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(241)-DIMENSIONAL COUPLED
TIME-FRACTIONAL NONLINEAR
SCHRODINGER EQUATIONS*

Fang Wang!, Xiufang Feng™', Shangqin He?' and Panpan Wang!

Abstract Lie symmetry analysis is used to solve coupled time-fractional non-
linear Schrédinger equations. Having established the Lie point symmetries of
the original equations, they are reduced to nonlinear fractional ordinary dif-
ferential equations. Exact solutions are found and then subjected to in-depth
convergence analysis. Also, conservation laws for the coupled time-fractional
nonlinear Schrodinger equations are derived systematically by leveraging the
powerful Ibragimov method.
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1. Introduction

The nonlinear Schrédinger equation (NLSE) [4, 7,23, 25] is a significant mathe-
matical model in many fields, including fiber-optic communication, plasma physics,
superfluid mechanics, and quantum mechanics. Herein, we study (2+1)-dimensional
coupled time-fractional NLSEs [17] of the form

i©Dip = —pAp —(IpI* + algl*)p, (2,y,t) € 2 x (0,7, a1
i°Ditq = —pAq —(lg* + alpl®)g, (z,y,t) € Qx (0,77,
where 2 = -1, 0 < a < 1, Q = (¢,d) x (h,1), the symbol © D¢ represents the

Riemann-Liouville (RL) fractional derivative, p and ¢ are unknown complex func-
tions representing the amplitudes or envelopes of two wave packets, A denotes
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the Laplace operator, the positive value p represents the group-velocity dispersion,
~v > 0 signifies the self-focusing of pulses in a birefringent medium, and a > 0
denotes cross-phase modulation.

Because of its inherent nonlinearities, the NLSE often cannot be solved directly
to obtain exact solutions by conventional methods such as the first-integral ap-
proach [11] or Darboux transformation [24]. Therefore, finding exact solutions to
the NLSE is extremely challenging. In 2016, Eslami [10] used the Kudryashov ap-
proach to explore traveling-wave solutions for (1+1)-dimensional coupled fractional
NLSEs; the Kudryashov approach offers accurate analysis of complex nonlinear
equations, but its computational process is relatively complex, especially for high-
order or more-complex equations. In 2023, Onder [22] combined the Kudryashov
method with the Kudryashov auxiliary equations, thereby not only retaining the
advantage of finding exact solutions by using the Kudryashov approach but also sim-
plifying the solution process by introducing auxiliary equations, and thus obtaining
soliton solutions for (1+1)-dimensional coupled fractional NLSEs more efficiently.
However, that new method can require considerable mathematical skill to construct
the auxiliary equations, and its adaptability to specific problems awaits further ver-
ification. At the same time, Ahmad et al. [1] found periodic rogue-wave solutions
for (1+1)-dimensional coupled fractional NLSEs via the modified exponential func-

tion method. Akram et al. [5] used the extended (%)—expansion approach and the

modified simple equation method to generate soliton solutions for the space-time
fractional nonlinear Schrodinger equation.

To derive exact solutions for nonlinear partial differential equations (PDEs),
researchers have employed various methods including the (exp(—¢ (¢)))-expansion

method [2,6], the generalized exponential rational function method, and the %,
é)—expansion method [3]. Additionally, Gao [12,13] has successfully applied simi-
larity reductions for deriving exact solutions to nonlinear PDEs. Another powerful
technique for finding exact solutions to PDEs is Lie symmetry analysis (LSA) [21].
The significance of Lie symmetry analysis lies in its ability to reduce the com-
plexity of differential equations, thereby facilitating the identification of invariant
solutions and providing insights into the underlying structures of the equations. In
1998, Buckwar and Luchko [8] used scale transformation groups to develop group-
invariant solutions to the fractional diffusion-wave equation, which led to the ap-
plication of LSA to fractional PDEs. Gazizov et al. [14] used LSA to solve specific
fractional differential equations, and in recent years scholars have made widespread
use of this method to investigate nonlinear fractional models with physical back-
grounds [9,15,18-20,26,27].

