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Abstract In this study, we consider non-smooth finite minimax problems.
A new approach for solving minimax problems is developed, employing indi-
cator functions and smoothing functions. First, the formulation of minimax
problems is revised using indicator functions. Then, a new generation smooth-
ing technique is used for the revised formulation. An algorithm is developed
to solve the revised and smoothed problems numerically. The efficiency of
the algorithm is demonstrated on several test problems, and a comparison is
conducted between the numerical results achieved and those of alternative ap-
proaches. Finally, the portfolio planning problem is considered as a real-life
application, and satisfactory results are obtained.
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1. Introduction

We consider the following minimization problem

min
x∈Rn

f(x), (1.1)

where
f(x) = max

j∈J
fj(x) (1.2)

and fj : Rn → R, j ∈ J = {1, 2, . . . ,m} are continuously differentiable. The
different versions of the problem (1.1) have been considered for many papers [1,13,
22] and appear in many application areas such as engineering design [31], vehicle
routing [2], resource-allocation [12], portfolio selection [26], the problem of multi-
model regulatory networks under polyhedral uncertainty [27] and etc. [11,14,19,25].

The problem (1.1) is difficult to solve since the objective function defined in
(1.2) may be non-differentiable [9]. Many algorithms have been developed in order
to solve the problem (1.1) such as sub-gradient based methods [17], bundle-methods
[16], homotopy methods [46] and smoothing methods [32,37,47].

In particular, we concentrate on smoothing techniques for non-smooth functions.
Smoothing techniques provide an opportunity to use the existing gradient-based
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methods in solving finite minimax problems [8]. The smoothing techniques have
been considered for min-max type problems [20,21] The idea of the smoothing ap-
proaches is based on approximating the original, non-smooth functions by using
smooth functions [7,18,33]. The approximation is controlled by adjustable parame-
ters. There are two important classes of smoothing techniques. The first technique
is called local smoothing, which is based on smoothing out the original function in
a suitable neighborhood of the kink points. The second technique, known as global
smoothing, relies on building smooth functions that approximate the original func-
tion across the entire domain.

Developing a smoothing function for the mathematical function f(x) described
in equation (1.2) is a difficult task since it has many kink points. To address these
challenges, alternative formulations have been suggested. Chronologically, we list
some of them. In [5], the function f(x) is restated as follows:

f(x) = f1(x) + max{f2(x)− f1(x) + max{. . .max{fm−1(x)− fm−2(x) (1.3)

+ max{fm(x)− fm−1(x), 0}, 0} . . . , 0}, 0},

and for the first time, one of the global smoothing approaches is proposed for solving
minimax problems. One of the first local smoothing techniques is proposed in [45]
for solving minimax problems by considering the form (1.3). However, the above
formula is useful, but coding it using computer programs is again complicated when
m is large. An alternative penalty form with a smooth approximation is stated
in [40] as

F (x, ε) = β ln

m∑
j=1

exp

(
fj(x)

ε

)
, (1.4)

where ε > 0 is a smoothing parameter. The formula (1.4) is efficiently used with
many gradient-based algorithms [44]. However, when ε is too small (ε → 0), the
numerical stabilization is uncontrolled because of an exponential term. Another
interesting formulation of f(x) is given as

F (x, r) = r +

m∑
j=1

max{fj(x)− r, 0}, (1.5)

by adding a new variable r and the relation

f(x) = min
r∈R

F (x, r)

is proved by [3, 4, 15]. Moreover, the hyperbolic smoothing technique proposed by
[35,39] is applied to solve minimax problems in [3,4] by considering the formula (1.5).
In recent years, there has been considerable attention on smoothing methods, and
new generation smoothing techniques have been proposed and successfully applied
for many non-smooth problems [34, 38, 42, 43]. However, minimax problems have
not been studied with these new generation smoothing techniques. In this study,
we consider the formula (1.5) and reformulate it in order to make it possible to
apply the new generation smoothing techniques to solve the problem (1.1). We
modify the smoothing technique for minimax problems inspired by the paper [42]
and introduce the useful properties of this smoothing technique. We propose a new
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algorithm to numerically solve the reformulated and smoothed problem. In order
to show the efficiency of the algorithm, some numerical examples are considered.

