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HAAR WAVELET METHOD WITH CAPUTO
DERIVATIVE FOR SOLUTION OF A SYSTEM
OF FRACTIONAL INTEGRO-DIFFERENTIAL

EQUATIONS
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Abstract In this paper, a numerical method based on Haar wavelet with Ca-
puto derivative is developed for the solution of a system of fractional integro-
differential equations (FIDEs). The solution of these equations is difficult
due to the non-local nature of fractional derivatives and integrals. Different
numerical and analytical methods have been developed to overcome these chal-
lenges. We develop numerical scheme for solution of different types of systems
of FIDEs. The proposed method is then applied to different test problems to
demonstrate its robustness and effectiveness. The experiential error analysis
is carried out for all test problems. These experiments involve the calculation
and analysis of different error norms, such as the maximum absolute error and
root mean square error. The numerical experiment shows that increasing the
collocation points the errors reduces significantly. The results show that the
present numerical scheme is a precise and efficient technique for solving such
systems of FIDEs.

Keywords Fractional IDEs, collocation method, maximum absolute and
root mean square errors, simulation.
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1. Introduction

Fractional integro-differential equations (FIDEs) have gained increasing attention
in recent years due to their applications in various fields, such as physics, biology,
economics, and engineering. FIDEs are a differential equation (DE) type that in-
volves fractional-order derivatives and function integrals. They can be expressed
as a combination of integer-order DEs and fractional-order DEs, where the
fractional-order derivatives are noninteger powers of the differential operator. The
integrals in the equations add another layer of complexity, making them difficult
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to solve analytically. These equations have applications in physics, engineering,
biology, and finance, to name a few [2]. A system of FIDEs is a set of multiple
DEs containing fractional-order derivatives and integrals. The equations in a sys-
tem are typically interconnected, meaning that the solution for one equation de-
pends on the solutions of the other equations in the system. These equations
are used to model complex dynamic systems, such as those found in physics,
engineering, and biology. A system of FIDEs, as FIDEs itself, has many
applications in engineering [19], quantum mechanics [18], and many other fields
of science [11].

Fractional differential equations (FDEs) with non-integer order can describe
many physical phenomena. Applications of FDEs can be found in physics, chem-
istry, biology, engineering, and finance [11]. One of the main advantages of using
FDEs is that they can provide a more accurate description of real-world phenomena
than ordinary differential equations (ODEs). For example, modeling of viscoelastic
materials, diffusion phenomena in porous media, and control systems with delay
can be improved through FDEs. Solving FDEs is more challenging than solving
ODEs, and analytical solutions for FDEs are available for only a few of them. Frac-
tional calculus and FDEs have many applications in various fields, and their study is
still a very active area of research in mathematics and other sciences. Many defini-
tions are found in the literature of FD, such as Riemann-Liouvlle FD, Caputo FD,
etc. [2].

Solving a system of FIDEs can be challenging and often requires advanced math-
ematical techniques, such as numerical simulations and iterative methods. Several
numerical schemes have been developed in the last decade to solve FDEs. Momani
and Qaralleh [17] used a domain decomposition method (ADM) to solve a FIDE
system. The ADM is used for both linear and non-linear IDEs. Mahdy [15] used the
least squares method to solve FIDEs. Li and Sun used the block pulse matrix [13]
to examine the iterative solution of the FDEs. Mohammed [16] solved FIDEs by
shifting the Chebyshev polynomial scheme and using the least squares approach.
Two methods for approximating a function by a polynomial that minimizes the sum
of the squares of the difference between the function and the polynomial are the
least squares approach and the shifted Chebyshev polynomial. Shifted Chebyshev
polynomials are the orthogonal polynomials often used in this method for functions
with singularities and nonuniform data. In order to determine the numerical solu-
tion of FIDEs, Ali et al. [3] worked on hybrid Bernstein and block pulse wavelet
approaches.

For the solution of FIDEs, Baofeng Li [12] employed a generalized hat func-
tion approach. Weakly singular kernels were used together with the Chebyshev
wavelet approach by Bargamadi et al. [9] to obtain the solution of FIDEs. As-
gari [8] used operational matrices of triangular function. They also checked the
order of convergence and stability of the method. Derakhshan [10] used
operational matrices for the solution of coupled systems of FIDEs. They reduced the
given FIDEs to algebraic equations to obtainthe Chebyshev unknown coefficients.

This is the structure of the remaining portion of the paper. The paper funda-
mental ideas are presented in Section 2. Section 3 illustrates the detailed numerical
scheme for the FIDE system. Section 4 accomplishes the application of the proposed
scheme on various test problems, demonstrating the effectiveness of the method. Fi-
nally, Section 5 presents the concluding remarks regarding the study.
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2. Preliminaries

The Caputo FD with order α for f(t) is [2]:

Dαw(t) =
1

Γ(n− α)

∫ t

0

f (n)(η)d

η
(t− η)1−n+α, α > 0, (2.1)

where n ∈ N, n− 1 < α < n, t > 0.

