

The following results can be found in [20,29], which describe the stability of the
numerical solutions obtained by (3.2).

Theorem 3.1. Let ((uh,Hh), Th, ph) ∈ Dh × Qh ×Mh be a solution of the finite
element discretization (3.2). Then, under the assumptions of Theorem 2.1, there
hold

νA∥∇(uh,Hh)∥0 ≤ (∥F∥−1 + C2
Fβκ

−1∥γ∥−1), κ∥∇Th∥0 ≤ ∥γ∥−1.

Now, we present an Uzawa iterative method for the finite element scheme (3.2)
of the considered problem, and then analyze its convergence based on a positive
number ρ called relaxation parameter.

Algorithm 3.1. (Uzawa algorithm). Given an initial guess ((u0
h,H

0
h), T

0
h , p

0
h) ∈

Dh ×Qh ×Mh, search for ((un+1
h ,Hn+1

h ), Tn+1
h , pn+1

h ) ∈ Dh ×Qh ×Mh such that
a0(T

n+1
h , S) + b0(u

n
h, T

n+1
h , S) = (γ, S),

A0((u
n+1
h ,Hn+1

h ), (v,B)) +A1((u
n
h,H

n
h), (u

n+1
h ,Hn+1

h ), (v,B))

= −d((v,B), pnh)(F, (v,B)) +G(Tn+1
h , (v,B)),

(pn+1
h , q) = (pnh, q)− ρd((un+1

h ,Hn+1
h ), q),

(3.3)

for all (v,B) ∈ Dh, S ∈ Qh and q ∈ Mh, where ρ > 0 is the relaxation parameter
and n denotes iterative step.

Note that the nonlinear terms in (3.2) are linearized by allowing the nonlin-
earities to lag one time step behind. Then, the velocity, magnetic, pressure, and
temperature are decoupled, a decoupled discrete system is obtained and no sad-
dle point problem is required to solve at each iterative step except the initial guess.
Furthermore, for Algorithm 3.1, the initial guess ((u0

h,B
0
h), T

0
h , p

0
h) ∈ Dh×Qh×Mh

is defined by solving the following equations:
a0(T

0
h , S) = (γ, S), ∀S ∈ Qh,

A0((u
0
h,H

0
h), (v,B))− d((v,B), p0h)

= (F, (v,B)) +G(T 0
h , (v,B)), ∀(v,B) ∈ Dh,

d((u0
h,H

0
h), q) = 0, ∀q ∈ Mh.

(3.4)

Although (3.4) is a saddle point problem, it is also a linear problem. Compared
with the nonlinear saddle point problem (3.2), it is much simpler to solve. In the
numerical tests, we apply the Crout solver to obtain the initial guess.

Then, we will expect to prove the following iterative error bounds between the
finite element solutions of (3.2) and the Uzawa iterative solutions of (3.3). For
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convenience, we set enh = uh−un
h, ξ

n
h = Hh−Hn

h , ηnh = ph−pnh and θnh = Th−Tn
h ,

n ≥ 0. Firstly, we need to derive the iterative error bounds between the equations
(3.2) and (3.4).

Lemma 3.1. Let ((u0
h,H

0
h), p

0
h, T

0
h ) ∈ Dh×Qh×Mh be the solution of (3.4). Then,

under the assumptions of Theorem 3.1, we have the following results

∥∇θ0h∥0 ≤ N0κ
−2ν−1

A ∥γ∥−1(∥F∥−1 + C2
Fβκ

−1∥γ∥−1),

∥∇(e0h, ξ
0
h)∥0 ≤ ν−1

A δ(∥F∥−1 + C2
Fβκ

−1∥γ∥−1),

∥η0h∥0 ≤ β̃−1δ(cAν
−1
A + 1)(∥F∥−1 + C2

Fβκ
−1∥γ∥−1).

Proof. By subtracting the first equation of (3.2) from the first equation of (3.4),
we have

a0(θ
0
h, S) + b0(uh, Th, S) = 0. (3.5)

Taking S = θ0h in (3.5) and using (2.3) yield

∥∇θ0h∥0 ≤ κ−1N0∥∇uh∥0∥∇Th∥0 ≤ κ−1N0∥∇(uh,Hh)∥0∥∇Th∥0.