The next section focuses on providing some preliminary knowledge about
smoothing approaches. In Section 3, the formulation of the minimax problem is
adapted for the new generation smoothing technique, and the convergence prop-
erties of the smoothing technique are investigated. In Section 4, we present the
minimization algorithm in order to find an approximate solution for the problem
(1.1). In Section 5, we apply the algorithms to the important test problems and a
portfolio planning problem in order to evaluate the numerical performance of the
proposed algorithm. The final section presents concluding remarks.

2. Preliminaries

Throughout the paper, ∥x∥ =
(∑n

k=1 x
2
k

) 1
2 is used to denote the Euclidean norm in

Rn. The L1[a, b]−norm is defined as

∥f∥L1[a,b] =

∫ b

a

|f(t)|dt,

where f is an integrable function. Moreover, x∗
k denotes the k−th local minimizer

of f and x∗ denotes the global minimizer.
The sub-differential of the function f at the point x0 is defined as ∂f(x0) =

conv {∇fj(x0) : j ∈ {j ∈ N : fj(x0) = f(x0)}} where conv is a convex hull of a set.
A point x0 ∈ Rn is called a stationary point of f if 0 ∈ ∂f(x0).

Definition 2.1. [8] Let h be a continuous function defined on Rn to R. The
function h̃ : Rn × R+ → R is called a smoothing function of h(x), if h̃(·, ε) is
continuously differentiable in Rn for any fixed β, and for any x ∈ Rn,

lim
y→x,ε→0

h̃(y, ε) = h(x).

3. A new formulation of minimax problems and
smoothing approach

In this section, we revise the formula of minimax problems given in (1.5) and we
apply the smoothing technique to this new formulation.

By considering the technique in [41], let us re-define the function (1.5) as follows:

F (x) = r +

m∑
j=1

(fj(x)− r)χAj (x), (3.1)

where χAj
(x) function is the indicator function of the set Aj defined by

χAj
(x) =

0, x ̸∈ Aj ,

1, x ∈ Aj ,

where Aj = {x ∈ Rn : fj(x)− r ≥ 0} for j = 1, 2, . . . ,m. It is evident that the func-
tion F (x) may exhibit a non-smooth structure. Indeed, the non-smoothness of F (x)
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is originated from the existence of χAj
(x) since fj(x) is continuously differentiable

for j = 1, . . . ,m. The idea for eliminating this lack is that if the indicator function
χBji(x) is smoothed, then the function F (x) becomes smooth. First, we define the
smoothing function for indicator functions.

Definition 3.1. Let h be a semi-continuous function (upper or lower) defined on
R to R. The function g̃ : R × R+ → R is called a smoothing function of g(t), if
h̃(·, ε) is continuously differentiable in Rn for any fixed ε, and for any t ∈ R,

lim
z→t,β→0

g̃(z, ε) = h(t).

For tj = fj(x)− r, we re-define the indicator functions as

χAj (t) =

0, tj < 0,

1, tj ≥ 0.

In the following we give the smoothing function of indicator function as

χ̃Aj (t, ε) =


0, t ≤ −ε,

Q(t, ε), −ε ≤ t ≤ ε,

1, t ≥ ε,

(3.2)

where Q(tj , ε) =
3

16ε5 t
5
j− 10

16ε3 t
3
j+

15
16ε tj+

1
2 and ε > 0. The function Q(tj , ε) is called

smooth transition function. It is designed in order to supply twice continuously
differentiability between the pieces of the indicator function. Therefore, χAj

(tj , ε)
is second-order continuously differentiable. We have

χ̃′
Aj

(j, ε) =


0, tj ≤ −ε,

Q′(tj , ε), −ε ≤ tj ≤ ε,

0, tj ≥ ε,

(3.3)

where Q′(tj , ε) =
15

16ε5 t
4
j − 30

16ε3 t
2
j +

15
16ε and

χ̃′′
Aj

(tj , ε) =


0, tj ≤ −ε,

Q′′(tj , ε), −ε ≤ tj ≤ ε,

0, tj ≥ ε,

(3.4)

where Q′′(tj , ε) =
15
4ε5 t

3
j − 15

4ε3 tj .
In the following lemmas, we investigate the relation between χAj

(t) and its
smoothing function χ̃Aj

(t, ε).