2.1. Haar wavelet

For Haar family, the scaling function on [0, 1) is H1(x) = 1.

In this series, the other terms are written as [7]:

Hi(x) =


1, for x ∈ [ρ1, ρ2),

−1, for x ∈ [ρ2, ρ3),

0, elsewhere,

(2.2)

where ρ1 = ζ
d , ρ2 = 1/2+ζ

d , and ρ3 = 1+ζ
d , d = 2j , j = 0, 1, . . . , J , ζ = 0, 1, . . . , d−1.

Formula i = d+ ζ + 1 is used to obtain the value of the index i. References [1,4–6]
include recent research based on the HWC technique.

2.2. Function approximation

The sum of the Haar series in the interval can represent any function f(x) in L2[a, b]
because the Haar wavelet functions are orthogonal to one another.

f(x) =

∞∑
i=1

ai hi(x),

such that the coefficients ai are constant, hi(x) is a Haar function. For approxi-
mation, the aforementioned up to a limited number of terms, an infinite series is
ended. using the formula

f(x) =

N∑
i=1

aihi(x).

We use the symbol Ri,1 for integration of the Haar function.

Ri,1(x) =

∫ 1

0

hi(x)dx. (2.3)

Furthermore,

Ri,1(t) =


x− ρ1, at x ∈ [ρ1, ρ2),

ρ3 − x, at x ∈ [ρ2, ρ3),

0, elsewhere.

(2.4)
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3. Numerical scheme for the systems of fractional
IDEs

The forthcoming section elaborates on the Haar wavelet collocation method
(HWCM) that is developed for solution of systems of fractional IDEs. To proceeds
let us consider the following system of fractional IDEs

DαW(t) = a(t)w(t) +

∫ t

0

Kij(t, ζ)w(ζ)dζ +

∫ 1

0

Mij(t, ζ)w(ζ)dζ + F (t), (3.1)

with initial conditions (ICs) w1(0) = λ1, w2(0) = λ2, w3(0) = λ3, where

W(t) =


w1(t)

w2(t)

w3(t)

 ,

is vector function, K = [kij ]3× 3 and M = [mij ]3× 3 are smooth function and

F (t) =


f1

f2

f3

 ,

putting the values in equation (3.1), which become
Dαw1(t)

Dβw2(t)

Dγw3(t)



= a(t)


w1(t)

w2(t)

w3(t)

+


∫ t

0
k11(t, ζ)

∫ t

0
k12(t, ζ)

∫ t

0
k13(t, ζ)∫ t

0
k21(t, ζ)

∫ t

0
k22(t, ζ)

∫ t

0
k23(t, ζ)∫ t

0
k31(t, ζ)

∫ t

0
k32(t, ζ)

∫ t

0
k33(t, ζ)




w1(ζ)

w2(ζ)

w3(ζ)

 dζ

+


∫ t

0
m11(t, ζ)

∫ t

0
m12(t, ζ)

∫ t

0
m13(t, ζ)∫ t

0
m21(t, ζ)

∫ t

0
m22(t, ζ)

∫ t

0
m23(t, ζ)∫ t

0
m31(t, ζ)

∫ t

0
m32(t, ζ)

∫ t

0
m33(t, ζ)




w1(ζ)

w2(ζ)

w3(ζ)

 dζ +


f1(t)

f2(t)

f3(t)

 .

After some simplification, we have

Dαw1(t) =a(t)w1(t) +

∫ t

0

k11(t, ϑ)w1(ζ)dζ +

∫ t

0

k12(t, ζ)w2(ζ)dζ

+

∫ t

0

k13(t, ζ)w3(ζ)dζ +

∫ 1

0

m11(t, ζ)w1(ζ)dζ +

∫ 1

0

m12(t, ζ)w1(ζ)dζ

+

∫ 1

0

m13(t, ζ)w1(ζ)dζ + f1(t), (3.2)
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Dβw2(t) =a(t)w1(t) +

∫ t

0

k21(t, ζ)w1(ζ)dζ +

∫ t

0

k22(t, ζ)w2(ζ)dζ

+

∫ t

0

k23(t, ζ)w3(ζ)dζ +

∫ 1

0

m21(t, ζ)w1(ζ)dζ +

∫ 1

0

m22(t, ζ)w2(ζ)dζ

+

∫ 1

0

m23(t, ζ)w3(ζ)dζ + f2(t), (3.3)

