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A CONVERGENT NUMERICAL
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EQUATIONS WITH INERTIA EFFECTS∗
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Abstract This study aims to analyze the coupled finite element and bound-
ary element (FEM-BEM) solution to the nonlinear system of Maxwell and in-
ertia Landau–Lifshitz–Gilbert equations. An algorithm is proposed to numeri-
cally solve the weak form of this problem, which requires solving coupled linear
systems per time step. The algorithm is coupled in the sense that it consists of
the sequential computation of the magnetic and electric fields in both the in-
terior and boundary domains, and magnetization afterward. Under some mild
assumptions on the effective field, the findings show that the algorithm con-
verges towards a weak solution of the Maxwell-Inertia Landau–Lifshitz–Gilbert
system. Numerical experiments demonstrate the algorithm’s applicability for
a theoretical micromagnetic example.
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1. Introduction

Understanding magnetization phenomena in micromagnetics using Landau-Lifshitz-
Gilbert (LLG) models is relevant to the development of magnetic sensors, recording,
and storage devices [18]. Fascinating challenges arise when developing and imple-
menting numerical solutions to various LLG models as they are highly non-linear
partial differential equations (PDEs), have non-convex constraints, and have several
equivalent forms [12,25].

The various formulations of the LLG equation [7, 8, 19] have been used for the
numerical investigation of micromagnetics. The common convergent algorithms im-
plemented to solve LLG-based models have either used the finite difference method
(FDM) [16, 20] or the finite element method (FEM) [13, 22] for the discretization
of the space domain. The inertial LLG equation (ILLG) extended to account for
short-time scales magnetization dynamics [10,21,22] has also been analyzed. To fur-
ther account for electromagnetics dynamics, Maxwell equations have been coupled
with LLG equations in multiple studies [5, 9, 15,19].
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This work proposes combining the coupled Maxwell system and inertial LLG
(ILLG) equation to investigate the convergence of a system that accounts for ul-
trafast magnetism and electromagnetics dynamics. The resulting Maxwell-inertia-
Landau–Lifshitz–Gilbert (MILLG) equations model the electromagnetic character-
istics of a ferromagnetic material. Analysis of the coupled MILLG equations (1.11-
1.15) using a combination of the finite elements method (FEM) in the interior
domain discretization with the boundary elements method (BEM) on the boundary
discretization was carried out. In contrast with a previous study [17], which uses
time-dependent boundary integral formulation for external Maxwell reformulation,
this work employs a space-dependent approach [11,23], which reduces the computa-
tional complexity of the MILLG system. The numerical scheme uses the backward
Euler method for time-stepping discretization. These schemes have been reliable for
convergence and stability on complex PDEs where LLG is non-linearly coupled to
other non-linear PDE systems, such as in previous seminal studies [1,5,17]. We es-
tablish convergence of the approximations towards a weak solution of the problem.
Various numerical experiments have been performed to demonstrate convergence in
time and space.

This paper is organized as follows: Section 1 formally proposes our problem
model (1.1-1.7) and reformulates MILLG equations (1.11-1.15). Then, we recollect
the notion of a weak solution (Definition 2.1) in Section 2 and define preliminaries
for time and space discretization. In Section 3, we propose a numerical algorithm
(Algorithm 1) to approximate the discrete weak formulation of the MILLG system.
The wide Section 4 is then dedicated to presenting our main convergence result
(Theorem 4.1) and its proof. Lastly, we illustrate convergence in space and time
with numerical experiments in Section 5.

1.1. Preliminary mathematical notations

In the current study, assume that the interior domain Ω ∈ R3 and denote its bound-
ary by ∂Ω = Γ be a ferromagnetic material that is embedded into a bounded exterior
domain Ω̂ = R3 \ Ω (with perfectly conducting outer surface ∂Ω̂ = Γ̂). Further-
more, assume that Ω̂ \ Ω̄ is a vacuum and here Ω̄ denotes the closure of Ω, the
interior domain ΩT := [0, T ] × Ω and the exterior domain Ω̂T := [0, T ] × Ω̂ for
magnetization time T . Inside the domain, the aforementioned parameters are the
applied current density J : Ω → R3, the electric and magnetic permeability matri-
ces ϵ, µ : Ω → R3×3 and ferromagnetic domain conductivity σ : Ω → R3×3. The
other parameters are α, which denotes damping, and Ce, which represents exchange,
are positive constants. Outside the domain, the following material parameters are
treated as constant scalars: µ = µ0, ϵ = ϵ0, σ = 0.

1.2. MILLG model problem

We can define the full MILLG system as follows: The magnetization field m : Ω →
S2, where S2 is the unit sphere, and electric and magnetic fields E,H : Ω∪ Ω̂ → R3

satisfy the coupled system (1.1-1.7).

For interior domain [0, T ]× Ω

∂m

∂t
= −m×Heff + αm× ∂m

∂t
+ ωm× ∂2m

∂t2
, in ΩT , (1.1)
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ϵ
∂E

∂t
= (∇×H)− σE − J , in ΩT , (1.2)

µ
∂H

∂t
= − (∇×E)− µ

∂m

∂t
, in ΩT , (1.3)

and for exterior domain [0, T ]× Ω̂

ϵ0
∂E

∂t
= ∇×H, in Ω̂T , (1.4)

µ0
∂H

∂t
= −∇×E, in Ω̂T . (1.5)

The system is supplemented with initial conditions

m(0,x) =m0, E(0,x) = E0, H(0,x) =H0, in ΩT ,

E(0,x) = 0, H(0,x) = 0, in Ω̂T ,
(1.6)

and with the boundary ΓT := [0, T ]× Γ condition for magnetization

∂nm = 0, on ΓT , (1.7)

together with jump conditions connecting the two domains

γLE = γ̂LE, on Γ,

γMH = γ̂MH, on Γ,
(1.8)

where n denotes the outward pointing normal vector, γ̂M and γ̂L are Neumann
and tangential traces on Γ respectively. For simplicity, consider some high-order
energy contributions by applied and exchange fields [14]. We then have the effective
magnetic field Heff given by

Heff(x, t) = Ce∆m(t,x) +H(t,x).

Here H denotes a given applied field, and Ce∆m represents the exchange field,
which depends on the energy functional E(m) = Ce

2

∫
Ω
|∆m|2dx.

1.3. MILLG model reformulation

In this part, motivated by [23], we transform external domain Ω̂ Maxwell’s equations
into boundary domain Γ integral equations. We obtain a coupled Maxwell system
between internal domain Ω and boundary domain Γ, which, put together with
ILLG, form the full MILLG system. Firstly, only take into account Maxwell’s
equations (1.3-1.5) together with jump conditions (1.8). One can refer to [11] for
rigorous requirements of uniqueness, and at the moment, the derivation is done at
a conventional level.