Lemma 3.1. Assume that χAj
(tj) is an indicator function of the set Aj ⊂ Rn and

χ̃Aj
(tj , ε) is a smoothing function of χAj

(tj). Then, we have

|χ̃Aj
(tj , ε)− χAj

(tj)| ≤
1

2
,

for any ε > 0.
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Proof. Since we have χ̃Aj
(tj , ε) = χAj

(tj) for tj ≤ −ε and tj ≥ ε, we discuss the
cases −ε ≤ tj ≤ 0 and 0 ≤ tj ≤ ε. For −ε ≤ tj ≤ 0, we obtain∣∣χ̃Aj (tj , ε)− χAj (tj)

∣∣ = |Q(tj , ε)| ≤
1

2
,

and for 0 ≤ tj ≤ ε ∣∣χ̃Aj
(tj , ε)− χAj

(tj)
∣∣ = |Q(tj , ε)− 1| ≤ 1

2
.

Therefore, the proof is completed.

Lemma 3.2. Assume that χAj
(tj) is an indicator function of the set Aj ⊂ Rn and

χ̃Aj (tj , ε) is the smoothing function. Then, we have

∥χ̃Aj
(tj , ε)− χAj

(tj)∥L1(R) ≤
ε

2
,

for any ε > 0.

Proof. Since we have χ̃Aj (tj , ε) = χAj (tj) for tj ≤ −ε and tj ≥ ε, we deal with
the case −ε ≤ tj ≤ ε. For −ε ≤ tj ≤ ε,∥∥χ̃Aj

(tj , ε)− χA(tj)
∥∥
L1(R) =

∫ ε

−ε

∣∣χ̃Aj
(tj , ε)− χAj

(tj)
∣∣ dt

=

∫ 0

−ε

|Q(tj , ε)| dt+
∫ ε

0

|Q(tj , ε)− 1| dt

=
5ε

32
+

5ε

32

<
ε

2
.

Therefore, the proof is completed.
Based on the new formulation and smoothing technique we define the smoothing

function of the objective function F (x) as

F̃ (x, ε) = r +

m∑
j=1

tjχAj
(tj , ε), (3.5)

where tj = fj(x)− r and the problem given in (1.1) is re-defined as

min
x∈Rn

F̃ (x, ε) , (3.6)

for ε > 0. First, we introduce the case m = 2 and obtain the following results.

Theorem 3.1. Let x ∈ Rn, ε > 0

|F (x)− F̃ (x, ε)| ≤ ε.

Proof. Since χ̃A1
(t1, ε) = χA1

(t1) for t1 ≤ −ε and t1 ≥ ε and χ̃A2
(t2, ε) = χA2

(t2)
for t2 ≤ −ε and t2 ≥ ε, we concern with the case −ε ≤ t1, t2 ≤ ε for ε > 0. Let us
consider the case t1 ∈ [−ε, ε] and t2 ̸∈ [−ε, ε]

|F (x)− F̃ (x, ε)|
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= |r + t1χA1
(t1) + t2χA2

(t2)− (r + t1χ̃A1
(t1, ε) + t2χ̃A2

(t2, ε)) |
= |t1χA1

(t1)− t1χ̃A1
(t1, ε)|

≤ ε

2
.

Similar result is obtained for the case t1 ̸∈ [−ε, ε] and t2 ∈ [−ε, ε]. Now, we consider
the case −ε ≤ t1, t2 ≤ ε. By considering the Lemma 3.1, we obtain

|F (x)− F̃ (x, ε)|
= |r + t1χA1

(t1) + t2χA2
(t2)− (r + t1χ̃A1

(t1, ε) + t2χ̃A2
(t2, ε)) |

= |t1 (χA1
(t1)− χ̃A1

(t1, ε)) + t2 (χA2
(t2)− t2χ̃A2

(t2, ε)) |
≤ |t1||χA1

(t1)− χ̃A1
(t1, ε)|+ |t2||χA2

(t2)− χ̃A2
(t2, ε)|

≤ ε

2
+

ε

2
= ε.