Dγw3(t) =a(t)w1(t) +

∫ t

0

k31(t, ζ)w1(ζ)dζ +

∫ t

0

k32(t, ζ)w2(ζ)dζ

+

∫ t

0

k33(t, ζ)w3(ζ)dζ +

∫ 1

0

m31(t, ζ)y2(ζ)dζ +

∫ 1

0

m31(t, ζ)y2(ζ)dζ

+

∫ 1

0

m31(t, ζ)y2(ζ)dζ + f3(t), (3.4)

where Dα is FD in Caputo sense, w1(t), w2(t), w3(t) is unknown function, ax(t),
f1, f2, f3, are known functions and the initial condition are w1(0) = λ1 w2(0) = λ2

and w3(0) = λ3.
Applying Caputo definition to Eq. (3.2), we have

1

Γ(n− α)

∫ t

0

w
(n)
1 (ζ)dζ

(t− ϑ)α−n+1

=a(t)w1(t) +

∫ t

0

k11(t, ζ)w1(ζ)dζ +

∫ t

0

k12(t, ζ)w2(ζ)dζ

+

∫ t

0

k13(t, ζ)w3(ζ)dζ +

∫ 1

0

m11(t, ζ)w1(ζ)dζ

+

∫ 1

0

m12(t, ζ)w1(ζ)dζ +

∫ 1

0

m13(t, ζ)w1(ζ)dζ + f1(t), (3.5)

if we take 0 < α < 1 then n = 1 similarly if we take 1 < α < 2 then n = 2. The
numerical scheme is derived for the case when n = 1, so Eq. (3.5) becomes,

1

Γ(1− α)

∫ t

0

w
′

1(ζ)dζ

(t− ϑ)α−1+1
=a(t)w1(t) +

∫ t

0

k11(t, ζ)w1(ζ)dζ +

∫ t

0

k12(t, ζ)w2(ζ)dζ

+

∫ t

0

k13(t, ζ)w3(ζ)dζ +

∫ 1

0

m11(t, ζ)w1(ζ)dζ

+

∫ 1

0

m12(t, ζ)w1(ζ)dζ +

∫ 1

0

m13(t, ζ)w1(ζ)dζ + f1(t).

After simplification, we get

1

Γ(1− α)

∫ t

0

w
′

1(ζ)dζ

(t− ϑ)α
=a(t)w1(t) +

∫ t

0

k11(t, ζ)w1(ζ)dζ +

∫ t

0

k12(t, ζ)w2(ζ)dζ

+

∫ t

0

k13(t, ζ)w3(ζ)dζ +

∫ 1

0

m11(t, ζ)w1(ζ)dζ

+

∫ 1

0

m12(t, ζ)w1(ζ)dζ +

∫ 1

0

m13(t, ζ)w1(ζ)dζ + f1(t).
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Now let

w′
1(t) =

N∑
i=1

ξihi(t), w′
2(t) =

N∑
i=1

ρihi(t), w′
3(t) =

N∑
i=1

φihi(t). (3.6)

Further, integrating and make use of the ICs, we get

w1(t) = λ1 +

N∑
i=1

ξiR(i,1)(t), (3.7)

w2(t) = λ2 +

N∑
i=1

ρiR(i,1)(t), w3(t) = λ3 +

N∑
i=1

ρiR(i,1)(t), (3.8)

1

Γ(1− α)

∫ t

0

∑N
i=1 ξihi(ζ)dζ

(t− ϑ)α

= a(t)(λ1 + a(t)ξihi(t)) +

∫ t

0

k11(t, ζ)(λ1 + ξihi(ζ))dζ

+

∫ t

0

k12(t, ζ)(λ2 + ρihi(ζ))dζ +

∫ t

0

k13(t, ζ)(λ3 + φihi(ζ))dζ

+

∫ 1

0

m11(t, ζ)(λ1 + ξihi(ζ))dζ +

∫ 1

0

m12(t, ζ)(λ2 + ρihi(ζ))dζ

+

∫ 1

0

m13(t, ζ)(λ3 + φihi(ζ))dζ +

∫ 1

0

m13(t, ζ)φihi(ζ)dζ + f1(t).

After simplification, we obtain

1

Γ(1− α)

∫ t

0

∑N
i=1 aihi(ζ)dζ

(t− ϑ)α

=a(t)λ1 + a(t)ξihi(t) +

∫ t

0

k11(t, ζ)λ1dζ +

∫ t

0

k11(t, ζ)ξihi(ζ)dζ

+

∫ t

0

k12(t, ζ)λ2dζ +

∫ t

0

k12(t, ζ)ρihi(ζ)dζ +

∫ t

0

k13(t, ζ)λ3dζ

+

∫ t

0

k13(t, ζ)φihi(ζ)dζ +

∫ 1

0

m11(t, ζ)λ1dζ +

∫ 1

0

m11(t, ζ)ξihi(ζ)dζ

+

∫ 1

0

m12(t, ζ)λ2dζ +

∫ 1

0

m12(t, ζ)ρihi(ζ)dζ +

∫ 1

0

m13(t, ζ)λ3

+

∫ 1

0

m13(t, ζ)φihi(ζ)dζ + f1(t).