In view of Theorem 3.1, we deduce that

∥∇θ0h∥0 ≤ N0κ
−2ν−1

A ∥γ∥−1(∥F∥−1 + C2
Fβκ

−1∥γ∥−1). (3.6)

Next, subtract the second equation of (3.2) from the second equation of (3.4) to
get

A0((e
0
h, ξ

0
h), (v,B)) +A1((uh,Hh), (uh,Hh), (v,B)))− d((v,B), η0h)

= G(θ0h, (v,B)).

Choosing (v,B) = (e0h, ξ
0
h) in (3.7), we obtain

A0((e
0
h, ξ

0
h), (e

0
h, ξ

0
h)) = −A1((uh,Hh), (uh,Hh), (e

0
h, ξ

0
h)) +G(θ0h, (e

0
h, ξ

0
h)),

where we have used the third equation of (3.2) and the third equation of (3.4).
Hence, utilizing Lemma 2.1, we get

νA∥∇(e0h, ξ
0
h)∥0 ≤ N∥∇(uh,Hh)∥20 + β∥θ0h∥−1,

which combines with (3.6) and Theorem 3.1 to give

∥∇(e0h, ξ
0
h)∥0 ≤ ν−1

A δ(∥F∥−1 + C2
Fβκ

−1∥γ∥−1). (3.7)

Finally, use the discrete inf-sup condition (3.1) and (3.7) to bound

∥η0h∥0 ≤ β̃−1(cA∥∇(e0h, ξ
0
h)∥0 +N∥∇(uh,Hh)∥20 + β∥θ0h∥−1)

≤ β̃−1δ(cAν
−1
A + 1)(∥F∥−1 + C2

Fβκ
−1∥γ∥−1),

where we have applied (3.6) and (3.7).
Next, we will consider the convergence of the Uzawa iterative method for the

thermally coupled stationary incompressible MHD problem. First, we show that
the function sequence generated by this iterative algorithm is bounded, and then
we will develop the corresponding convergence rate analysis based on the relaxation
parameter.
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Theorem 3.2. Let {(un
h,H

n
h), p

n
h, T

n
h } be the function sequence of Algorithm 3.1.

Then, under the assumptions of Theorem 3.1, if the relaxation parameter ρ ∈
(0, 2νA(1− δ)), then we have

D1∥∇(en+1
h , ξn+1

h )∥20 + ∥ηn+1
h ∥20 ≤ D1∥∇(e0h, ξ

0
h)∥20 + ∥η0h∥20,

D1∥∇θn+1
h ∥20 ≤ κ−4N2

0 ∥γ∥2−1(D1∥∇(e0h, ξ
0
h)∥20 + ∥η0h∥20),

where D1 = ρ
2 ((2νA − ρ) +

√
∆) and ∆ = (2νA − ρ)2 − 4ν2Aδ

2.

Proof. Subtracting the first equation of (3.2) from the first equation of (3.3), we
have

a0(θ
n+1
h , S) + b0(e

n
h, Th, S) + b0(u

n
h, θ

n+1
h , S) = 0. (3.8)

Taking S = θn+1
h in (3.8) and combining (2.3) with the fact that b0(u

n
h, θ

n+1
h , θn+1

h ) =
0, we obtain

κ∥∇θn+1
h ∥0 ≤ N0∥∇enh∥0∥∇Th∥0,

which combines Theorem 3.1 to give

∥∇θn+1
h ∥0 ≤ κ−2N0∥γ∥−1∥∇(enh, ξ

n
h)∥0. (3.9)

Then, subtracting the second equation of (3.2) from the second equation of (3.3),
we have

A0((e
n+1
h , ξn+1

h ), (v,B)) +A1((e
n
h, ξ

n
h), (uh,Hh), (v,B))− d((v,B), ηnh)

+A1((u
n
h,H

n
h), (e

n+1
h , ξn+1

h ), (v,B)) = G(θn+1
h , (v,B)). (3.10)