Let Ê(x) and Ĥ(x) represent space-dependent exterior magnetic and electric
fields that satisfy time-harmonic Maxwell equations (1.4) and (1.5) respectively,
as in ( [11], Section 4.1). Let n be the exterior normal vector on Γ pointing into
Ω̂. Recollect equations (1.3-1.5) and define the Neumann and tangential traces
operators for the exterior domain by γ̂La = γ̂Ma × n so that the jump conditions
are given by

γLE = γ̂LÊ, on Γ,

γMH = γ̂MĤ, on Γ.
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From scattering theory [11], for a fixed x, y ∈ C, one can write Maxwell equations
for the electric field and magnetic fields corresponding to the exterior problem as

∇× Ê = ikĤ, in Ω̂,

∇× Ĥ = −ikÊ, in Ω̂,
(1.9)

where Ê = Einc +Escat and Ĥ = Hinc +Hscat and Einc and Hinc are incident
magnetic and electric fields respectively, Escat and Hscat are scattered magnetic
and electric fields respectively, and k is the wavenumber. One can write the exterior
scattering problem (1.9) as follows, find Ê = Einc +Escat satisfying:

∇×
(
∇× Ê

)
= k2Ê, in Ω̂,

Ê × n = 0, on Γ̂,

lim
|x|→∞

|x|
(
∇×Escat ×

x

|x|
− ikEs

)
= 0, as |x| → ∞,

where Hinc = n × Einc, x̂ = x/|x|, ϕγM = −Escat = E − Einc and ψγL =
−Hscat =H −Hinc.

As defined in ( [23], Section 4), the exterior Calderon projector is given as,
Ĉ = 1

2 Id−A and it can be written in matrix form as

Ĉ =

γ̂Mϕ γ̂Lϕ

γ̂Mψ γ̂Lψ

 =

 1
2 Id− V K

−K 1
2 Id− V

 , (1.10)

where Id is the identity operator that maps every function to itself, and A is the
multitrace boundary operator matrix given by

A :=

 V K

−K V

 ,
where V and K are the discretizations of the electric and magnetic boundary op-
erators with the corresponding electric and magnetic potential operators ϕ and, ψ,
respectively.

One can directly obtain the electric field integral equation (EFIE), which can be
derived from the first line of the exterior Calderon projector 1.10 to obtain V π =
1
2 γ̂L(Id +K)Einc. In addition, the strong form of magnetic field integral equation
(MFIE) can be represented directly as EFIE by (K − 1

2 Id)η = γ̂LEinc. Here, π
represents the Neumann trace of the scattered field, and η represents the tangential
trace of the scattered field. A well-conditioned mass matrix B is required to obtain
invertible choices of dual and range spaces in the discretization of A2 = 1

4 Id.

B

ϕ
ψ

 =
1

2µ0

γ̂L(Id +K)Einc

γ̂LEinc

 =
1

2µ0

 γ̂L(Id +K)Einc

γ̂M (Id− V )Hinc

 ,
B

ϕ
ψ

 =
1

2

µ−1
0 γLE

−γME

 =
1

2

µ−1
0 γLE

γLH

 ,
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where Einc can be defined as qeikd·x withHinc = n×Einc, where d is the direction
of the incoming field.

With the Calderon operator together with mass matrix B introduced, we re-
formulate the coupled MILLG system (1.1) - (1.8) on Ω and its boundary Γ: find
functionsm : Ω → S2, E,H : Ω → R3 and ϕ,ψ : Γ → R3 which satisfy (1.11-1.15):

∂tm = −m× (Ce∆m+H) + αm× ∂tm+ ωm× ∂2tm, in ΩT , (1.11)

ϵ∂tE = (∇×H)− σE − J , in ΩT , (1.12)

µ∂tH = − (∇×E)− µ∂tm, in ΩT , (1.13)

and

B

ϕ
ψ

 =
1

2

µ−1
0 γLE

γLH

 , on Γ, (1.14)

with the boundary ΓT := [0, T ]× Γ condition

∂nm = 0, on ΓT . (1.15)

From now onward, the equivalent reformulated MILLG model (1.11-1.15) will be
employed for analysis and investigation.

2. Weak solution to the MILLG system

This section presents the definition and discretization of a weak solution to the
MILLG equations (1.11-1.15). Consider some functional spaces and assume some
conditions on the initial functions m0, E0, and H0.

The function spaces H1(Ω,R3) and H(curl; Ω) are defined as follows:

H1(Ω,R3) =

{
g ∈ L2(Ω,R3) :

∂g

∂xi
∈ L2(Ω,R3) for i = 1, 2, 3

}
,

H(curl; Ω) =
{
g ∈ L2(Ω,R3) : ∇× g ∈ L2(Ω,R3)

}
.

In this case, for a domain Ω ⊂ R3, L2(Ω,R3) is the typical space of Lebesgue squared
integrable functions defined on Ω and taking values in R3. Also, denote

⟨·, ·⟩Ω := ⟨·, ·⟩L2(Ω,R3) and ∥ · ∥Ω := ∥ · ∥L2(Ω,R3).

To define a weak solution of MILLG equations, assume that the given initial func-
tions m0 ∈ H1(Ω,R3) and E0,H0 ∈ H(curl; Ω) satisfy

|m0| = 1, div(H0 +m0) = div(H0) = 0, div(E0) = 0, in Ω,

divJ(x, t) = 0, in Ω,

(H0 +m0) · n = 0, on ΓT .

(2.1)

Since we have reformulated the MILLG model, instead of solving (1.1)-(1.8), it
is equivalent to solving (1.11)-(1.15). We can now define a weak solution to the
MILLG problem (1.11-1.15).



1724 R. Kitengeso & Z. Zheng

2.1. Weak solution

Definition 2.1. Let the initial data (m0,E0,H0) satisfy (2.1). Then m,H,E
is called a weak solution to MILLG equations (1.11)-(1.15) if, for all T > 0, the
following hold

1. m ∈ H1(ΩT ,R3) with |m| = 1 almost everywhere, m(0) = m0 in the sense
of traces and, for all test functions ζ ∈ C∞(ΩT ) and let v = ∂tm we have

⟨αv, ζ⟩ΩT
+ ⟨m× v, ζ⟩ΩT

+ ⟨ω∂tv, ζ⟩ΩT
= −⟨Ce∇m,∇ζ⟩ΩT

+ ⟨H, ζ⟩ΩT
.

(2.2)

2. E, H, ∂tE, ∂tH ∈ L2(ΩT ,R3) such that ∇×E, ∇×H ∈ H(curl; ΩT ) with
test functions ηE , ηH and the variables ϕ := µ0γLH and ψ := −γLE with
test functions uϕ and uψ we have

⟨ϵ∂tE, ηE⟩ΩT
= ⟨∇ ×H, ηE⟩ΩT

− ⟨σE + J , ηE⟩ΩT
,

⟨µ∂tH, ηH⟩ΩT
= −⟨∇×E, ηH⟩ΩT

− ⟨µv, ηH⟩ΩT
,〈uϕ

uψ

 , B

ϕ
ψ

〉
Γ

=
1

2

〈uϕ
uψ

 ,

µ−1
0 γLE

−γLH

〉
Γ

.