Now taking common
∑N

i=1 ξi, we have

N∑
i=1

ξi(
1

Γ(1− α)

∫ t

0

hi(ζ)dζ

(t− ϑ)α
− a(t)R(i,1)(t) +

∫ t

0

k11(t, ζ)R(i,1)(ζ)dζ

+

∫ t

0

m11(t, ζ)R(i,1)(ζ)dζ)
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=a(t)λ1 +

∫ t

0

k11(t, ζ)dζ +

∫ t

0

k12(t, ζ)λ2dζ +

∫ t

0

k12(t, ζ)

N∑
i=1

ρihi(ζ))dζ

+

∫ t

0

k13(t, ζ)λ3dζ +

∫ t

0

k13(t, ζ)

N∑
i=1

φiR(i,1)(ζ)dζ +

∫ 1

0

m11(t, ζ)λ1dζ

+

∫ 1

0

m12(t, ζ)dζ +

∫ 1

0

m12(t, ζ)dζ +

N∑
i=1

ρiR(i,1)(ζ)dζ +

∫ 1

0

m13(t, ζ)λ3dζ

+

∫ 1

0

m13(t, ζ)dζ

N∑
i=1

φiR(i,1)(ζ)dζ + f1(t), (3.9)

putting collocation point in the above equation, we get

N∑
i=1

ξiG(i, j)

=a(tj)λ1 +

∫ t

0

k11(t, ζ)dζ +

∫ t

0

k12t, ϑλ2dζ +

∫ t

0

k12(t, ζ)

N∑
i=1

ρihi(ζ))dζ

+

∫ t

0

k13(t, ζ)λ3dζ +

∫ t

0

k13(t, ζ)

N∑
i=1

φiR(i,1)(ζ)dζ +

∫ 1

0

m11(t, ζ)λ1dζ

+

∫ 1

0

m12t, ζdζ +

∫ 1

0

m12(t, ζ)dζ +

N∑
i=1

ρiR(i,1)(ζ)dζ +

∫ 1

0

m13(t, ζ)λ3dζ

+

∫ 1

0

m13(t, ζ)dζ

N∑
i=1

φiR(i,1)(ζ)dζ + f1(t), (3.10)

where,

G(i, j) =
1

Γ(1− α)

∫ t

0

hi(ζ)dζ

(t− ϑ)α
− a(t)R(i,1)(t) +

∫ t

0

k11(t, ζ)R(i,1)(ζ)dζ

+

∫ t

0

m11(t, ζ)R(i,1)(ζ)dζ). (3.11)

3.1. Evaluation of G(i, j) via Lepik approach

Now, to find the value of G(i, j), we use the method of Lepik [14]. We will discuss
the following cases.

Case-1. For tj < 0, Since hi(tj)=R(i,1)(tj)=0. G(i, j) = 0.

Case-2. For tj ∈ [α, β), then Eq. (3.11) becomes

G(i, j) =
1

Γ(1− α)

(∫ α

0

hi(ζ)dζ

(tj − ϑ)α
+

∫ tj

α

hi(ζ)dζ

(tj − ϑ)α

)
− a(t)R(i,1)(t) +

∫ t

0

k11(t, ζ)R(i,1)(ζ)dζ +

∫ t

0

m11(t, ζ)R(i,1)(ζ)dζ).
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After applying the value of hi(tj) and simplifying, we get

G(i, j) =
1

Γ(1− α)

(∫ tj

α

dr

(tj − ϑ)α

)
− a(t)R(i,1)(t) +

∫ t

0

k11(t, ζ)R(i,1)(ζ)dζ

+

∫ t

0

m11(t, ζ)R(i,1)(ζ)dζ

=
1

Γ(1− α)

(tj − α)1−α

1− α
− a(t)R(i,1)(t) +

∫ t

0

k11(t, ζ)R(i,1)(ζ)dζ

+

∫ t

0

m11(t, ζ)R(i,1)(ζ)dζ.

Case-3. For tj ∈ [β, γ), then Eq. (3.11) becomes

G(i, j)

=
1

Γ(1− α)
(

∫ α

0

hi(ζ)dζ

(tj − ϑ)α
+

∫ β

α

hi(ζ)dζ

(tj − ϑ)α
+

∫ tj

β

hi(ζ)dζ

(tj − ϑ)α
− a(t)R(i,1)(t)

+

∫ t

0

k11(t, ζ)R(i,1)(ζ)dζ +

∫ t

0

m11(t, ζ)R(i,1)(ζ)dζ). (3.12)

After applying the value of hi(tj) and simplifying, we get

G(i, j) =
1

Γ(1− α)
(

∫ β

α

dr

(tj − ϑ)α
−
∫ tj

β

dr

(tj − ϑ)α
− a(t)R(i,1)(t)