Many scholars have concentrated their efforts on studying single time-fractional
PDEs, whereas relatively little attention has been devoted to exact solutions of
coupled time-fractional PDEs. Remarkably, there is still a scarcity of research
into coupled equations that involve complex variables. Although the coupled time-
fractional NLSEs discussed in this paper have attracted some interest, there remains
significant potential for further exploration. Therefore, a deeper examination of
this nonlinear model is essential. This paper makes a novel contribution by deriv-
ing exact solutions for the coupled NLSEs using LSA and Ibragimov method [16].
Additionally, it examines the symmetry reduction and conservation laws of the
(241)-dimensional coupled time-fractional NLSEs.

This paper is organized as follows. In Section 2, we investigate symmetry re-



Lie symmetry analysis and conservation laws 1603

duction of the (2+1)-dimensional coupled time-fractional NLSEs. In Section 3, we
derive a class of power-series solutions for (2+1)-dimensional coupled time-fractional
NLSEs and then conduct convergence analysis. In Section 4, we use a new conser-
vation theorem to construct conservation laws for (1.1), and finally we present our
conclusions in Section 5.

2. Lie symmetry analysis for (2+1)-dimensional
coupled time-fractional nonlinear Schrodinger
equations

Here, we present the formulation of the RL fractional derivative, which is given by

“DiV(t,x)
1 o ! m—a—1
T(m —a) 007 O(t—h) V(h,z)dh, 0 <m—1<a<m,méeN,
“om (2.1)
6:9/157%33)? a=meN,

with the Euler gamma function defined as I'(z) = [t te~"dt.
Definition 2.1. The Erdélyi-Kober (EK) fractional differential operator is defined

m—1
ProF)E) = 1+ - g (K" F)e), (2:2)
j=0
), aeN,
"Vl + 1, a¢N,
where
F(z2), a=0,
(K5 F)(z) ={ 1 (2.3)

[ee]
—_— w— 1)Ly =) Fy du, a >0,
[ @ ()

is the EK fractional integral operator. Here, 7 is related to a, and z is a function
of the variables ¢, x, and y.

To facilitate our analysis, we define the complex variables

p(x,y.t) = u(z,y,t) +iv(,y,t), q(@y,t) =s(x,y,t) +iw(z,y,t),  (24)

where u(z,y,t), v(z,y,t), s(x,y,t), and w(x,y, t) represent unknown real functions.

We substitute (2.4) into (1.1) and separate the real and imaginary parts to
obtain the following equations:

DU+ pAv + y[u? + 0% + a(s? + w?)v = 0,

D¢y — pAu — y[u? +v* + a(s® + w?)u =0,

D% 4+ pAw + [s* + w? + a(u? Jw=0,

CDew — pAs — y[s? + w? + a(u? ]s =0.

) (2.5)
+ v?)
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Consider the one-parameter Lie-group point transformations of (2.5), i.e.,

T=x+el(x,y, t,v,u,w,s) + O(?),
U=y +eplx,y,t,v,u,w,s)+O0(?),
t=t+er(z,yt,v,u,w,s)+ O(?),
U=u+en'(z,y,t,v,u,w,s) + O(e?), (2.6)

U =v+en’(z,y,t,v,u,w,s) + O

)
s=s+ 8773(.’£, Y, ta U, U, W, S) + 0(82)7
W =w+en(z,y,t,v,u,w,s) + O(e),
where ¢ < 1 is the Lie group parameter, and &, p, 7, n', 7%, 03, and n* are
infinitesimals for the dependent and independent variables. There exists a set of
vector fields in the relevant Lie algebra of symmetries, i.e.,

0 0 1 0 5 0 30 4 0
5 +Tat+pay+77 6u+n 3v+n 85—H7 0 (2.7)