Thus, the proof is completed.

Theorem 3.2. Let ε > 0 and x ∈ Rn

∥F̃ (x, ε)− F (x)∥L1 ≤ 2ε2.

Proof. We start the proof similar to the Lemma 3.1. Since χ̃A1
(t1, ε) = χA1

(t1)
for t1 ≤ −ε and t1 ≥ ε and χ̃A2

(t2, ε) = χA2
(t2) for t2 ≤ −ε and t2 ≥ ε, we concern

with the case −ε ≤ t1, t2 ≤ ε for ε > 0. Let us consider the case t1 ∈ [−ε, ε] and
t2 ̸∈ [−ε, ε]

∥F̃ (x, ε)− F (x)∥L1

=

∫ ε

−ε

|r + t1χA1(t1) + t2χA2(t2)

− (r + t1χ̃A1
(t1, ε) + t2χ̃A2

(t2, ε))| dt

=

∫ ε

−ε

|t1χA1
(t1)− t1χ̃A1

(t1, ε)| dt

=

∫ ε

−ε

|t1| |χA1
(t1)− χ̃A1

(t1, ε)| dt.

Since |t1| ≤ ε and from Lemma 3.2, we have

∥F̃ (x, ε)− F (x)∥L1 ≤ ε2.

Similar result is obtained for the case t1 ̸∈ [−ε, ε] and t2 ∈ [−ε, ε]. Now, we
consider the case −ε ≤ t1, t2 ≤ ε. By considering the Lemma 3.2, we obtain

∥F̃ (x, ε)− F (x)∥L1

=

∫ ε

−ε

|r + t1χA1
(t1) + t2χA2

(t2)− (r + t1χ̃A1
(t1, ε) + t2χ̃A2

(t2, ε))| dt

=

∫ ε

−ε

|t1 (χA1
(t1)− χ̃A1

(t1, ε)) + t2 (χA2
(t2)− t2χ̃A2

(t2, ε)) |dt

≤
∫ ε

−ε

|t1||χA1
(t1)− χ̃A1

(t1, ε)|dt+
∫ ε

−ε

|t2||χA2
(t2)− χ̃A2

(t2, ε)|dt
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≤ ε2 + ε2

= 2ε2.

Thus, the proof is completed.
These two theorems, namely 3.1 and 3.2, provide theoretical verification that

the approach that has been proposed is a smoothing approach. To make it bet-
ter understandable, the smoothing process, we will illustrate it with the following
example:

Example 3.1. Let the function f be defined as

f(x) = max{f1(x), f2(x)},

where f1(x) = 1
5x

2 and f2(x) = x. It can be observed from the definition that
the function f is continuous but non-differentiable and ∂f(0) = [0, 1]. The point
x0 = 0 is considered to be the stationary point in accordance with the conceptual
framework of the sub-differential. It is possible to see the graph of the function f
by taking into consideration the max function of f1 and f2, which is depicted in
Figure 1 (blue and solid). By utilizing the smoothing technique described above,
the smoothing function F̃ (x, ε) of f may be obtained as follows:

F̃ (x, ε) = r + (f1(x)− r)χ̃A1(t1, ε) + (f2(x)− r)χ̃A2(t2, ε),

where A1 = {x ∈ R : f1(x)− r ≥ 0}, A2 = {x ∈ R : f2(x)− r ≥ 0} for x ∈ R. The
graph of the function F (x, ε) is depicted in Fig. 1 (a) (red and dotted) when the
value of r is set to zero. In fact, with the assistance of the smoothing technique
described above, we are able to acquire an outer approximation to the original
function. By deducing that the inequality f(x) = F (x) ≥ F̃ (x, ε) holds for every
function f(x) = max{f1(x), f2(x)}, we are able to establish that the inequality
holds.
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Figure 1. (a) The blue graph is the graph of f(x), the red and dotted one is the graph of F̃ (x, 0.5)

and the green and dotted one is the graph of F̃ (x, 1), and (b) The blue graph is the graph of f(x),

the red one is the graph of F̃ (x, 0.2), the green one is the graph of exponential smoothing with
ε = 0.2 and the yellow one is the graph of hyperbolic smoothing function with ε = 0.2.