(2.3)

3. For almost all t ∈ (0, T ), we have bounded energy

∥∇m∥2L2(ΩT ) + ∥v∥2L2(ΩT ) + ∥∂tv∥2L2(ΩT ) + ∥H∥2L2(ΩT ) + ∥E∥2L2(ΩT ) ≤ C,

where C > 0 is independent of t.

Space and time discretizations for MILLG weak form are defined in Definition 2.1.

2.2. Tangent plane scheme and time discretization

Let Th be a regular tetrahedrization of the polyhedral bounded Lipschitz domain
Ω ⊂ R3 into compact tetrahedra mesh with maximum size h, and let a set of
vertices and edges be represented by Nh := {x1, ...,xN}, and Mh := {e1, ..., eM}
respectively.

To discretize the ILLG equation (2.2), we introduce the P1-FEM space S1
h ⊂

H1(Ω,R3) which is the space of all continuous piecewise linear functions on Th.
A basis for S1

h can be chosen to be φh ∈ C(Ω̄,R3), where φh(xm) = δn,m. Here

δn,m stands for the Kronecker symbol δn,m =

{
1, if n = m,

0, if n ̸= m.
. The interpolation

operator from C0(Ω,R3) onto S1
h is denoted by P h,

S1
h := {φh ∈ C(Ω̄,R3) : φh|K ∈ P1(K) ∀ K ∈ Th},

P h(u) :=

N∑
h=1

u(xh)φh(x) ∀u ∈ C0(Ω,R3).

Since |m(t,x)| = 1 almost everywhere, define the discrete manifold Yh and tangent
space Kh for any magnetization mh ∈ Yh as

Yh := {φh ∈ S1
h||φh(x)| = 1 ∀ x ∈ Nh},

Kh := {φh ∈ S1
h :mh · φh(x) = 0 ∀ x ∈ Nh}.
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To discretize Maxwell’s equation (2.3) in the interior, we use a Nedelec conforming
ansartz space [5]. Let {π1, ...,πM} be a basis for lowest order edge elements of
Nedelec first family space X 1

h ⊂ H(curl,Ω). We define the following interpolation
operator Qh from C∞(Ω) onto X 1

h ,

X 1
h := {πh ∈ H(curl,Ω) : πh|K ∈ P1

skw(K) ∀ K ∈ Th},
where P1

skw(K) = {v : K → R3, v(x) = a+Bx : a ∈ R3, B ∈ R3×3, BT = −B},

Qh(w) =

M∑
q=1

(∫
eq

w · νqds

)
πq ∀w ∈ C∞(Ω,R3).

With the finite element spaces defined above, now define the approximation
scheme. For time discretization, use a constant time step size τ := T

N for a fixed
positive integerN ∈ N with time steps 0 = t0, ..., tn = T , tj = τj. For j = 1, 2, ..., N ,

the functions m(tj , ·), E(tj , ·) and H(tj , ·) are approximated by mj
h ∈ S1

h and

Ej
h,H

j
h ∈ X 1

h respectively.
Noting from (1.1) that ∂tm ·m = 0 and recall φh is a basis of S1

h, we find vj+1

in the space Vjh and |mj+1| = 1 condition defined by

Vjh := {v ∈ S1
h|v(xn) ·m

j
h(xn) = 0, n = 1, ..., N},

|mj+1
h | :=

N∑
n=1

mj
h(xn) + τvj+1

h (xn)

|mj
h(xn) + τvj+1

h (xn)|
φh.

3. FEM-BEM algorithm

In this section, we implement FEM for the ILLG part in the interior domain and
coupling of FEM-BEM for the Maxwell part in the interior and boundary domains.
We approximate the solution of the MILLG system (1.11) to (1.15) by the following
algorithm, based on the weak formulation Definition 2.1.

For tangent plane scheme the implicit parameter θ and R ∈ {v,E,H, ϕ, ψ}, the
second order discrete-time derivative takes the form

∂tR
j+1 =

Rj+1 −Rj

τ
, mj+1

h =mj
h + θτvj+1

h . (3.4)

The parameter θ can be arbitrarily selected in [0, 1]. The method is explicit when
θ = 0 and fully implicit when θ = 1.

Remark 3.1. Here, we use a first-order implicit scheme for the computational
stability and efficiency of the coupled system. Meanwhile, discrete energy laws of
LLG can be extended to ILLG [22]. Using the same approach, we can design second-
order A-stable schemes [24]. However, high-order schemes greater than 2 cannot be
A-stable [1].

Assume that the spatial meshes are uniformly shaped, regular, and satisfy the
angle condition.

Lemma 3.1. It holds∫
Ω

∇φi · φjdx ≤ 0 ∀ i, j ∈ {1, 2, ..., N} with i ̸= j.
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Algorithm 1 FEM-BEM Algorithm

1. Input: discretized initial data m0
h,E

0
h,H

0
h,ϕ

0
h,ψ

0
h and the implicity param-

eter θ ∈ [0, 1].

2. For j → j + 1, j ∈ N, 0 ≤ j ≤ N − 1. Compute the following:

a. Given mj
h, H

j
h, compute vj+1

h ∈ Kh by solving the bilinear form of the ILLG
equation (2.2) discretized below for all ζh ∈ Kh

⟨αvjh, ζh⟩ΩT
+ ⟨vjh ×m

j
h, ζh⟩ΩT

+ ⟨ω(vj+1
h − vjh)/τ, ζh⟩ΩT

=− ⟨Ce∇(mj
h + θτvjh),∇ζh⟩ΩT

+ ⟨Hj
h, ζh⟩ΩT

,
(3.1)

b. Compute Ej+1
h ,Hj+1

h ∈ X 1
h and ϕj+1

h ∈ γL(X 1
h ), ψ

j+1
h ∈ γL(X 1

h ) by solving in
block form the Maxwell equation (2.3) discretized below for all ηEh, ηHh ∈ X 1

h

and uϕ ∈ γL(X 1
h ), uψ ∈ γL(X 1

h )

⟨(ϵ/τ + σ)Ej+1
h , ηEh⟩ΩT

− ⟨∇×Hj+1
h , ηEh⟩ΩT

= ⟨(ϵ/τ)Ej
h, ηEh⟩ΩT

− ⟨J j+1
h , ηEh⟩ΩT

,

⟨(µ/τ)Hj+1
h , ηHh⟩ΩT

+ ⟨∇ ×Ej+1
h , ηHh⟩ΩT

= ⟨(µ/τ)Hj
h, ηHh⟩ΩT

− ⟨µvjh, ηHh⟩ΩT
,〈uϕ

uψ

 , B

ϕj+1
h

ψj+1
h

〉
Γ

=
1

2

〈uϕ
uψ

 ,

µ−1
0 γLE

j+1
h

−γLHj+1
h

〉
Γ

.

(3.2)

Maxwell equations can be written in block form as:
B[0, 0] B[0, 1] B[0, 2] B[0, 3]

B[1, 0] B[1, 1] B[1, 2] B[1, 3]

B[2, 0] B[2, 1] B[2, 2] B[2, 3]

B[3, 0] B[3, 1] B[3, 2] B[3, 3]




Ei+1
h

Hi+1
h

ϕi+1
h

ψi+1
h

 =


Y [0]

Y [1]

Y [2]

Y [3]

 .

c. We update and normalize by computing mj+1
h for all nodes x ∈ Nh

mj+1
h (x) :=

mj
h(x) + τvjh(x)

|mj
h(x) + τvjh(x)|

,

vj+1
h (x) := vj+1

h (x) + τvjh(x).