A set of symmetric determining equations results from solving the invariant
surface condition after the infinitesimal generators have been defined, i.e.,
prle?2x u 4 pAv + y[u? 4+ v? + a(s? —|—w2)]v|(2,5) =0,
Prie) X (C D8y — pAu — y[u? + v + a(s? + w?)|ul25 =0,

(“D

"D (2.8)
Pre2 X (

(“D

CD“S—}—,LLAuH—v[S +w? +a(u® +v
w — ulAs — y[s* +w? 4+ a(u® +v

Jwl(2.5 =0,

1s](2.5) = 0,

%)
prle2 x )

where the second-order prolongation operator of vector field X is represented by

Pr@2X ie.,

Pri®2 X =yt dc pey, + 15" 0c pey + 03 0 pos + 157 00 payy + 11 Ou,,

+0{Y0u,, +15°00,, +13"00,, +15°0s,, +15"0s,, (2.9)
+ 772”6 Wz + ngyawyy + X7
where
nt = Da(n' = Eug — puy — Tug) + EDy(ug) + pDa(uy) + 7Dg (ue),
= D2(n' — &uy — puy — Tup) + EDF(ug) + pD3(uy) + TDZ(ur),  (2.10)

Here, D, denotes the total differential operator in terms of z, i.e.,

Dy = 0y +ug0y + 030y + 8205 + Wy Oy + Uz Oy + V0O, + S200s, + Wea Oy, + -+

(2.11)

The structure of the RL fractional derivative operator, characterized by its fixed

lower limit in the integral, must remain invariant under the infinitesimal transfor-
mations described in (2.6). The invariant condition is

7(z,y,t,v,u,w, s)|=0 = 0, (2.12)
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and the a-th extended infinitesimals involving the RL fractional derivative with
(2.12) are

77J CDQT]] + (171]” — othT)CDau] — u]CDtanJ + M

too | [a) omp, a . o
+ 2 ot DtH(T) CDt (u?)
= 1 (2.13)
+oo o .
-2 D&YD" (u]), j=1,2,3,4,
n=1 n
where
VOSSO () ()
n=2m=2k=2r=0 k'F(n+1—a)
am . 8n7m+k,,7j
J e — =1,2,3.4
X [ Uu } atr,n[ w ] at"_ma[u]]k’ ] b b b b
and (0‘) = DledD)
n I'(a+1—n)I'(n+1)"

Equations (2.8) and (2.9) provide us with the following;:

+y[2uvnt + n*(u? + 302 + a(s® +w?)) + 2a Y] =0,

[ (sn )
vt (3u? 4+ v* + a(s® + w?)) ( Ju] =0,
+y[n* (Bw? + 5% + a(u? + v?)) + 2swn® + 2a(un* + vn?)w] = 0,
Y3 (3% + w? + a(u® + v?)) ( %) 0,
14)

57) S wn
) 4

+ 2uvn® + 2a

+ p(n3

772 (M‘H? sn> 4+ wn
+ p(ny
w(n3

ni")
nyt T+ nyy) + 2wsn* + 2a(unt + vy

]
(

and adding (2.10) and (2.13) to (2.14) produces the following defining equations for
(1.1):

[\)

gyzftzgu:gvzgssz:Tx:Ty:Tu:Tv:Ts:Twzoa

Mo =18 =T, = =N =N =1y =1y =1y =1 =1y =13 =0,

aty — 28, =0, fac:pyv Pz =Pt = Pu=Po = Ps = pw =0,

aTvw — ng’vw + 20w +ntv =0, anuw— ng’uw + 2n'w + ntu = 0,
py» =1, 30" —niw+anw =0,

< ) o (nil>D?“(r)_o,

(2.15)
(Z) A (n N 1)D?+1<T> 0,
()5 - (o)pero=o
@ U @ n+1
(n) o <n+1>Dt (1) =0, n=12
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The vector fields of the one-parameter Lie group for the Lie point symmetry of
(2.5) are calculated from the solutions of the aforementioned equations, i.e.,