In accordance with the findings presented in Figure 1 (a), selecting smaller values
for ε results in more accurate approximations to the original function. In order to
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visually compare the smoothing functions that we discussed in the introduction,
we have included them in a single framework and illustrated them in Figure 1(b).
Our smoothing strategy yields the best approximation when all approaches use the
same value of ε = 0.2.

Let us move forward with the presentation of the results concerning the de-
gree of approximation of smoothing approach. Now, we will provide the results of
convergence for any finite value of m.

Theorem 3.3. Let x ∈ Rn, ε > 0∣∣∣F (x)− F̃ (x, ε)
∣∣∣ ≤ m

2
ε.

Proof. For any x ∈ Rn, we have

∣∣∣F (x)− F̃ (x, ε)
∣∣∣ =

∣∣∣∣∣∣r +
m∑
j=1

tjχAj
(tj)−

r +

m∑
j=1

tjχ̃Aj
(tj , ε)

∣∣∣∣∣∣ .
By considering the similar way of the proof of Theorem 3.1, we obtain

∣∣∣F (x)− F̃ (x, ε)
∣∣∣ ≤ m∑

j=1

|tj |
∣∣χAj

(tj)− χ̃Aj
(tj , ε)

∣∣ ≤ mε

2
.

Thus, the proof is completed.

Theorem 3.4. Let x ∈ Rn, ε > 0

∥F̃ (x, ε)− F (x)∥L1 ≤ mε2.

Proof. The proof is obtained by following similar ways as Theorems 3.2 and 3.3.

Theorem 3.5. Suppose that the point x∗ is an optimal solution for the problem
(1.1) and x is an optimal solution for the problem (3.5). Then,

|F (x∗)− F̃ (x, ε)| ≤ ε.

Proof. Since F (x̄) ≥ F (x∗) ≥ F̃ (x̄, ε) we have

|F (x∗)− F̃ (x̄, ε)| ≤ |F (x̄)− F̃ (x̄, ε)|.

With the help of Theorem 3.1 and 3.3, we obtain

|F (x̄)− F̃ (x̄, ε)| ≤ ε.

It completes the proof.

Theorem 3.6. Let {εj} → 0 and xk be a solution of (3.5). Assume that x is an
accumulation point of

{
xk

}
. Then x is an optimal solution for (1.1).

Proof. By considering the Theorem 3.5, the proof is obtained.
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4. Algorithm and minimization procedure

A new method that takes its inspiration from [3] is presented in this section for the
purpose of solving the minimax problem that is defined in (1.1). For the purpose of
solving the problem presented in equation (1.1), we suggest utilizing the smoothed
form of the problem (3.6).

Algorithm I

Step 1 Choose an initial point x0 and set r0 = f(x0). Determine ε0 > 0, 0 < q < 1
and τ = 10−4 let k = 0 and go to Step 2.

Step 2 Consider xk as an initial point to solve the problem (3.5) by using smooth
optimization solver. Let xk+1 be the solution.

Step 3 If ∥∇F̃ (xk, εk)∥ ≤ τ then stop and xk+1 is the optimal solution otherwise;
determine εk+1 = qεk, rk+1 = f(xk+1) and k = k + 1, then go to Step 2.

We need the following assumption for convergence of the Algorithm I.

Assumption 4.1. For a point x0 consider the level set

L(x0) =
{
x ∈ Rn : f(x) ≤ f(x0)

}
is bounded.

The convergence of Algorithm I is stated by the following theorem:

Theorem 4.1. Let Assumption 4.1 hold. Suppose the set

argmin
x∈Rn

F̃ (x, ε) ̸= ∅,

for ε ∈ (0, ε0]. Let xk be generated by Algorithm I. If {xk} has an accumulation
point, then the accumulation point of {xk} is the solution for (1.1).

Proof. Let us define the set L(x0) =
{
x ∈ Rn : f(x) ≤ f(x0)

}
for starting point

x0. Since L(x0) is bounded, the sequence {xk} has at least one accumulation point.
Let x be an accumulation point of {xk}. We first show that x ∈ L(x0). Since

F̃ (x0, ε) ≥ F̃ (xk, ε),

and according to Theorem 3.4, we have f(x0) ≥ f(xk) and xk ∈ L(x0). Since
L(x0) is bounded we obtain x ∈ L(x0). By the Theorem 3.6, x is the solution for
(1.1).