+

∫ t

0

k11(t, ζ)R(i,1)(ζ)dζ +

∫ t

0

m11(t, ζ)R(i,1)(ζ)dζ), (3.13)

simplification, we obtain the expression

G(i, j)

=
1

Γ(1− α)
(
(tj − α)1−α

1− α
− (tj − β)1−α

1− α
− (tj − β)1−α

1− α
− a(t)R(i,1)(t)

+

∫ t

0

k11(t, ζ)R(i,1)(ζ)dζ +

∫ t

0

m11(t, ζ)R(i,1)(ζ)dζ)

=
1

Γ(1− α)
(
(tj − α)1−α

1− α
− 2(tj − β)1−α

1− α
− a(t)R(i,1)(t)

+

∫ t

0

k11(t, ζ)R(i,1)(ζ)dζ +

∫ t

0

m11(t, ζ)R(i,1)(ζ)dζ). (3.14)

Case-4. For tj ∈ [γ, 1), then Eq. (3.11) becomes

G(i, j)

=
1

Γ(1− α)

(∫ α

0

hi(ζ)dζ

(tj − ϑ)α
+

∫ β

α

hi(ζ)dζ

(tj − ϑ)α
+

∫ γ

β

hi(ζ)dζ

(tj − ϑ)α
+

∫ tj

γ

hi(ζ)dζ

(tj − ϑ)α

)

− a(t)R(i,1)(t) +

∫ t

0

k11(t, ζ)R(i,1)(ζ)dζ +

∫ t

0

m11(t, ζ)R(i,1)(ζ)dζ).
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After applying the value of hi(tj) and simplifying, we get

G(i, j) =
1

Γ(1− α)

(∫ β

α

dr

(tj − ϑ)α
−
∫ γ

β

dr

(tj − ϑ)α

)
− a(t)R(i,1)(t)

+

∫ t

0

k11(t, ζ)R(i,1)(ζ)dζ +

∫ t

0

m11(t, ζ)R(i,1)(ζ)dζ), (3.15)

simplification, we obtain the expression

G(i, j)

=
1

Γ(1− α)

(
(tj − α)1−α

1− α
− (tj − β)1−α

1− α
− (tj − β)1−α

1− α
+

(tj − γ)1−α

1− α

)
− a(t)R(i,1)(t) +

∫ t

0

k11(t, ζ)R(i,1)(ζ)dζ +

∫ t

0

m11(t, ζ)R(i,1)(ζ)dζ).

So that

G(i, j) =
1

Γ(1− α)

(
(tj − α)1−α

1− α
− 2(tj − β)1−α

1− α
+

(tj − γ)1−α

1− α

)
− a(t)R(i,1)(t)

+

∫ t

0

k11(t, ζ)R(i,1)(ζ)dζ +

∫ t

0

m11(t, ζ)R(i,1)(ζ)dζ). (3.16)

Thus

G(i, j)

=



0, if tj < 0,

1

Γ(1− α)

(tj − α)1−α

1− α
− a(t)R(i,1)(t) +

∫ t

0

k11(t, ζ)R(i,1)(ζ)dζ

+

∫ t

0

m11(t, ζ)R(i,1)(ζ)dζ), if tj ∈ [α, β),

1

Γ(1− α)

(
(tj − α)1−α

1− α
− 2(tj − β)1−α

1− α

)
− a(t)R(i,1)(t)

+

∫ t

0

k11(t, ζ)R(i,1)(ζ)dζ +

∫ t

0

m11(t, ζ)R(i,1)(ζ)dζ), if tj ∈ [β, γ),

1

Γ(1− α)

(
(tj − α)1−α

1− α
− 2(tj − β)1−α

1− α
+

(tj − γ)1−α

1− α

)
−a(t)R(i,1)(t) +

∫ t

0

k11(t, ζ)R(i,1)(ζ)dζ

+
∫ t

0
m11(t, ζ)R(i,1)(ζ)dζ), if tj ∈ [γ, 1).

Now putting the value of G(i, j) in Eq. (3.10). Similarly we solve Eq. (3.3) and Eq.
(3.4) by same method which results 3N × 3N system of linear algebraic equations.
Furthermore, when solving this system by the Gauss elimination method, we obtain
the unknown ξ

′

is for i = 1, 2, 3...N Haar coefficients. Putting the values of a
′

is for
i = 1, 2, 3...N in Eq. (3.7) and Eq. (3.8) we obtain the approximate solution that
is required Eq. (3.1).

The following steps summarize the whole algorithm:
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Algorithm 1 To evaluate the numerical solution of a system of fractional IDEs

1. Apply Caputo fractional derivative to system (3.1).

2. Approximate the highest order ordinary derivative by the Haar function, and
the integration method yields the expression for other order derivative.