(3.3)

3. Return to step 2(a) if j < N .

4. Stop if j = N .

5. Output: the sequence of approximations mj+1
h , Ei+1

h , Hi+1
h , ϕi+1

h , ψi+1
h .

Recall from Section 2.2, that φh is a basis of S1
h. The condition is satisfied if

all dihedral angles of the tetrahedral meshes Th are smaller than or equal to π/2;
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see [3]. Then for all u ∈ S1
h satisfying |u(xk)| ≥ 1, k = 1, 2, ..., N , there holds∫
Ω

∇Th
∣∣∣∣ u|u|

∣∣∣∣2 dx ≤
∫
Ω

|∇u|2dx.

Remark 3.2. The angle condition ensures boundedness of the normalization step
in Algorithm 1

∥∇mj+1
h ∥Ω ≤ ∥∇(mj

h + τvjh)∥Ω. (3.5)

Lemma 3.2. The trace operators γL, γ̂L : H(curl; Ω ∪ Ω̂) → HΓ and γM , γ̂M :
H(curl2; Ω ∪ Ω̂) → HΓ are continuous and surjective, see ( [23], Theorem 1).

We collected from ( [23], Section 3) the tangential trace space, H1/2
x (Γ) and its

dual space H−1/2
x (Γ) with respect to antisymmetric product ⟨a, b⟩ :=

∫
Γ
a · (n× b)

for a, b ∈ L2
L. Here H1/2

x (Γ) := γL(H1(Ω)) . The trace space can be defined as

HΓ := H−1/2
x (divΓ,Γ), where divΓ denotes the scalar surface divergence.

The discrete solutions {mj+1
h ,Ei+1,Hi+1,ϕi+1,ψi+1} constructed in Algo-

rithm 1 are interpolated in time in the following definition.

Definition 3.1. For each t ∈ [0, T ], let j ∈ {0, ..., N} be such that t ∈ [tj , tj+1].
We define for t ∈ [0, T ], recall [19] we have tj = τj, R ∈ {m,v,E,H, ϕ, ψ} and
x ∈ Ω

Rh,τ (t,x) =
t− tj
τ

Rj+1
h (x) +

tj+1 − t

τ
Rj
h(x),

R−
h,τ (t,x) = R

j
h(x),

vh,τ (t,x) = ∂tmh,τ (t,x),

ϕt,τ = γLEh,τ (t,x) and ϕ−t,τ = γLE
j
h(x),

ψt,τ = γLHh,τ (t,x) and ψ−
t,τ = γLH

j
h(x).

4. Main result and convergence analysis

In this section, we seek to show that Algorithm 1 defines a convergent scheme.

4.1. Main result

Theorem 4.1. Let (mh,τ ,Eh,τ ,Hh,τ ,ϕh,τ ,ψh,τ ) be the approximations obtained

by Algorithm 1 for θ ∈
(
1
2 , 1
]
. Under condition (3.5), for any (τ, h) → (0, 0)

there exists a subsequence of (mh,τ ,Eh,τ ,Hh,τ ,ϕh,τ ,ψh,τ ) that converges weakly
in H1(ΩT ) × L2(ΩT )

2 × L2(HΓ)
2 to a weak solution (m,E,H,ϕ,ψ) of MILLG.

In particular, each accumulation point of (mh,τ ,Eh,τ ,Hh,τ ,ϕh,τ ,ψh,τ ) is a weak
solution of MILLG in the sense of Definition 2.1.

The three-step proof proceeds to show that discrete quantities and energies are
bounded. Thereafter, we established the existence of weakly convergent subse-
quences, and their limits are identified as weak solutions of MILLG.

4.2. Analysis of algorithm

The lemma shows that the algorithm is indeed bounded and admits unique solutions
in each iterative loop step.
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Lemma 4.1. Algorithm 1 is well-defined in the sense that, for every j ≥ 0, there
exists unique approximations Rj+1 that satisfy equations (3.1)-(3.2).

Proof. For tangent plane scheme equation (3.1), by the Lax-milgram Theorem,
for each j > 0 there exists a unique solution (mj+1

h ,Hj+1
h ) ∈ Kjh ×X 1

h .

Since |mj
h(xn)| = 1 and |vj+1

h (xn) ·mj
h(xn)| = 0 for all n = 1, ..., N , there holds

|mj
h(xn) + τvj+1

h (xn)| ≥ 1. Therefore, the algorithm is well-defined. There also

holds |mj+1
h (xn)| = 1 for n = 1, ..., N .

For the Maxwell case (3.2), we define the bilinear form a(·, ·) and linear func-
tional Lj(·) on X 1

h ×X 1
h × γL(X 1

h )× γL(X 1
h ) by

a((Φ,Ψ,Θ,Υ), (ϕ, ψ, θ, ν))

=⟨(ϵ/τ + σ) Φ, ϕ⟩ΩT
− ⟨∇×Ψ, ψ⟩ΩT

+ ⟨(µ/τ)Ψ, ψ⟩ΩT
+ ⟨∇ × Φ, ϕ⟩ΩT

+

〈θ
ν

 , B0

Θ

Υ

〉
Γ

,

Lj(ϕ, ψ, θ, ν)

=⟨(ϵ/τ)Ei, ϕ⟩ΩT
− ⟨J i+1, ϕ⟩ΩT

+ ⟨(µ/τ)Hi, ψ⟩ΩT
− ⟨vi, ψ⟩ΩT

+
1

2

〈θ
ν

 ,

j∑
k=1

Bj+1−k

ϕkh
ψkh

〉
Γ

.

Equations (3.1)-(3.2) is equivalent to

a((Φ,Ψ,Θ,Υ), (ϕ, ψ, θ, ν)) = Lj(ϕ, ψ, θ, ν),

for all (ϕ, ψ, θ, ν) ∈ (X 1
h ×X 1

h × γL(X 1
h )× γL(X 1

h )).

Strictness of a(·, ·) on (X 1
h × X 1

h × γL(X 1
h ) × γL(X 1

h )) implies the statement of the
Lemma 4.1 and since the trace variants γL : H(curl,Ω) → HΓ are bounded [5], we
have

a((Φ,Ψ,Θ,Υ), (ϕ, ψ, θ, ν)) = ⟨(ϵ/τ + σ) Φ,Φ⟩ΩT
+ ⟨(µ/τ)Ψ,Ψ⟩ΩT

+

〈Θ

Υ

 , B0

Θ

Υ

〉
Γ

≥C(τ, µ, ϵ, σ)(∥Φ∥2ΩT
+ ∥Ψ∥2ΩT

+ ∥Θ∥2HΓ
+ ∥Υ∥2HΓ

)

> 0,

and we conclude the proof.