Selecting (v,B) = (en+1
h , ξn+1

h ) in (3.10) yields

νA∥∇(en+1
h , ξn+1

h )∥20 − d((en+1
h , ξn+1

h ), ηnh)

≤ −A1((e
n
h, ξ

n
h), (uh,Hh), (e

n+1
h , ξn+1

h )) +G(θn+1
h , (en+1

h , ξn+1
h )). (3.11)

Note that A1((u
n
h,H

n
h), (e

n+1
h , ξn+1

h ), (en+1
h , ξn+1

h )) = 0.
Moreover, according to the Polarization identity 2(a, b) = ∥a+b∥20−∥a∥20−∥b∥20,

combining the third equation of (3.2) and the third equation of (3.3), we arrive at

−d((en+1
h , ξn+1

h ), ηnh) = −d((uh,Hh), η
n
h) + d((un+1

h ,Hn+1
h ), ηnh)

= ρ−1(pnh − pn+1
h , ηnh)

= ρ−1(ηn+1
h − ηnh , η

n
h)

= (2ρ)−1(∥ηn+1
h ∥20 − ∥ηnh∥20 − ∥ηn+1

h − ηnh∥20). (3.12)

Plugging (3.12) into (3.11) leads to

2ρνA∥∇(en+1
h , ξn+1

h )∥20 + ∥ηn+1
h ∥20

≤∥ηnh∥20 + ∥ηn+1
h − ηnh∥20 + 2ρG(θn+1

h , (en+1
h , ξn+1

h ))

− 2ρA1((e
n
h, ξ

n
h), (uh,Hh), (e

n+1
h , ξn+1

h )). (3.13)

Next, applying the third equation of (3.2) and third equation of (3.3) again to
estimate the term ∥ηn+1

h − ηnh∥0, we get

(ηn+1
h − ηnh , q) = (pnh − pn+1

h , q) = ρd((un+1
h ,Hn+1

h ), q) = −ρd((en+1
h , ξn+1

h ), q).
(3.14)
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Setting q = ηn+1
h − ηnh in (3.14) and noticing the fact that ∥divv∥0 ≤ ∥∇v∥0 proved

in [22] yield

∥ηn+1
h − ηnh∥0 ≤ ρ∥∇(en+1

h , ξn+1
h )∥0. (3.15)

Hence, making use of (3.15) and Lemma 2.1, we rewrite (3.13) as

ρ(2νA − ρ)∥∇(en+1
h , ξn+1

h )∥20 + ∥ηn+1
h ∥20

≤∥ηnh∥20 + 2ρβ∥θn+1
h ∥−1∥∇(en+1

h , ξn+1
h )∥0

+ 2ρN∥∇(enh, ξ
n
h)∥0∥∇(uh,Hh)∥0∥∇(en+1

h , ξn+1
h )∥0.

Then, using (3.9) and the Young inequality, we derive that

ρ(νA(2− δς)− ρ)∥∇(en+1
h , ξn+1

h )∥20 + ∥ηn+1
h ∥20

≤ ∥ηnh∥20 + ρνAδς
−1∥∇(enh, ξ

n
h)∥20,

(3.16)

where ς > 0 is a parameter to be determined later on.
Furthermore, we solve a quadratic algebraic equation

νAδς
2 − (2νA − ρ)ς + νAδ = 0,

to get a positive root ς = ς⋆ which makes νA(2− δς)− ρ = νAδς
−1 hold. It is easy

to obtain

ς⋆ =
(2νA − ρ)−

√
∆

2νAδ
,

where ∆ = (2νA − ρ)2 − 4ν2Aδ
2. Note that the condition ρ ∈ (0, 2νA(1− δ)). Hence,

ς⋆ is a positive root, due to the fact that ∆ = (2νA(1 + δ)− ρ)(2νA(1− δ)− ρ).
Finally, letD1 = ρ(νA(2−δς⋆)−ρ) = ρνAδ(ς

⋆)−1. Then, D1 = ρ
2 ((2νA−ρ)+

√
∆)

and (3.16) is rewritten as

D1∥∇(en+1
h , ξn+1

h )∥20 + ∥ηn+1
h ∥20 ≤ D1∥∇(enh, ξ

n
h)∥20 + ∥ηnh∥20. (3.17)

In view of (3.9), it follows from (3.17) that

D1∥∇(en+1
h , ξn+1

h )∥20 + ∥ηn+1
h ∥20 ≤ D1∥∇(e0h, ξ

0
h)∥20 + ∥η0h∥20,

D1∥∇θn+1
h ∥20 ≤ κ−4N2

0 ∥γ∥2−1(D1∥∇(e0h, ξ
0
h)∥20 + ∥η0h∥20).