5. Numerical examples

This section is devoted to presenting the numerical results of Algorithm I with the
smoothing approach on finite minimax problems. Moreover, the obtained results are
compared with Algorithm I with exponential smoothing used in [23] and Algorithm
I with hyperbolic smoothing used in [3,39]. We consider the BFGS method a local
search for Algorithm I. We apply the Algorithm I by using MATLAB on a PC with
the configuration of an Intel Core i3 with 8GB of RAM. In this algorithm, the
parameters are selected as ε = 10−1 and q = 10−1. It is accepted that the problem
is solved if the accuracy of 10−4 with respect to the function value is obtained.
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5.1. Test problems

We first consider the well known test problems given in [10, 24] and the obtained
results are compared with the competing algorithm declared at above. The explicit
formulas of test problems are presented as follows:

Problem 5.1. [24] min f(x) = max
1≤j≤2

fj(x) where f : R2 → R and

f1(x) = x2
1 + (x2 − 1)2 + x2 − 1, f2(x) = −x2

1 − (x2 − 1)2 + x2 + 1,

the global minimum value of the objective function f is f∗ = 0.

Problem 5.2. [24] min f(x) = max
1≤j≤3

fj(x) where f : R2 → R and

f1(x) = x2
1 + x4

2, f2(x) = (2− x1)
2 + (2− x2)

2, f3(x) = 2 exp(x2 − x1),

the global minimum value of the objective function f is f∗ = 1.9522245.

Problem 5.3. [24] min f(x) = max
1≤j≤3

fj(x) where f : R2 → R and

f1(x) = 5x1 + x2, f2(x) = −5x1 + x2, f3(x) = x2
1 + x2

2 + 4x2,

the global minimum value of the objective function f is f∗ = −3.

Problem 5.4. [24] min f(x) = max
1≤j≤6

fj(x) where f : R3 → R and

f1(x) = x2
1 + x2

2 + x2
3 − 1,

f2(x) = x2
1 + x2

2 + (x3 − 2)2,

f3(x) = x1 + x2 + x3 − 1,

f4(x) = x1 + x2 − x3 + 1,

f5(x) = 2x3
1 + 6x2

2 + 2(5x3 − x1 + 1)2,

f6(x) = x2
1 − 9x3,

the global minimum value of the objective function f is f∗ = 3.5997.

Problem 5.5. [24] min f(x) = max
1≤j≤4

fj(x) where f : R4 → R and

f1(x) = x2
1 + x2

2 + 2x2
3 + x2

4 − 5x1 − 5x2 − 21x3 + 7x4,

f2(x) = f1(x) + 10
(
x2
1 + x2

2 + x2
3 + x2

4 + x1 − x2 + x3 − x4 − 8
)
,

f3(x) = f1(x) + 10
(
x2
1 + 2x2

2 + x2
3 + 2x2

4 − x1 − x4 − 10
)
,

f4(x) = f1(x) + 10
(
2x2

1 + 2x2
2 + x2

3 + 2x1 − x2 − x4 − 5
)
,

the global minimum value of the objective function f is f∗ = −44.

Problem 5.6. [24] min f(x) = max
1≤j≤5

fj(x) where f : R7 → R and

f1(x) = (x1 − 10)2 + 5(x2 − 12)2 + x4
3 + 3(x4 − 11)2 + 10x6

5

+7x2
6 + x4

7 − 4x6x7 − 10x6 + 8x7,

f2(x) = f1(x) + 10
(
2x2

1 + 3x4
2 + x3 + 4x2

4 + 5x5 − 127
)
,
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f3(x) = f1(x) + 10
(
7x1 + 3x2 + 10x2

3 + x4 − x5 − 282
)
,

f4(x) = f1(x) + 10
(
23x1 + x2

2 + 6x2
6 − 8x7 − 196

)
,

f5(x) = f1(x) + 10
(
4x2

1 + x2
2 − 3x1x2 + 2x2

3 + 5x6 − 11x7

)
,

the global minimum value of the objective function f is f∗ = 680.63006.