3. Substituting collocation points to the system (3.1) , one obtains a system of
algebraic equations.

4. Gauss elimination scheme is used to find the unknown coefficients.

5. Solution at collocation points is obtained using these coefficients.

4. Numerical experiments

The section presents various numerical experiments that illustrate the precision
and importance of using the HWCM. Experimental error analysis is carried out,
and errors are tabulated for different collocation points. These experiments involve
the calculation and analysis of different error norms, one of which is the maximum
absolute error L∞, which is defined as

L∞ = ∥ŵ − w∥max = max
1≤i≤N

| ŵi − wi | .

Root mean square error(Mcp) is defined as,

Mcp =

√∑N
i=1(ŵi − wi)2

N
.

The application of the proposed scheme to different test problems is demonstrated
below.

Test problem 1

Consider the following linear FIDE system.

D
3
4 y1(t) =

−1

20
− t

12
+

4t
1
4 (−32t2 + 15)

15Γ(0.25)
+

∫ 1

0

(t+ s)(y1(s) + y2(s))ds, (4.1)

D
3
4 y2(t) =

−13
√
t

60
+

4

5Γ(0.24)
t
1
4 (−5 + 8t) +

∫ 1

0

√
ts2(y1(s)− y2(s))ds, (4.2)

where ICs are y1(0) = 0, y2(0) = 0, and y1(t) = t − t3 and y2(t) = t2 − t are the
exact solutions.

The graphical comparison of exact and approximate solutions y1 and y2 for test
problem 1 is demonstrated in figures 1 and 2, respectively. It is observed that the
approximate solution is in excellent agreement with the exact solution. Moreover,
the MAE and Mcp for problem 1 are presented in tables 1 and 2, respectively. The
errors in both cases are observed to be reduced when the collocation points increase.
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Figure 1. A comparative analysis of y1 exact versus approximate solutions for the IDEs in test problem
1 at N = 32.

Figure 2. A comparative analysis of y2 exact versus approximate solutions for the IDEs in test problem
1.
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Table 1. MAE errors of test problem 1.

J N = 2J+1 L∞

y1(t) y2(t)

1 22 7.109728 ×10−03 1.004610 ×10−02

2 23 6.365602 ×10−03 6.478174 ×10−03

3 24 4.848868 ×10−03 3.225315 ×10−03

4 25 2.355479 ×10−03 1.469555 ×10−03

5 26 1.064701 ×10−03 6.438438 ×10−04

6 27 4.650564 ×10−04 2.767033 ×10−04

7 28 1.996172 ×10−04 1.177372 ×10−04

8 29 8.489205 ×10−05 4.983052 ×10−05

9 210 3.592118 ×10−05 2.102871 ×10−05

Table 2. Root mean square error Mcp of test problem 1.

J N = 2J+1 Mcp

y1(t) y2(t)

1 22 4.143352 ×10−03 7.361072 ×10−03

2 23 3.978996 ×10−03 3.882518 ×10−03

3 24 2.289060 ×10−03 1.954836 ×10−03

4 25 1.109005 ×10−03 9.057392 ×10−04

5 26 5.009045 ×10−04 4.011089 ×10−04

6 27 2.188161 ×10−04 1.734762 ×10−04

7 28 9.395948 ×10−05 7.408489 ×10−05

8 29 3.997497 ×10−05 3.142193 ×10−05

9 210 1.692073 ×10−05 1.327657 ×10−05

Test problem 2

Consider system FIDEs.

D
4
5 y1(t) =

67t

80
+

25y
6
5 (−11 + 5t)

33Γ( 15 )
+

∫ 1

0

2yt(y1(s) + y2(s))ds, (4.3)

D
4
5 y2(t) = − 83

160
+

15t

4
(15t

1
5 )− 17t

24
−
∫ 1

0

(t+ s)(y1(s)− y2(s))ds, (4.4)

where, ICs are y1(0) = 0, y2(0) = 0, and y1(t) = t3 − t2, y2(t) =
15
8 t2 are the exact

solutions.

The graphical comparison of exact and approximate solutions y1 and y2 for test
problem 2 is shown in figures 3 and 4, respectively. One can observe an excellent
agreement with the exact solution using the proposed scheme. The MAE and Mcp

for problem 2 are presented in tables 3 and 4, respectively. With the increase in
collocation points, the errors in both cases were reduced significantly.
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Figure 3. A comparative analysis of y1 exact versus approximate solutions for the IDEs in test problem
2 at N = 32.

Figure 4. A comparative analysis of y2 exact versus approximate solutions for the IDEs in test problem
2 at N = 32.

Test problem 3

Consider system of mixed FIDEs

D
3
4 y1(t) =

t4

4
+

32t
5
4

5Γ( 14 )
− t

6
−
∫ t

0

(y2(t))dt+

∫ 1

0

2t(y1(t)− y2(t))dt, (4.5)
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Table 3. MAE errors of test problem 2.