Now, we are going to develop our convergence rate analysis for the Uzawa iter-
ative algorithm.

Theorem 3.3. Under assumptions of Theorem 3.2, the following estimates hold:

D∥∇(en+1
h , ξn+1

h )∥20 + ∥ηn+1
h ∥20 ≤ Hn+1(D∥∇(e0h, ξ

0
h)∥20 + ∥η0h∥20),

D∥∇θn+1
h ∥20 ≤ κ−4N2

0 ∥γ∥2−1H
n(D∥∇(e0h, ξ

0
h)∥20 + ∥η0h∥20),

where D ∈
(
0, 1

2ν
2
A

)
and H ∈

(
1− 1

4

(
νA

cA

)2
, 1
)
are two parameters independent of

n and h.
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Proof. In fact, according to Lemma 3.1 and Theorem 3.2, 3.1, there exists a
positive constant D2 independent of n and h such that

∥∇(un
h,H

n
h)∥0 ≤ D2.

Then, rewrite (3.10) to give

d((v,B), ηnh) =A0((e
n+1
h , ξn+1

h ), (v,B)) +A1((e
n
h, ξ

n
h), (uh,Hh), (v,B))

−G(θn+1
h , (v,B)) +A1((u

n
h,H

n
h), (e

n+1
h , ξn+1

h ), (v,B)).

Applying the inf-sup condition (3.1) to the above equation, we obtain

β̃∥ηnh∥0 ≤ (cA +ND2)∥∇(en+1
h , ξn+1

h )∥0 + νAδ∥∇(enh, ξ
n
h)∥0,

where we have used Theorem 3.1 and (3.9). That is

β̃2∥ηnh∥20 ≤ 2
(
(cA +ND2)

2∥∇(en+1
h , ξn+1

h )∥20 + ν2Aδ
2∥∇(enh, ξ

n
h)∥20

)
.

Hence, one gets

∥∇(en+1
h , ξn+1

h )∥20 ≥ D3∥ηnh∥20 −D4∥∇(enh, ξ
n
h)∥20, (3.18)

where D3 = β̃2

2(cA+ND2)2
and D4 =

ν2
Aδ2

(cA+ND2)2
.

Next, denote cρ,ς = ρ(νA(2− δς)− ρ). Then (3.16) becomes

σ∥∇(en+1
h , ξn+1

h )∥20 + (cρ,ς − σ)∥∇(en+1
h , ξn+1

h )∥20 + ∥ηn+1
h ∥20

≤ ρνAδς
−1∥∇(enh, ξ

n
h)∥20 + ∥ηnh∥20,

where σ ∈ (0, cρ,ς) is a parameter to be determined. Substituting (3.18) into the
above inequality, we obtain

(cρ,ς − σ)∥∇(en+1
h , ξn+1

h )∥20 + ∥ηn+1
h ∥20

≤ (ς−1ρνAδ + σD4)∥∇(enh, ξ
n
h)∥20 + (1− σD3)∥ηnh∥20. (3.19)

Further, we will choose parameters ς and σ such that

cρ,ς − σ

1
=

ς−1ρνAδ + σD4

1− σD3
, (3.20)

and 1− σD3 > 0, which leads to

D3σ
2 − (1 + cρ,ςD3 +D4)σ + cρ,ς − δρνAς

−1 = 0. (3.21)

Because

cρ,ς − δρνAς
−1 = (1 + cρ,ςD3 +D4)σ −D3σ

2

> cρ,ςD3σ −D3σ
2

> 0,

we get cρ,ς − δρνAς
−1 > 0, which combines the definition of cρ,ς to yield

δνAς
2 − (2νA − ρ)ς + νAδ < 0.
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Next, we solve this quadratic inequality to get

(2νA − ρ)−
√
∆

2νAδ
< ς <

(2νA − ρ) +
√
∆

2νAδ
.