X — 7_‘_ 7_|_2t7_ - 2_ g_ i
L M Ty T T YMau T Yo T “as T “ow
9
X2 = 55
9
X3 = —. 2.1
=5 (216)

However, because vector fields Xs and X3 do not provide physically meaningful
results, we consider only the case of X7, whose characteristic equation is

e _dy 4t du dv _ ds _ dw (2.17)
ar oy 2t —au —av @ —as  —Qw

Also, the solutions that remain unchanged under the symmetry-group transforma-
tions are

[Ne)

s u=f(2)t7 %, v=fo(2)t72, s = f3(2)t7 %, w= fu(2)t" 2.
(2.18)
We use (2.5) to derive the subsequent pertinent outcomes by using the similarity
variables alongside the group-invariant solutions.

z=(z—y)t

Theorem 2.1. The transformations in (2.18) reduce the (2+1)-dimensional cou-
pled time-fractional NLSEs in (2.5) to fractional ordinary differential equations,
i.e.,

(PY 2 1)(=) + 2083 + 9122+ 15 + alfef3 + Faf3)] = 0,

(P2 ) (2) = 2ufy —fufE + £} +a(fif + fifD)] =0,

2
a

(Py 37 ) ) + 20y +f3fa+ £+ alfRa + f3£2)] = O,

2
o

(PY 2™ 2)(2) — 2ufs — A fsf2+ £ + alf2fs + f2f5)] = 0

(2.19)

with the EK fractional differential operator.

Proof. For n—1 < a < n, where n is a positive integer, a specific transformation
reduces the equations to a simpler form, i.e.,

o 1 ¢ o a
C nHa n—1l-ayp—% —a
Difu=—|—— t—h h —y)h™2)dh| . 2.20
fu= g |t L € R A - ] 220
Upon setting r = %, we obtain the differential relation dh = fr%dr. Consequently,
(2.20) is transformed into the following form:
ol 1 Lt s a o, 1
C _ —a—1 —a—1,—9 <« o
Dfu= g [ [ e = e e - S|
o [ tni%l o 3a o
= — | — —(n+1-22) -1 n—l—a 2)d
o [Ty ), O A T]
O" 1. _3a -2 n—
= o [TEETTTT ) ()]

(2.21)
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We simplify the right-hand side of (2.21) by applying the connection z = t~% (z —y)
with ® € C1(0, ), and the expression becomes

9 _,020%(2)  a 0%(2)
to,@(2) =t —o s = D (2.22)
From (2.22), we obtain
Cpoy = i [tn—%(](:l*%v”*afl)(z)}
LT o 2
an71 0 n—3a 1-§n—«a
= gt {at(t (K fl)(Z))} (2.23)

ot [ sa g 3¢ a 0
ot |

CDMu =t (Py 2 f1)(2). (2.25)

The same procedure is used to transform the remaining equations in (2.5), resulting
in

o _3a .
CDpo =t F (Py 1 fo)(2),

1_3a

“Dis=t"F(Py )2, (2.26)

3a

_3a
“Diw =t F(Py ) ().

By substituting (2.18), (2.25), and (2.26) into (2.5), we validate (2.19). After much

effort, we have arrived at the crux of this theorem, which involves transforming

the governing equations into nonlinear fractional differential equations to facilitate
their solutions, as outlined in the next section. O

3. Exact solutions

In this section, we derive several exact solutions to (2.19) by using the power-series
method [19,27], then we demonstrate their convergence. We assume that the exact
solutions to (2.19) take the following form:

f2) =Y an, falz) = baa",
n=0 n=0

f3(2) = Z cn2", fa(z) = Zdnz".
n=0 n=0
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Then upon substituting (3.1) into (2.19), we derive the following results:

S r2-¢+1%)
) (3 anz")