J N = 2J+1 L∞

y1(t) y2(t)

1 22 7.930871 ×10−03 1.953125 ×10−02

2 23 2.293442 ×10−03 1.098183 ×10−02

3 24 1.407094 ×10−03 5.878679 ×10−03

4 25 8.318226 ×10−04 2.810980 ×10−03

5 26 4.152454 ×10−04 1.281897 ×10−03

6 27 1.934644 ×10−04 5.715671 ×10−04

7 28 8.724058 ×10−05 2.519718 ×10−04

8 29 3.869604 ×10−05 1.104265 ×10−04

9 210 1.701606 ×10−05 4.824320 ×10−05

Table 4. Root mean squares errors Mcp of test problem 2.

J N = 2J+1 Mcp

y1(t) y2(t)

1 22 5.455769 ×10−03 1.254088 ×10−02

2 23 1.279855 ×10−03 6.432173 ×10−03

3 24 6.098773 ×10−04 3.468816 ×10−03

4 25 3.230182 ×10−04 1.693191 ×10−03

5 26 1.574979 ×10−04 7.821156 ×10−04

6 27 7.285949 ×10−05 3.512593 ×10−04

7 28 3.277316 ×10−05 1.554746 ×10−04

8 29 1.452330 ×10−05 6.828914 ×10−05

9 210 6.384297 ×10−06 2.987143 ×10−05

D
3
4 y2(t) =

t3

3
+

384t
9
4

45Γ(0.25)
−
∫ t

0

y1(t)dt−
∫ 1

0

2t(y1(t) + y2(t))dt, (4.6)

where ICs are y1(0) = 0, y2(0) = 0, where y1(t) = t2, y2(t) = t3 are the exact
solutions.

The graphical comparison of exact and approximate solutions y1 and y2 using
the present scheme for test problem 3 is depicted in figures 5 and 6, respectively.
MAE and Mcp errors for problem 3 are presented in tables 5 and 6, respectively.
With the increase in collocation points, the errors in both cases reduce significantly.

5. Conclusion

The article discussed the effectiveness and accuracy of the HWCM for solving a
system of FIDEs. The study used numerical results to validate the efficiency of the
HWCM and demonstrate its potential applicability in various scientific and engi-
neering fields that involve fractional calculus. The article concluded that HWCM is
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Figure 5. A comparative analysis of y1 exact versus approximate solutions for the IDEs in test problem
3 at N = 32.

Figure 6. A comparative analysis of y2 exact versus approximate solutions for the IDEs in test problem
3 at N = 32.

an effective and accurate technique for solving a system of FIDEs. This means that
the method can produce accurate solutions to FIDEs, which is a significant problem
in many scientific and engineering fields. The study also suggests that the HWCM
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Table 5. MAE errors of test problem 3.

J N = 2J+1 L∞

y1(t) y2(t)

1 22 1.004610 ×10−02 7.109728 ×10−03

2 23 6.478174 ×10−03 8.365602 ×10−03

3 24 3.225315 ×10−03 4.848868 ×10−03

4 25 1.469555 ×10−03 2.355479 ×10−03

5 26 6.438438 ×10−04 1.064701 ×10−03

6 27 2.767033 ×10−04 4.650564 ×10−04

7 28 1.996172 ×10−04 1.177372 ×10−04

8 29 4.983052 ×10−05 8.489205 ×10−05

9 210 3.592118 ×10−05 2.102871 ×10−05

Table 6. Root mean squares errors Mcp of test problem 3.

J N = 2J+1 Mcp

y1(t) y2(t)

1 22 7.361072 ×10−03 4.143352 ×10−03

2 23 3.882518 ×10−03 3.978997 ×10−03

3 24 1.954836 ×10−03 2.289060 ×10−03

4 25 9.057392 ×10−04 1.109005 ×10−03

5 26 4.011010 ×10−04 5.009045 ×10−04

6 27 1.734762 ×10−04 2.188161 ×10−04

7 28 7.408489 ×10−05 9.395947 ×10−05

8 29 3.142193 ×10−05 3.997497 ×10−05

9 210 1.327657 ×10−05 1.692073 ×10−05

can be used as a viable alternative to solve complex FIDEs containing multiple vari-
ables. The efficiency of the method was validated on the basis of numerical results
obtained through simulations. The simulations were conducted on various FIDEs
with different complexity levels and the results showed that the HWCM could pro-
duce accurate solutions in all cases. This implies that the HWCM can be relied on
to provide accurate solutions to FIDEs regardless of their complexity level. We can
extend the proposed method for solution of nonlinear system of FIDEs and higher
order FIDEs. In summary, the article concludes that the Haar wavelet method
HWCM is an effective and accurate technique for solving a system of FIDEs. The
numerical results validate its efficiency and demonstrate its potential applicability
in various fields of science and engineering that involve fractional calculus. The
study also indicates that the HWCM can be considered as a viable alternative for
solving complex FIDEs that contain multiple variables.