Noticing that ρ ∈ (0, 2νA(1− δ)), we arrive at ∆ = ((2νA − ρ) + 2νAδ)((2νA − ρ)−
2νAδ) > 0. Here, we select

ς = ς† =
2νA − ρ

2νAδ
.

Substituting the parameter ς† into (3.21), we get cρ,ς† = ρνA − ρ2

2 , and a quadratic
algebraic equation

aσ2 − bσ + c = 0, (3.22)

where a = D3, b = 1+D4 + cρ,ς†D3 and c = cρ,ς† −
ρ2ν2

Aδ2

c
ρ,ς†

. It is easy to verify that

b > 1 + cρ,ς†a and c < cρ,ς† , which lead to

b2 − 4ac > (1 + cρ,ς†a)
2 − 4acρ,ς† ≥ 0.

Hence, if we select ς = ς†, then (3.21) has a real root σ = σ† = b−
√
b2−4ac
2a .

Next, we choose the parameters ς and σ as ς† and σ†, so the estimate (3.19) can
be expressed as

D∥∇(en+1
h , ξn+1

h )∥20 + ∥ηn+1
h ∥20 ≤ H(D∥∇(enh, ξ

n
h)∥20 + ∥ηnh∥20), (3.23)

where H = 1 − σ†D3 and D = cρ,ς† − σ†. Note that D > 0 and H > 0. Next, we
will prove them.

For the quadratic algebraic equation (3.22), we consider its quadratic function
f(x) = ax2−bx+c. Because a > 0, cρ,ς† > 0, b > 1+cρ,ς†a and c < cρ,ς† , we obtain
lim

x→−∞
f(x) = −∞ and

f(cρ,ς†) < ac2ρ,ς† − (1 + acρ,ς†)cρ,ς† + cρ,ς† = 0.

In fact, the chosen smaller root σ†= b−
√
b2−4ac
2a of (3.22) must belong to (−∞, cρ,ς†)∩

(0,+∞), so D > 0, which combines with (3.20) to get

DH =
2ν2Aδ

2ρ

2νA − ρ
+ σ∗D4 > 0.

Hence, H > 0.

Finally, note that 0 < D < cρ,ς† = ρνA − ρ2

2 = 1
2ρ(2νA − ρ) ≤ 1

2ν
2
A. In light

of the definition of D3 and the fact that β̃ ≤ 1 proved in [22], we get D3 < 1
2c2A

.

Noticing that σ† < cρ,ς† <
ν2
A

2 , we arrive at 1 > H = 1− σ†D3 > 1− ν2
A

4c2A
.

Combining (3.23) with (3.9), we finish the proof.

4. Numerical experiments

In this section, we give some numerical experiments to test the accuracy and perfor-
mance of the proposed algorithm for the thermally coupled stationary incompress-
ible MHD flow.
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4.1. Experiment 1

In the first experiment, we access to the numerical performance of the presented
Uzawa iterative algorithm for the thermally coupled incompressible MHD equations.
Here, let the domain Ω = [0, 1]×[0, 1] and the right-hand sides f ,g and γ are selected
such that the exact solutions are given by

u1(x, y) = x2(x− 1)2y(y − 1)(2y − 1),

u2(x, y) = −y2(y − 1)2x(x− 1)(2x− 1),

H1(x, y) = sin(πx) cos(πy),

H2(x, y) = − cos(πx) sin(πy),

p(x, y) = (2x− 1)(2y − 1),

T (x, y) = u1(x, y) + u2(x, y).

We employ the MINI element [1] for approximating the velocity and pressure, and
the continuous linear finite element for discretizing the temperature and magnetic
field.

Then, we set the parameters s = Re = Rm = β = κ = 1. Additionally, the
stopping criterion of the iteration is set to be√

∥un−1
h − un

h∥20 + ∥Hn−1
h −Hn

h∥20 < 1.0e− 6.