ﬁanz +2u n+2)(n+ 1)b,r22" +v|(
re-=g+4%) Z oy

n=0

n=0

X (Z bnz"™) + (Z bn2™) 4 a(z bnz”)((z cn2™)? + (Z an”)Q)] =0,
n=0 n=0 n=0 n=0 n=0

el ]_—‘(2—34»&) " oo . 0o .
ZWI)TLZ —QMZ(TL-l-Q)(n—I—l)a,ng —yl(anz )2

n=0 2 2 n=0 n=0

X (Z anz Zan *t+a Zan ((Z cn2™)? + (Z dnz")z)] =0,
n=0 = =
chz

re2-9+
zrf> RED MRS
— n=0

2 + n20z) n=0
x (Z dn2™) + (Z dn2™)® + a(z d"z”)((z an2")? + (Z bnz")Q)] =0,

Z_Qina))dz f2uz (n+2)(n+ 1)cny2" V[Zdz
— 2

n=0 n=0

X (Z enz™) + (O ez +ad ] ez anz") + (O bnz")Q)l =0.
n=0 n=0 n=0 n=0 n=0

(3.2)

Comparing the coefficients in (3.2) for n = 0 yields the following:

1 [I(2- *)
= g [Tyt~ (e + i+ anoleh + )]
1 [T(2-¢
5 (3.3)
_1 hd_ Y(d3co + ¢ 4 aco(a + b))
cy = 4‘LL F( 2 ) 0 0Co CO acp(ag 0 )
1 [T(2- *)
do = —@ [MCO +7(chdo + df + ado(ag + bz))]

For n > 1, we derive the following:

1 re2- S+ %
Unt2 = 3a na AjO0k—j50n—k
T un+1)(n+2) T2 - Sa 4 1o 1;)320 3 Ok—j
n k
+ ajbk_jbn_k) + CLZ Z(ajck_jcn_k + ajdk_jdn_k)>] ,
k=0 j=0
1 re-¢< —|— "
b2 = — o an+7 ajap_jbn_y (3.4
2T T un+ D(n+2) |23+ ;;)JZO 7= (3.4)

n k
+ bk jbnk) +a ¥ Y (bick_jcnk + bjdk_jdn_k)ﬂ :

k=0 j=0
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[(2— & 4 o) U
a na dn -7 (c‘ck*’cnfk
r2-3e 4 na) ,gojzo T

1
2T 5+ Dn+2)

n k
+ dek—jdn—k) + az Z(ajak._jcn_k + bjbk_jcn_k)>] ,

k=0 j=0
1 [(2- 2+ 1) "
dpyo = — 22+ (¢jch—jdn_k
2u(n+1)(n+2) |T(2 - 3¢ + 20) ,;;0 T

n k
+djdg—jdn—1) +a Z Z(ajak—jdn—k + bjbk—jdn—k)ﬂ :

k=0 35=0

By applying (2.18), (3.3), and (3.4), exact solutions to (1.1) have been derived
rigorously, i.e.,

> . n,_ (ntDa
p(x,yvt):z:(an‘Fan)(”f—y) t 2 5
0 (3.5)

q(z,y,t) = Z(Cn +idn)(x — y)"t

n=0

_ (n+Da
2

To contextualize this study further, we investigate in depth the convergence of
the explicit power-series solutions in (3.5). Regarding the expressions in (3.4), the

following are readily apparent:

n k
|antal < [bnl+ > > (lasllar—jllan—rl + lajl1be—jl[bn—r] + la;llex—; lcn]
k=0 =0
+ lajldk—;l|dn—x),
n k
sl < lawl + 37 D™ 1alax—sbn— |+ [bsl1bi— 1ba—s| + byl ety len
k=0 =0
+ 1bjl|dk—jl|dn—kl),
n k
lensal < ldal + 37 D2 (lellensllen-s] + leslldislidn-el +lajlar—sllen—s
k=0 j=0
+ 1051 1bx—jlcn—kl),
n k
ool < lenl + >0 (lesller—jlldn—r| + Idjlldi—;lldn—r| + laj|lar—;|dn—g]
k=0 j=0