Problem 5.7. [10] min f(x) = max
1≤j<m

fj(x) where f : R2 → R,

fj(x) = x2
1 + 2x1t

2
j + exp(x1 + x2)− exp(tj),

and tj = j
(q−1) , j = 0, 1, . . . ,m − 1. The global minimum value of objective

function f is f∗ = −1.

Problem 5.8. [10] min f(x) = max
1≤i,j<m

fi,j(x) where f : R4 → R,

fi,j(x) =
(ti − xi)

2

x2
3

+
(rj − x2)

2

x2
4

− 4,

and ti =
i√

m−1
, tj = j√

m−1
, i, j = 0, 1, . . . ,m − 1. The global minimum value

of the objective function f is f∗ = −4.

Table 1. The numerical results comparison with smoothing.

ISA ESA HSA

Problem No. n m iter feval f.val Time iter f.eval f.val Time iter f.eval f.val Time

1 2 2 10 93 −0.0000 0.0131 65 338 0.0000 0.0947 38 210 0.0000 0.0656

2 2 3 2 21 1.9522 0.0233 57 262 1.9582 0.0550 61 252 1.9523 0.0644

3 2 3 17 252 −3.0000 0.0382 17 153 −2.9940 0.0601 18 144 −3 0.0423

4 3 6 33 256 3.5997 0.0563 99 578 3.6030 0.0685 97 1220 3.5998 0.2136

5 4 4 36 640 −44.0000 0.0864 115 705 −43.832 0.1069 114 945 −43.99 0.1270

6 7 5 98 1832 680.3800 0.1230 236 2174 678.9000 0.1941 106 2528 693.02 0.3226

7 2 5 47 156 −1.0000 0.0263 42 193 −0.9999 0.0354 52 186 −0.9999 0.0362

7 2 10 57 195 −1.0000 0.0424 11 99 −1.0000 0.0471 56 222 −0.9999 0.0632

7 2 50 51 186 −1.0000 0.1062 16 105 −1.0000 0.0672 79 321 −1 0.2010

7 2 100 43 144 −1.0000 0.4833 35 186 −0.9888 0.6020 64 246 −0.9999 0.2951

7 2 500 36 156 −1.0000 0.8912 45 201 −0.9876 0.9571 61 216 −0.9999 0.9096

7 2 1000 50 228 −1.0000 7.2473 61 267 −0.9982 1.1384 58 231 −0.9999 1.7948

8 4 5 22 115 −4.0000 0.0342 24 175 −3.9868 0.0594 33 210 −4 0.0483

8 4 10 70 120 −4.0000 0.0101 18 145 −3.9650 0.0495 16 110 −3.9999 0.0427

8 4 50 13 184 −4.0000 0.2096 6 105 −3.9679 0.0629 36 255 −4 0.1703

8 4 100 54 432 −4.0000 0.7779 26 195 −3.9731 0.6396 31 210 −3.9999 0.2575

8 4 500 69 647 −4.0000 1.9314 44 385 −3.9660 1.8309 28 200 −4 1.9911

8 4 1000 96 859 −4.0000 5.7579 21 155 −3.8949 4.7227 17 145 −4 3.6680

The numerical results are reported in Table 1. In the table, the number dimen-
sion “n” and the number of functions “m” for each of the problems are presented.
We illustrate the results on total iteration numbers “iter”, total function evaluations
“feval”, function values “f.val”, and the CPU time in seconds “Time” obtained by
using Algorithm I with our formulation and smoothing approach (ISA) in the left
side of the Table 1. In the rest of Table 1, we show the results in the same groups
as our method for exponential smoothing (in [23]) with Algorithm I (ESA) and hy-
perbolic smoothing (in [3]) with Algorithm I (HSA). We consider the same starting
points for both algorithms, selecting them randomly.