Remark 4.1. In this work, we use scalar and constant material parameters ϵ, µ ∈
R+, but hold with similar arguments for symmetric, coercive, and bounded material
tensors ϵ, µ : ΩT → R3×3 and bounded, positive σ : ΩT → R3×3.

The next lemma provides a bound in the L2-norm for the discrete solutions.

Lemma 4.2. The sequence {mj+1
h ,Ei+1,Hi+1,ϕi+1,ψi+1} produced by Algorithm

1 satisfies

Ej−1 ≤ C + cτ

j∑
i=1

Ej−2
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where

Ej−1 =
ϵ

2
∥Ej−1

h ∥2ΩT
+
µ

2
∥Hj−1

h ∥2ΩT
+
τωµ

2
∥vj−1

h ∥2ΩT
+
µCe
2

∥∇mj−1
h ∥2ΩT

,

C ≥ ϵ

2

(
i∑

k=1

∥Ek+1
h −Ek

h∥2ΩT

)
+ τσ

i∑
k=1

∥Ek
h∥2ΩT

+
µ

2

(
i∑

k=1

∥Hk+1
h −Hk

h∥2ΩT

)
+
µCe
2

∥∇mj+1
h ∥2ΩT

+ ταµ

j∑
k=1

∥vkh∥2ΩT
+
τωµ

2

(
j∑

k=1

∥vk+1
h − vkh∥2ΩT

)

− µCeτ
2

(
1

2
− θ

) j∑
k=1

∥∇vkh∥2ΩT
+ τ

j∑
k=1

〈ϕk
ψk

 , B

ϕk+1

ψk+1

〉
Γ

.

Proof. Choosing vjh = ζh ∈ Kh in (3.1) and {Ei = ηE ,H
i = ηH , uϕ = ϕj , uψ =

ψj} ∈ Xh in (3.2), one can obtain

⟨αvjh,v
j
h⟩ΩT

+ ⟨vjh ×m
j
h,v

j
h⟩ΩT

+ ⟨ω(vj+1
h − vjh)/τ,v

j
h⟩ΩT

= −⟨Ce∇(mj
h + θτvjh),∇v

j
h⟩ΩT

+ ⟨Hj
h,v

j
h⟩ΩT

,
(4.1)

⟨(ϵ/τ + σ)Ei+1,Ei⟩ΩT
− ⟨∇×Hi+1,Ei⟩ΩT

= ⟨(ϵ/τ)Ei,Ei⟩ΩT
− ⟨J i+1,Ei⟩ΩT

,

⟨(µ/τ)Hi+1,Hi⟩ΩT
+ ⟨∇ ×Ei+1,Hi⟩ΩT

= ⟨(µ/τ)Hi,Hi⟩ΩT
− ⟨µvi,Hi⟩ΩT

,〈ϕj
ψj

 , B

ϕj+1

ψj+1

〉
Γ

=
1

2

〈ϕj
ψj

 ,

µ−1
0 γLE

j+1

−γLHj+1

〉
Γ

.

(4.2)

Since the angle condition (3.5) is satisfied, we can rewrite equation (4.1) using the
following

∥∇mj+1
h ∥Ω ≤ ∥∇(mj

h + τvjh)∥Ω,
∥∇mj+1

h ∥2Ω ≤ ∥∇mj
h∥

2
Ω + 2τ⟨∇mj

h,∇v
j
h⟩Ω + τ2∥∇vjh∥

2
Ω.

Applying Abel’s summation by parts for Ri+1 ∈ R3 to equation (4.1) and (4.2), for
k ≤ j ≤ i it holds that

j∑
k=1

⟨(Rk+1 −Rk),Rk⟩ = 1

2

j∑
k=1

∥Rk+1 −Rk∥2 + 1

2
∥Rj−1∥2 − 1

2
∥R0∥2.

We rewrite equation (4.1) multiplying by τµ and summing up (4.2) for k, i, j ∈ N
and we have

ταµ

j∑
k=1

∥vkh∥2ΩT
+
τωµ

2

(
j∑

k=1

∥vk+1
h − vkh∥2ΩT

+ ∥vj−1
h ∥2ΩT

− ∥v0h∥2ΩT

)
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≤ −µCe
2

∥∇mj+1
h ∥2ΩT

− µCe
2

∥∇m0
h∥2ΩT

+ µCeτ
2

(
1

2
− θ

) j∑
k=1

∥∇vkh∥2ΩT
+ τµ

j∑
k=1

⟨Hk
h,v

k
h⟩ΩT

, (4.3)

ϵ

2

(
i∑

k=1

∥Ek+1
h −Ek

h∥2ΩT
+ ∥Ej−1

h ∥2ΩT
− ∥E0

h∥2ΩT

)

+
µ

2

(
i∑

k=1

∥Hk+1
h −Hk

h∥2ΩT
+ ∥Hj−1

h ∥2ΩT
− ∥H0

h∥2ΩT

)

+ τ

i∑
k=1

〈ϕk
ψk

 , B

ϕk+1

ψk+1

〉
Γ

≤ τσ

i∑
k=1

∥Ek
h∥2ΩT

− τµ

i∑
k=1

⟨vkh,H
k
h⟩ΩT

− τ

j∑
k=1

⟨Jk+1
h ,Ek

h⟩ΩT
. (4.4)

Adding equations (4.3) and (4.4) we obtain

ϵ

2

(
i∑

k=1

∥Ek+1
h −Ek

h∥2ΩT
+ ∥Ej−1

h ∥2ΩT

)
+ τσ

i∑
k=1

∥Ek
h∥2ΩT

+
µ

2

(
i∑

k=1

∥Hk+1
h −Hk

h∥2ΩT
+ ∥Hj−1

h ∥2ΩT

)
+
µCe
2

∥∇mj+1
h ∥2ΩT

+ ταµ

j∑
k=1

∥vkh∥2ΩT
+
τωµ

2

(
j∑

k=1

∥vk+1
h − vkh∥2ΩT

+ ∥vj−1
h ∥2ΩT

)

− µCeτ
2

(
1

2
− θ

) j∑
k=1

∥∇vkh∥2ΩT
+ τ

j∑
k=1

〈ϕk
ψk

 , B

ϕk+1

ψk+1

〉
Γ

≤ τµ

j∑
k=1

⟨Hk
h −H

k+1
h ,vkh⟩ΩT

− τ

j∑
k=1

⟨Jk+1
h ,Ek

h⟩ΩT

+
ϵ

2
∥E0

h∥2ΩT
+
µ

2
∥H0

h∥2ΩT
+
τωµ

2
∥v0h∥2ΩT

+
µCe
2

∥∇m0
h∥2ΩT

.