+ 1b511br—jldn—&|)-

(3.6)

Next, we introduce the following four power series that are pivotal in our further

analysis:

R(z) = Zrnz", M(z) = Zmnz", H(z) = Z hn2z", Q(z) = Z anz". (3.7)
n=0 n=0 n=0 n=0
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By defining r; = |a;|, m; = |b;|, h; = |¢;|, and ¢; = |d;| for all indices j = 0,1,2,-- -,
we have the following;:

n k

Tny2 = My + Z Z(Tﬂ'kfﬂ“nfk +rmp— My + T Ak A Tk~ jGn—k),
k=0 j=0
n k
Mpyo =Ty + Z Z(rjrk_jmn_k + myme— ik + Mgh_jhn g + M jqn—t),
k=0 j=0
n k
hnyo = qn + Z Z(hjhkfjhnfk + R Qh—jGn—k + TiTk—jhn—k + mymp_jhy, i),
k=0 5=0
n k
2 =hn+ Y Y (hihkjGn—k + GQk—jGn—k + 5Tk jGn—k + MMk iGn k),
k=0 =0
(3.8)
where n = 0,1,2,---. Clearly, we have |a,| < rp, |bn] < My, |cn] < hy, and
|dn| < gn for n = 0,1,2,---, ie., the majorant series of (3.1) are those in (3.7).
From calculations, the following equations hold:
R(z) =79 +11z+ (M+ R+ RM* + RH? + RQ?)z?,
M(z) =mg+miz+ (R+ M3+ R*M + H*M + Q*M)2?, 39)

H(z) =ho+hiz+ (Q+ H® + Q°H + R*H + M*H)2?,
Q(z) =qo+qz+ (H+Q°+ H*Q + R*Q + M*Q)2*.
Next, we show that R(z), M(z), H(z), and Q(z) each have a positive radius of

convergence. Regarding the implicit-function equations of the independent variable
z, we show their convergence properties, i.e.,

Fi(2,R,M,H,Q) =R -1y —r1z— (M + R>+ RM? + RH? + RQ?)2?,
Fy(2,R,M,H,Q) = M —mg —myz — (R+ M> 4+ R*M + H*M + Q*M)2?,
F3(2,R,M,H,Q) = H —hg — h1z — (Q + H*> + Q*H + R*H + M*H)2*,
F4(ZaR7M7H7Q) = Q —qo —q17 — (H+Q3 +H2Q+R2Q+M2Q)Z2
(3.10)
The functions F;(z, R, M, H,Q) for j = 1,2, 3,4 are analytic in the neighborhood

of (0,79, Mo, ho, qo) and each satisfies F;(0,ro, mo, ho,qo) = 0 for the respective j.
Also, the Jacobian is

O(F1, Fa, F3, Fy)

O(R,M,H,Q) |(0.r0.mo.ho.g0) = 1 7 0. (3.11)

Therefore, the convergence of exact solutions to the present (2+1)-dimensional cou-
pled time-fractional NLSEs has been proven via the implicit function theorem.
4. Conservation laws for system (1.1)

Because of their capacity to (i) supply conserved quantities for each produced solu-
tion, (ii) demonstrate integrability, and (iii) establish the existence and uniqueness
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of solutions, conservation laws are essential for fractional PDEs. In this section, we
construct conservation laws for (2.5) via the Ibragimov theorem [16].