It can be seen from Table 1 that ISA presents better results than ESA and HSA
at the rate of 50% considering all test problems in terms of the total number of
iterations. In terms of total function evaluations, ISA presents better results than
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the ESA and HSA at the rate of 56% considering all test problems. Moreover,
ISA and HSA, with the exception of Problem 6, yield correct solutions for all test
problems, while ESA fails to achieve the desired results, with the exception of
Problem 5. Moreover, if anyone compares ISA with the ESA and HSA in terms
of CPU time, it is seen that ISA is faster than the ESA and HSA at the rate of
72% considering all test problems. However, the exponential term makes the ESA
difficult to use. When the smoothing parameter ε → 0+ again, the exponential

function exp(
fj(x)

ε ) reaches huge values. Therefore, the function “fminunc” gives an
error and cannot continue. While the HSA is easy to control and can yield results
with desired precision, it is slower than the ISA. We can conclude that the ISA is
very easy to use and has no drawbacks, unlike the ESA.

5.2. Application of Algorithm I in portfolio planning problem

In this section, a minimax portfolio planning model is considered. The problem
is first defined by [30] and it is reformulated by Cai et al. in [6] and Teo et al.
in [36]. The final of this problem is given in [26]. The problem is mathematically
formulated as follows:

min f(x) =
1

12

12∑
t=1

yt, (5.1)

s.t.,

Ax ≤ y,

0.0207x1 + 0.0316x2 + 0.0323x3 + 0.0337x4 + 0.0376x5 ≥ 0.03,

5∑
j=1

xj = 1,

0 ≤ xj ≤ 0.75 j = 1, 2, . . . , 5,

yi ≥ 0 i = 1, 2, . . . , 12,

where x = (x1, x2, . . . , x5)
T is the decision variable, y = (y1, y2, . . . , y12)

T and A is
a 12× 5 matrix given as

A =



0.0333 0.0004 0.0083 0.0043 0.0114
0.0243 0.0234 0.0203 0.0283 0.0294
0.0507 0.0676 0.0123 0.0707 0.0766
0.0387 0.0204 0.0087 0.0163 0.0134
0.0223 0.0154 0.0173 0.0313 0.0114
0.0263 0.0024 0.0003 0.0767 0.0006
0.0334 0.0314 0.0013 0.0283 0.0174
0.0153 0.0164 0.0113 0.0003 0.0126
0.0597 0.0066 0.0747 0.0013 0.0144
0.0637 0.0084 0.0113 0.0223 0.0176
0.0253 0.0044 0.0043 0.0233 0.0074
0.0313 0.0486 0.0037 0.0087 0.0024



. (5.2)
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For more details of the problem, we refer to [26]. We consider the equivalent for-
mulation of the problem (5.2), defined as

min f(x) =
1

12

12∑
t=1

max
j

A(t, j)xj , (5.3)

s.t.,

0.0207x1 + 0.0316x2 + 0.0323x3 + 0.0337x4 + 0.0376x5 ≥ 0.03,

5∑
j=1

xj = 1,

0 ≤ xj ≤ 0.75 j = 1, 2, . . . , 5,

yi ≥ 0 i = 1, 2, . . . , 12.

By considering Algorithm I, the numerical solution of the problem is obtained as
x∗ = (0.0000, 0.0000, 0.7500, 0.0000, 0.2500)T with the corresponding function value
f(x∗) = 0.015 which verifies the solution given in [26].

6. Conclusion

In this study, new generation smoothing techniques are successfully applied to the
finite minimax problems. The formulation of minimax problems is revised based on
the indicator functions. The error estimates are presented, and the relations between
the original and smoothed problems are investigated in detail. This reformulation
and suggested smoothing technique not only simplify the formulation of minimax
problems but also provide a smooth approximation for such non-smooth problems.

A new algorithm for solving reformulated and smoothed finite minimax problems
is presented, and the efficiency of our algorithm on some numerical examples is
illustrated. According to the comparison of the results with the other methods, it
is shown that our approach is competitive with well-known prestigious approaches.

For future studies, indicator functions can be used to derive effective formula-
tions of minimax problems. The concept of employing new generation smoothing
techniques utilizing indicator functions can also be extended to address various
non-smooth problems, including complementarity, exact penalty, l1 signal recon-
struction, and so on. On the other hand, the methodology proposed in this article
can be considered to solve the minimax part of the problem of the optimization of
desirability functions under model uncertainty [27–29].
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