(4.5)

As the ferromagnetic domain may not be conductive (σ = 0), the right-hand side
(4.5) can be bounded with Cauchy-Schwarz for arbitrary δ1, δ2 > 0 such that

τµ

j∑
k=1

⟨Hk
h −H

k+1
h ,vkh⟩ΩT

− τ

j∑
k=1

⟨Jk+1
h ,Ek

h⟩ΩT

≤
j∑

k=1

τ

2δ1
∥Jk+1

h ∥2ΩT
+

j∑
k=1

τδ1∥Ek
h∥2ΩT

+

j∑
k=1

τµδ2
2

∥vkh∥2ΩT

+

j∑
k=1

τδ1∥Ek+1
h −Ek

h∥2ΩT
+

j∑
k=1

τµ

2δ2
∥Hk+1

h −Hk
h∥2ΩT

,
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and together with

Ej−1 =
ϵ

2
∥Ej−1

h ∥2ΩT
+
µ

2
∥Hj−1

h ∥2ΩT
+
τωµ

2
∥vj−1

h ∥2ΩT
+
µCe
2

∥∇mj−1
h ∥2ΩT

,

we obtain that

Ej−1 +
( ϵ
2
− τδ1

)( i∑
k=1

∥Ek+1
h −Ek

h∥2ΩT

)
+ τσ

i∑
k=1

∥Ek
h∥2ΩT

+
µ

2

(
1− τ

δ2

)( i∑
k=1

∥Hk+1
h −Hk

h∥2ΩT

)

+ τµ

(
α− δ2

2

) j∑
k=1

∥vkh∥2ΩT
+
τωµ

2

(
j∑

k=1

∥vk+1
h − vkh∥2ΩT

)

− µCeτ
2

(
1

2
− θ

) j∑
k=1

∥∇vkh∥2ΩT
+ τ

j∑
k=1

〈ϕk
ψk

 , B

ϕk+1

ψk+1

〉
Γ

≤
j∑

k=1

τ

2δ1
∥Jk+1

h ∥2ΩT
+

j∑
k=1

τδ1∥Ek
h∥2ΩT

+ E0

≤
j∑

k=1

τ

2δ1
∥Jk+1

h ∥2ΩT
+

τ

2δ1

j∑
k=1

Ek−2 + E0.

(4.6)

We choose δ1, δ2 > 0 such that sufficiently small τ > 0 satisfy(
1− τ

δ2

)
> 0,

( ϵ
2
− τδ1

)
> 0 and

(
α− δ2

2

)
> 0.

Estimate equation (4.5) can be simplified to Ej−1 ≤ C+cτ
∑j
i=1 Ej−2 and conclude

the proof.

4.3. Existence of weak solution

The next lemma using the Banach-Alaoglu Theorem and Cauchy-Schwarz inequality
[5, 19] provides limits of weak solutions.

Lemma 4.3. There exist functions

(m,H,E, ϕ̃, ψ̃) ∈ H1(ΩT ,S2)× L2(ΩT )× L2(ΩT )× L2(HΓ)× L2(HΓ)

such that

mh,τ ⇀m in H1(ΩT ),

mh,τ ,m
±
h,τ ⇀m in L2([0, T ],H1(ΩT )),

mh,τ ,m
±
h,τ ⇀m in L2(ΩT ),

v±h,τ ⇀ ∂tm in L2(ΩT ),

Hh,τ ,H
±
h,τ ⇀H in L2([0, T ],H1(ΩT )),

∇×Hh,τ ,∇×H±
h,τ ⇀ ∇×H in L2(ΩT ),
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Eh,τ ,E
±
h,τ ⇀ E in L2([0, T ],H1(ΩT )),

∇×Eh,τ ,∇×E±
h,τ ⇀ ∇×E in L2(ΩT ),

ϕh,τ ,ϕ
±
h,τ ⇀ ϕ̃ in L2(HΓ) w.r.t. ⟨·, ·⟩,

ψh,τ ,ψ
±
h,τ ⇀ ψ̃ in L2(HΓ), w.r.t. ⟨·, ·⟩.

We are now able to prove the main result of this paper.

Proof of theorem 4.1. We proceed for the ILLG (3.1) and Maxwell (3.2) moti-
vated by [22] and [5] respectively.

For any φ ∈ C∞(ΩT ), ηE , ηH ∈ C∞(Γ), and t ∈ [tj , tj+1), we define ζh,τ =
m−
h,τ × φ and (ηEh, ηHh) = (ηE , ηH).
In equation (3.1) and (3.2), using Definition 3.1 and replacing ζh and (ηEh, ηHh)

by ζh,τ (t) and (ηEh(t), ηHh(t)) respectively. Then, integrating both sides with re-
spect to t over an interval [tj , tj+1) and summing over j from 0 to N −1, we rewrite
(3.1) and (3.2) as

⟨αv−h,τ (t), ζh,τ (t)⟩ΩT
+ ⟨v−h,τ (t)×m

−
h,τ (t), ζh,τ (t)⟩ΩT

+ ⟨ω(vh,τ (t)− v−h,τ (t))/τ, ζh,τ (t)⟩ΩT

+ ⟨Ce∇(m−
h,τ (t) + θτv−h,τ (t)),∇ζh,τ (t)⟩ΩT

− ⟨H−
h,τ (t), ζh,τ (t)⟩ΩT

= 0,

(4.7)

⟨(ϵ/τ + σ)Eh,τ (t), ηEh(t)⟩ΩT
− ⟨∇×Hh,τ (t), ηEh(t)⟩ΩT

= ⟨(ϵ/τ)E−
h,τ (t), ηEh(t)⟩ΩT

− ⟨Jh,τ (t), ηEh(t)⟩ΩT
,

⟨(µ/τ)Hh,τ (t), ηHh(t)⟩ΩT
+ ⟨∇ ×Eh,τ (t), ηHh(t)⟩ΩT

= ⟨(µ/τ)H−
h,τ (t), ηHh(t)⟩ΩT

− ⟨µv−h,τ (t), ηHh(t)⟩ΩT
,〈uh,τϕ (t)

uh,τψ (t)

 , B

ϕh,τ (t)
ψh,τ (t)

〉
Γ

=
1

2

〈uh,τϕ (t)

uh,τψ (t)

 ,

µ−1
0 γLEh,τ (t)

−γLHh,τ (t)

〉
Γ

.

(4.8)

The nodal interpolation operator properties with ζh,τ = m−
h,τ × φ and

(ηEh(t), ηHh(t)) = (ηEh, ηHh) give

⟨αv−h,τ ,m
−
h,τ × φ⟩ΩT

+ ⟨v−h,τ ×m
−
h,τ ,m

−
h,τ × φ⟩ΩT

+ ⟨ω(vh,τ − v−h,τ )/τ,m
−
h,τ × φ⟩ΩT

+ ⟨Ce∇(m−
h,τ + θτv−h,τ ),∇(m−

h,τ × φ)⟩ΩT
− ⟨H−

h,τ ,m
−
h,τ × φ⟩ΩT

= O(h),

(4.9)
⟨(ϵ/τ + σ)Eh,τ , ηEh⟩ΩT

− ⟨∇×Hh,τ , ηEh⟩ΩT

= ⟨(ϵ/τ)E−
h,τ , ηEh⟩ΩT

− ⟨Jh,τ , ηEh⟩ΩT
,

⟨(µ/τ)Hh,τ , ηHh⟩ΩT
+ ⟨∇ ×Eh,τ , ηHh⟩ΩT

= ⟨(µ/τ)H−
h,τ , ηHh⟩ΩT

− ⟨µv−h,τ , ηHh⟩ΩT
,〈uh,τϕ

uh,τψ

 , B

ϕh,τ
ψh,τ

〉
Γ

=
1

2

〈uh,τϕ
uh,τψ

 ,

µ−1
0 γLEh,τ

−γLHh,τ

〉
Γ

.