Consider a vector T = (T%,TY,T") that satisfies the following conservation
equation:

[Dy(TY) + Dy(T") + Do (T7)]|2.5) = 0, (4.1)

where TY = TY(z,y,t,v,u,...), T* = T'(z,y,t,v,u,...), and T® = T*(z,y,t,v,u,...)
are referred to as conserved vectors of (2.5). According to the Ibragimov theorem,
the formal Lagrangian of (2.5) is expressed as

L = A(z,y,t)(° Du + pAv + v[u? + v* + a(s* + w?)]v)
+ B(x,y,t)(C D& — pAu — y[u® + v? + a(s? + w?)|u) (42)
+G(x,y,t)(C Ds + pAw + y[s* + w* + a(u® + v?)w) '
+ K(2,y,)(“ Dffw — pAs — 7[s* + w” + a(u® +v*)]s),
where A(z, y,t), B(z,y,t), G(z,y,t), and K(x, y, t) are sufficiently smooth functions.
The adjoint Euler-Lagrange equations for (2.5) are

oL _, OL_, oL _, OL _

o = = = — = 4.
ou ) " §s T Sw 0. (43)
which define the Euler-Lagrange operator as
) 0 c 0 0 5 0 0 5 0
= D¥*——— — D, D —Dy—+D , .
5v —av T DY) o° DV av, T av, YoV, * YoV, (44)

where (¢ Dg)* is the adjoint operator to © D¢ and is represented as
(“Dp)* = (=1 (Dy) = Dy (4.5)

Here, 17~ is the right-sided operator of fractional integration of order n —«, which
is expressed as

o _ 1 ¢ R(r,x)
I “R(z,t) = T —a) /t (7 —t)Fa=n dr. (4.6)

After a simple calculation involving (4.3), we obtain the following adjoint equa-
tions of (2.5):

(ODF)* A+ 27 Auv — yB[3u® +v* + a(s” + w?)] + 2yaGuw
— 2yaKus — p(Bzz + Byy) = 0,

(CD?)*B + v A2 + 302 + a(s® + w?)] — 2yBuv + 2vaGow
— 2yakvs + pi(Aze + Ayy) = 0,

(“Df)*G + 2a7Asv — 2ayBsu — yK[3s” + w? + a(u® + 0°)]
+ 279Gsw — p(Kao + Kyy) =0,

(D) K + 2avAvw — 2ayBuw + 4G [3w? + 5% + a(u? + v?)]
— 29Ksw + (1(Gaw + Gyy) = 0.
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Equation (2.5) allows each Lie point to symmetrically form conservation laws
D;(T7), where the following formulas are used to construct the components 77:

| OL oL [ OL
=¢0L+ VY - D, + D, (V? — |,
¢ oud, (8um ) V) <8u§m )
oL oL [ OL
pL+ V7| — = Dy(——) | + Dy(V7) < - ) , (4.8)
Uy Oy Oy
0L - oL
t_ a—1 g g
T' =1L+ Dy (V- )780D?uj +1(V ’Dtiachuj)’

where V7 = nf — ¢ul — pu% — Tu{ and I is defined as

I(f1, fo) = // fi ¢,xyf2(z/1,x y)dcbdw- (4.9)

Now, we use the fundamental definitions in (4.2)7 (4.8), and (4.9) to find the
conservation laws for (2.5). By doing so, we derive the following components of the
conservation laws for (2.5) and so obtain the conserved vectors of vector field Xi:

Tt = 2[A(° DXu 4 pAv) + B(C D&v — pAu) + G(¢ Ds + pAw)
+ K(°Dfw — pAs))
+ 2t Ay(u? + 0% + a(s? + w?))v — 2tBy(u? + v* + a(s® + w?))u
+ 2tGy (5% 4+ w? + a(u® + v?))w — 2tKy(s* + w? + a(u® + v?))s
+ ADY H (—au — azuy — 2tuy — ayuy) + I(—au — azu, — 2tuy — ayuy, Ay)
+ BDY H(—av — aav, — 2t — ayvy) + I(—av — axv, — 2tv, — ayvy, By)
+GDY N —as — azs, — 2ts; — ays,) + [(—as — azs, — 2ts, — ays,, Gt)
+ KD H—aw — azw, — 2tw;, — ayw,)
+ I(—aw — azw, — 2tw, — ayw,, Kt),
T% = az[A(° Dfu + pAv) + B(° Dfv — pAu) + G(¢ Ds + pAw)
+ K(°Dfw — pAs))
+ arAy(u? + 0% + a(s® + w?))v — axBy(u? +v? + a(s* + w?))u
+ axGy(s* + w? + a(u® + v¥))w — azkKy(s? + w? + a(u?® + v?))s
— wBy(ou + azuy + 2tu, + ayuy) + uB(2au, + aruy, + 2tug + ayug,)
+ pAg (av + azvg + 2tv + ayvy) — pA(200, + 0TV + 26U + aYULy)
— 1y (s + awsy + 2tsy + aysy) + p (208, + 0 Sze + 2tS5 + QYSzy)
+ pGs (aw + azw, + 2tw, + aywy) — pG(2aw, + aTWey + 2twae + 0YWsy ),
TY = ay[A(° D¥u 4 pAv) + B(° Dv — pAu) + G(°Dfs + pAw)
+ K(°Dfw — pAs))
+ ayAy(u? +v? + a(s® + w?))v — ayBy(u® + v* + a(s* + w?))u
+ ayGy(s® + w? + a(u? + v*)w — ayy(s* + w? + a(u? +v?)))s
— puBy(au + aru, + 2tu; + ayuy) + pB(20ty + axtgy + 2tuy; + ayiy,)
+ Ay (aw + azvg + 2tvy + ayvy) — pAQ2awy, + azvgy, + 2tvy + ayvy,)
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— ply(as + axsy + 2ts, + aysy) + k(208 + axsyy + 2tsy + aysy,)
+ pGy (aw + azw, + 2tw, + ayw,) — pG (2w, + arwyy + 2twy + aywy,).

For vector field X5, we have the following conserved vectors:

T" = —A°Df M ug) + I(—ua, Ar) — BEDF (vg) + I(—va, B) — GE D (s2)
+ I(=542,G) — KEDY Y (wy) + I(—we, Ky),
T = A°Dfu+ BY Dfv + GEDs + KC Dfw — puBuy, + pAvy, — (1Ksy, + pGuw,,
— Bty + Ay — pKasy + pGow, + Ay[u? +0? + a(s? + w?)]v
— By[u? +v* 4 a(s? + w?)]u + Gy[s? + w? + a(u® + v*)|w
— Ky[s? + w? + a(u® 4 v?)]s,
TY = —pByug + pBugy + prAyvy — AV — pkKysy + sy + nGyw, — pGWyy .

After rigorous calculations, we have the following expressions for the conserved
vectors of vector field X3:

T = _ACDgil(“y) + I (—uy, Ay) - BcDgil(vy) + I(—vy, By) — chgil(sy)
+1(=sy,Gt) — ICCDta_l(wy) + I(—wy, Kt),
T* = —pByuy + pBugy + pAzvy — pAVey — pKasy + plsgy + pGowy — pGwgy,
TY = A°Du + B D¢ v + GEDY s + KE DY w — puBugg + pAveg + (1GWae — (1K Sua
— uByuy + pAyvy — pysy + pGywy + Ay[u® +v* + a(s* + w?)v
— By[u? +v* + a(s? + w?)]u + Gy[s* + w? + a(u? + v*)|w
— Ky[s? 4+ w? + a(u® + v?)]s.

5. Conclusions

Herein, LSA was used to investigate (2+1)-dimensional coupled time-fractional
NLSEs that involve the RL fractional derivative. Under Lie point symmetries,
(2.5) was simplified to fractional nonlinear ordinary differential equations with new
independent variables. Furthermore, using power-series theory, we constructed ex-
act solutions to (1.1) and then subjected them to thorough convergence analysis.
Finally, we derived conservation laws for (1.1). In future work, we will use LSA to
tackle more-complex space—time fractional PDEs.
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