In Figure 1, we plot the log errors of the numerical solutions in H1-seminorms
of the velocity, magnetic, temperature, and L2-norm of the pressure at different
iterative step n. Here, we set the relaxation parameter ρ = 1.5 and pick five different
mesh sizes h. From Figure 1, we can find that the Uzawa iterative algorithm works
well and the iterative error decreases when iteration step increases. Moreover, we
can see that it converges faster when the mesh size is smaller.

In the above test, we choose a fixed relaxation parameter and pick the different
mesh sizes. Now, we consider a fixed mesh size h = 1

64 and test the Uzawa iterative
algorithm with the different relaxation parameters. Figure 2 shows the log errors
at the different iterative step for the different relaxation parameter. From Figure 2,
we can observe that the Uzawa iterative algorithm converges faster when ρ becomes
larger. However, it becomes slow when ρ is too large (e.g. ρ = 1.9), which is not
surprising. Because from Theorem 3.2 and 3.3 the relaxation parameter ρ has its
limited interval.

Finally, to find the relaxation parameter that makes the Uzawa iterative algo-
rithm converge fast, we consider the relation between n and ρ with h = 1

64 . In
Table 1, we list the iterative steps n used for reaching the numerical solution in
terms of the stopping rule. Obviously, from this table, the Uzawa iterative algo-
rithm converges faster when we choose larger ρ, and the Uzawa iterative algorithm
with ρ = 1.5 has the least iterative step n = 23. However, if ρ > 1.5, then it needs
more iterative step to converge or it may not converge.

4.2. Experiment 2

In this experiment, we will test the presented Uzawa iterative method by using the
thermal driven cavity problem, which is investigated in [29]. The computational
domain consists of a square cavity with differentially heated vertical walls where
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Figure 1. The log errors of the velocity (a), magnetic (b), temperature (c) and pressure (d) at the
different iterative steps.

Table 1. The iterative step n with the relaxation parameter ρ.

ρ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

n 247 139 98 77 63 54 47 42 37 34 31 29 27 25 23 24 31 47 93 —

“—” means that the iterative step is larger than 600.

left and right walls are kept at T = 1 and T = 0, respectively. The remaining
walls are insulated and there is no heat transfer through them. No-slip boundary
conditions are imposed for the velocity at all walls. For the magnetic field, we set
H1 = 1, ∂H2

∂n = 0 at the horizontal walls and H2 = 0, ∂H1

∂n = 0 at the vertical walls.

In the numerical example, the computations are obtained on the uniform grid
30 × 30. Here, we set the model parameters s = Re = κ = 1, Rm = 0.1 and take
f = 0,g = 0, γ = 0. The performances of the presented Uzawa iterative method
with ρ = 1.5 are compared with Newton iterative and Oseen iterative method
in [29]. Note that the selection of the parameters is the same as that in [29]. In
Table 2, we show that the maximum velocity at y = 0.5 with different thermal
expansion coefficient β. From this table, we can see that the presented Uzawa
iterative method spends the least CPU times to get almost the same maximum
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Figure 2. The log errors of the velocity (a), magnetic (b), temperature (c) and pressure (d) at the
different iterative steps.

velocity values obtained by the other iterative methods. Furthermore, in Figure 3,
we give the numerical velocity streamlines, magnetic and isotherms of the thermally
coupled incompressible MHD problem by the Uzawa iterative method with different
thermal expansion coefficient. From this figure, the Uzawa iterative method runs
well and can capture this model well.

Table 2. Comparisons of the maximum velocity values obtained by the different iterative methods.

β = 1 β = 10 β = 100 CPU time

Uzawa iterative method 0.189 0.224 0.570 18.578

Newton iterative method [29] 0.188 0.223 0.576 32.829

Oseen iterative method [29] 0.190 0.224 0.578 31.859
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Figure 3. Numerical velocity streamlines, magnetic and isotherms with different thermal expansion
coefficient β = 1 (the first line), β = 10 (the second line) and β = 100 (the third line).
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