(4.10)

In order to show that a weak solutionm,E,H, ϕ, ψ satisfy Definition 2.1, we prove
that as h and τ tend to 0.
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First, using the strong L2(ΩT )-convergence of m−
h,τ × φ towards m × φ and

boundedness of τ∥∇v−h,τ∥2L2(ΩT ) for θ ∈ (1/2, 1] from ILLG equation (4.9) we obtain

⟨αv−h,τ + v
−
h,τ ×m

−
h,τ ,m

−
h,τ × φ⟩ΩT

→ ⟨α∂tm+ ∂tm×m,m× φ⟩ΩT
,

⟨ω(vh,τ − v−h,τ )/τ,m
−
h,τ × φ⟩ΩT

→ ⟨ω∂ttm,m× φ⟩ΩT
,

⟨Ce∇m−
h,τ ,∇(m−

h,τ × φ)⟩ΩT
→ ⟨Ce∇m,∇(m× φ)⟩ΩT

,

⟨θτ∇v−h,τ ,∇(m−
h,τ × φ)⟩ΩT

→ 0 and

⟨H−
h,τ ,m

−
h,τ × φ⟩ΩT

→ ⟨H,m× φ⟩ΩT
.

(4.11)

We have now proved

⟨α∂tm+ ∂tm×m,m× φ⟩ΩT
+ ⟨ω∂ttm,m× φ⟩ΩT

=− ⟨Ce∇m,∇(m× φ)⟩ΩT
+ ⟨H,m× φ⟩ΩT

.

The equality m(0) = m0 in the trace sense follows from the weak convergence
mh,τ ⇀ m ∈ H1(ΩT ) and thus weak convergence of the traces. We eventually
determined the limit using the weak convergence m0

h ⇀m0 ∈ L2(Ω).

Second using Definition 3.1 from Maxwell equation (4.10) we obtain

⟨(ϵ/τ + σ)Eh,τ , ηEh⟩ΩT
→ ⟨(ϵ/τ + σ)E, ηE⟩ΩT

,

⟨∇ ×Hh,τ , ηEh⟩ΩT
→ ⟨∇×H, ηE⟩ΩT

,

⟨(ϵ/τ)E−
h,τ , ηEh⟩ΩT

→ ⟨(ϵ/τ)E, ηE⟩ΩT
,

⟨Jh,τ , ηEh⟩ΩT
→ ⟨J , ηE⟩ΩT

,

⟨(µ/τ)Hh,τ , ηHh⟩ΩT
→ ⟨(µ/τ)H, ηH⟩ΩT

,

⟨∇ ×Eh,τ , ηHh⟩ΩT
→ ⟨∇×E, ηH⟩ΩT

,

⟨(µ/τ)H−
h,τ , ηHh⟩ΩT

→ ⟨(µ/τ)H, ηH⟩ΩT
,

⟨µv−h,τ , ηHh⟩ΩT
→ ⟨µ∂tm, ηH⟩ΩT

,〈uh,τϕ
uh,τψ

 , B

ϕh,τ
ψh,τ

〉
Γ

→

〈uϕ
uψ

 , B

ϕ
ψ

〉
Γ

,

1

2

〈uh,τϕ
uh,τψ

 ,

µ−1
0 γLEh,τ

−γLHh,τ

〉
Γ

→ 1

2

〈uϕ
uψ

 ,

µ−1
0 γLE

−γLH

〉
Γ

.

Using triangular and Holders inequalities, we show the energy estimate

∥∇m∥2L2(ΩT ) + ∥∂tm∥2L2(ΩT ) + ∥∂ttm∥2L2(ΩT ) + ∥H∥2L2(ΩT ) + ∥E∥2L2(ΩT )

≤C∥∇m−
h,τ∥

2
L2(ΩT ) + ∥∂tmh,τ∥2L2(ΩT ) + ∥∂ttmh,τ∥2L2(ΩT )

+ ∥Hh,τ∥2L2(ΩT ) + ∥Eh,τ∥2L2(ΩT ),

where we have assumed convergence of initial data satisfies Definition 2.1. The
desired result follows from the conservation of energy argument [14]. Thus, we
conclude the proof.
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5. Computational experiments and conclusion

In this section, we implement Algorithm 1 in the finite element software FENICS [2]
and the boundary element software bempp [4] on a desktop computer. We observed
that the cost per time step is approximately proportional to the number of mesh
elements, although further research beyond the scope of this study is required to
establish this conclusion. After discretization, we write MILLG equations (3.1) and
(3.2) in the following bilinear form and blocked formulation.

5.1. FEM implementation

We write this as the following bilinear equation using the saddle point approach [1,5]
for simplicity and solve for (vjh, λh) such that for all (ζh, βh)

⟨αvjh, ζh⟩ΩT
− ⟨(mj

h · v
j
h), βh⟩ΩT

− ⟨(mj
h · ζh), λh⟩ΩT

+ ⟨vjh ×m
j
h, ζh⟩ΩT

+ ⟨ω(vj+1
h − vjh)/τ, ζh⟩ΩT

= −⟨∇mj+1
h ,∇ζh⟩ΩT

+ ⟨Hj
h, ζh⟩ΩT

,

LHSj+1 = RHSj .

The terms orthogonal to the test functions may be theoretically dropped but are
relevant for saddle point approach conditioning.

5.2. BEM implementation

Discrete spaces from natural standard grids, barrycentrically refined grids, and edge-
scaled grids mostly naturally generate the same and mathematically identical basis
functions. However, for implementation, inner products can only be computed by
basis functions defined on the same grid.

Let F be a Linear operator in bempp. Then F is the matrix that maps coefficients
of functions P in Domain Space, DS, to coefficients of P in Range Space, RS, tested
with functions in the Dual Space to Range Space, DSRS.

We can denote DSRSFDS as a weak form of F and FDS→RS as a strong form
of F which are related as follows

DSRSFDS = (DSRSIdDS)FDS→RS .

The strong form can be expressed as

(FP )(RS) = FDS→RS · P (DS).

Using the standard basis functions from discrete element spaces such as Scalar
Linear, S1, Vector-Valued, S1, First Order Nedelec, N1, Raviart Thomas, RT and
Nedelec, NC. Scaled basis functions such as Rao-Wilton-Glisson, RWG, and Scaled
Nedelec, SNC spaces are also used. There are also barrycentrical basis functions, to
mention but a few Buffa-Christiansen, BC, and Rotated Buffa-Christiansen, RBC.
The basis function can be defined by rotation and scaling of the corresponding basis
function. The change of basis function can be implemented via the application of
n×(···) or multiplication by the associated edge to obtain an identical basis function.