Competing interests

No Competing interests.



Haar wavelet method with Caputo derivative 1657

References

[1] T. Abdeljawad, R. Amin, K. Shah, Q. Al-Mdallal and F. Jarad, Efficient sus-
tainable algorithm for numerical solutions of systems of fractional order differ-
ential equations by Haar wavelet collocation method, Alex. Eng. J., 2020, 59,
2391–2400.

[2] M. S. Akel, H. S. Hussein, M. M. Mohammed and I. G. Ameen, Numerical
solution of systems of fractional order integro-differential equations with a Tau
method based on monic Laguerre polynomials, J. Math. Anal. Model., 2022, 3,
1–13.

[3] M. R. Ali, A. R. Hadhoud and H. M. Srivastava, Solution of fractional Volterra-
Fredholm integro-differential equations under mixed boundary conditions by us-
ing the HOBW method, Adv. Diff. Equ., 2013, 240, 1–14.

[4] R. Amin, B. Alshahrani, A. H. Aty, K. Shah and W. Deebani, Haar wavelet
method for solution of distributed order time-fractional differential equations,
Alex. Eng. J., 2021, 60, 3295–3303.

[5] R. Amin, Hafsa, F. Hadi, M. Altanji, K. S. Nisar and W. Sumelka,
Solution of variable order nonlinear fractional differential equations using
Haar wavelet collocation technique, Fractals, Volume 31, 2023, 1–9. DOI:
10.1142/S0218348X23400224.

[6] R. Amin, K. Shah, M. Asif and I. Khan, A computational algorithm for the
numerical solution of fractional order delay differential equations, Appl. Math.
Comput., 2021, 402, 125863.

[7] R. Amin, K. Shah, M. Asif, I. Khan and F. Ullah, An efficient algorithm for
numerical solution of fractional integro-differential equations via Haar wavelet,
J. Comput. Appl. Math., 2021, 381, 1–17.

[8] M. Asgari, Numerical solution for solving a system of fractional integro-
differential equations, Int. J. Appl. Math., 2015, 45, 85–91.

[9] E. Bargamadi, L. Torkzadeh, K. Nouri and A. Jajarmi, Solving a system
of fractional-order Volterra-Fredholm integro-differential equations with weakly
singular kernels via the second Chebyshev wavelets method, Frac. Fract., 2021,
5, 1–14.

[10] M. H. Derakhshan, Numerical solution of a coupled system of fractional order
integro differential equations by an efficient numerical method based on the
second kind Chebyshev polynomials, Math. Anal. Appl., 2021, 3, 25–40.

[11] B. S. Kashkaria and M. I. Syam, Evolutionary computational intelligence in
solving a class of nonlinear Volterra Fredholm integro-differential equations,
Comput. Appl. Math., 2017, 311, 314–323.

[12] B. Li, Numerical solution of fractional Fredholm-Volterra integro-differential
equation by means of generalized hat function method, Comput. Model. Eng.
Sci., 2014, 99, 105–122.

[13] Y. Li and N. Sun, Numerical solution of fractional differential equations using
the generalized block pulse operational matrix, Comput. Math. Appl., 2011, 62,
1046–1054.

[14] U. Lepik, Numerical solution of evolution equations by the Haar wavelet
method, Appl. Math. Comput. 2007, 185, 695–704.



1658 R. Amin, R. Ullah, I. Khan & W. Sumelka

[15] A. M. Mahdy, Numerical studies for solving fractional integro-differential equa-
tions, J. Ocean. Eng. Sci., 2018, 3, 127–132.

[16] S. Mohammed, Numerical solution of fractional integro-differential equations
by least squares method and shifted chebyshev polynomial, Math. Prob. Eng.,
2014, 2014. DOI: 10.1155/2014/431965.

[17] A. Momani and R. Qaralleh, An efficient method for solving systems of frac-
tional integro-differential equations, Comput. Math. Appl., 2006, 52, 459–470.

[18] S. Momani, O. A. Arqub, T. Hayat and H. A. Sulami, A computational method
for solving periodic boundary value problems for integro-differential equation
Fredholm Volterra type, Appl. Math. Comput., 2014, 240, 229–239.

[19] M. A. Samadi, O. A. Arqub and S. Momani, A computational method for two-
point boundary value problem of fourth-order mixed integro-differential equa-
tion, Math. Probs. Eng., 2013, 2013.


	Introduction
	Preliminaries
	Haar wavelet
	Function approximation

	Numerical scheme for the systems of fractional IDEs
	Evaluation of G(i,j) via Lepik approach

	Numerical experiments
	Conclusion