Summarize and state the full system by defining mass matrices

Q0 := (N1IdN1),
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Q1 := (N1IdS1),

Q2 := (NCIdNC),

Q3 := (RBCIdRWG)γT
N1→RT ,

Q4 := (RBCIdRWG)γT
RBC→RWG,

Q5 := (RBCÊ
RWG

).

Define the symmetric, discrete differential operator

D := 0.5(NC∇×NC) + 0.5(NC∇×NC)T .

Full Blocked formulation

(
ϵ
τ + σ

)
Q2E

i+1 −DHi+1 −µ−1
0 QT

3E
i+1 0

DEi+1 µ0

τ Q2H
i+1 0 −QT

3H
i+1

µ−1
0 Q3E

i+1 0 −µ2
0
√
µ0ϵQ5 µ−1

0 Q5

0 Q3H
i+1 −µ0Q5

√
µ0ϵQ5




Ei+1

Hi+1

ϕi+1

ψi+1



=


Y [0]

Y [1]

Y [2]

Y [3]



=



ϵ
τQ0E

i −Q1J
i+1

µ0

τ Q0H
i −Q1v

i

−Q4E
i −Einc

µ0Q4H
i −Hinc

 ,

LHS


Ei+1(χh)

Hi+1(χh)

ϕi+1(RBC)

ψi+1(RWG)

 = RHSi.

5.3. Convergence in time and space

In this research, consider convergence with rates of the Maxwell-Inertia-Landau-
Lifshitz-Gilbert (MILLG) system. We implement an algorithm for the approxima-
tion of the MILLG system that, provided the exact solution is smooth enough,
converges to the solution with a priori-know error ratio. Two academic examples
are performed to solve the problem of an effective magnetic field on a unit cube,
Ω1 = (0, 1)3 and thin plate Ω2 = (0, 1)× (0, 1)× (0, 0.08) of ferromagnetic material
with different material parameters inside and outside the domain. The tolerance
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Figure 1. The representation of cube tetrahedral mesh with a total of 3996 nodes in the domain (left)
and cube surface with edges representation (right).

for the iterative solver (GMRES) is set to 10−8, the implicity parameter for the
tangent plane scheme θ = 1. We investigate the spatial discretization error on a
fixed time grid. The following prescribed exact solution from previous work [5, 22]
has been used

m(x, t) :=


−(x31 −

3

2
x21 +

1

4
) sin

3πt

10T√
1− (x31 −

3

2
x21 +

1

4
)

−(x31 −
3

2
x21 +

1

4
) cos

3πt

10T

 ,

E(t, x) = t2
[
sin(πx1)

2 sin(πx2)
2 sin(πx3)

2, 0, 0
]
,

H = −∂−1
t ∇×E = 4t


0

sin(πx1) cos(πx1) sin(πx2)
2 sin(πx3)

2

sin(πx1)
2 sin(πx2) cos(πx2) sin(πx3)

2

 ,
ϕ = ψ = 0.

(5.1)

The electric field E is the sum of the incident field Einc and the scattered field
Es. Here, we use the incident field given by

Einc(x) :=
[
exp(ikd) 0 0

]
,

where k denotes the wave number which is traveling in the d direction and polarized
in the x direction.

We choose the material parameters as T = 0.125, ϵ0 = ϵ = 1.1, µ0 = µ =
1.2, σ = 1.3, α = 1.4, Ce = 1.5. We used the initial and input data as m0 =
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[sin(πx1) cos(πx2) cos(πx3),− cos(πx1) sin(πx2) cos(πx3), cos(π/12)], E
0 = H0 =

[0, 0, 0], ϕ0 = ψ0 = [0, 0, 0], J = [100, 0, 0].

Compute the time discretization errors with corresponding L2-projections of
the discretized data on a unit cube Ω1 fixed coarse mesh. For time step sizes
τi = T · 2−j , j = 0, ..., 8, the computed approximations are compared with the
reference solution computed on a fine time grid τref = 2−9 and obtain their first-
order convergence from respective norms as:

errR,j = max
j=0,...,N

∥Rjh −Rref
h (tj)∥, R ∈ {m,E,H, ϕ, ψ}.

For a fixed time grid and a shorter time horizon T = 0.125, and a varied coarse
mesh on a thin plate Ω2. Compute the spatial discretization errors by comparing
the computed approximations with the given exact solution. By using the exact
solution 5.1, one can ignore the error induced by time discretization, and we obtain
first-order convergence from their respective norms as:

errR,j = max
j=0,...,N

∥Rjhk
−R(tj)∥, R ∈ {m,E,H, ϕ, ψ}.

(a) m solution versus the time step size (b) m solution versus the mesh size

Figure 2. Experimental error of magnetization m solution versus the time step size and mesh size.

Figures (2(a), 3(a) and 4(a)) show the error in magnetization, electric field, and
magnetic field solutions, respectively. The error measured in the L2 norm changes
as the time step size used in the simulation varies. The error generally decreases
as the time step size is reduced. Figures (2(b), 3(b) and 4(b)) show the error in
magnetization, electric field, and magnetic field solutions, respectively. The error
measured in the L2 norm changes as the mesh size used in the simulation varies. The
error generally decreases as the mesh size is reduced. The dashed line labeled O(τ2)
indicates an approximate second-order convergence rate. The observed second-order
convergence suggests that the numerical method used in the simulation is reasonably
accurate.

Figures (5-7) show magnetization, electric field, and magnetic field inside the do-
main. The simulation solution of the z component quantities fluctuates as observed
with the direction arrows and on the surface.
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(a) E solution versus the time step size (b) E solution versus the mesh size

Figure 3. Experimental error of electric field E solution versus the time step size and mesh size.

(a) H solution versus the time step size (b) H solution versus the mesh size

Figure 4. Experimental error of magnetic field H solution versus the time step size and mesh size.
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Figure 5. The vectors in the plots denote the magnetization solution components, and the color denotes
the mz component in z-direction.

5.4. Conclusions

We have given FEM-BEM convergence analysis for the coupled MILLG equations.
A convergence theorem is also given, improving known results in the literature. We
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Figure 6. The vectors in the plots denote the electric field solution components, and the color denotes
the Ez component in z-direction.
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Figure 7. The vectors in the plots denote the magnetic field solution components, and the color denotes
the Hz component in z-direction.

have not included timing benchmarks in this work since the goal is to account for
relevant magnetization dynamics contributions and functional analytic approaches
and not the performance comparison of different frameworks. The convergence anal-
ysis extends directly to ILLG after incorporating inertia effects into LLG. Similarly,
for Maxwell, from time-dependent boundary integral to space-dependent formula-
tion. We are aware that optimal order error bounds of LLG has been established
theoretically [1]. In the future work, theoretical analysis can be extended to ILLG.
For this case, we demonstrated reasonably accurate simulations by utilization of nu-
merical experiments to vary time steps and mesh sizes. In the subsequent work, we
will extend the theoretical analysis to establish optimal convergence rate and error
estimate under suitable regularity assumptions and the reasonable ratio between
time step size and spatial mesh size [6]. Numerical examples are also provided,
showing the practical applicability of the method.
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