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Abstract In this paper, we study two types of Euler-Lagrange functional
equations that map ȷ from normed spaces to β-normed spaces using quartic
functional equations. We will investigate the inequality under various trans-
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establish the Hyers-Ulam stability of quartic Euler-Lagrange functional equa-
tions.
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1. Introduction

The original stability problem was first articulated by S. M. Ulam [35] in a math-
ematical discussion conducted at the University of Wisconsin. The discussion ad-
dressed several unresolved issues, including the stability of group homomorphisms.
One of the key questions posed was: “Given an approximately linear mapping,
when does a linear mapping estimate exist?” In 1941, D. H. Hyers [13] provided
a favorable response to S. M. Ulam’s question and offered a partial answer to the
inquiry. Hyers introduced the Banach spaces V and W along with ε > 0. When the
mapping ȷ satisfies

∥ȷ(s+ t)− ȷ(s)− ȷ(t)∥ < ε, (1.1)

there exists a unique linear transformation K(s), such that K(s) = lim
n→∞

ȷ(2ns)
2n and

it holds that ∥ȷ(s)−K(s)∥ < ε, where K(s) is the unique linear transformation that
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satisfies this inequality.
The approximate linear transformations originally defined by D. H. Hyers were

based on a fixed error bound (1.1). T. Aoki [2] generalized the stability results of
D. H. Hyers concerning additive mappings, particularly in dealing with unbounded
Cauchy differences. T. Aoki introduced parameters p and N , allowing the error
bound to vary with the p-th power of the norm of the input vector as

∥ȷ(s+ t)− ȷ(s)− ȷ(t)∥ ≤ N (∥s∥p + ∥t∥p) ,

where 0 ≤ p < 1 and N ≥ 0. Subsequently, T. M. Rassias [27] introduced a weaker
inequality

∥ȷ(s+ t)− ȷ(s)− ȷ(t)∥ ≤ θ∥s∥p∥t∥q,

where θ ≥ 0 and p + q ̸= 1, and proved a generalization of D. H. Hyer’s result
by means of unbounded Cauchy differentials. In particular, J. M. Rassias [23, 25]
introduced Euler-Lagrange quadratic functions

ℑ

(
n∑

i=1

σisi

)
+

∑
1≤i<j≤n

ℑ (σjsi − σisj) = m

n∑
i=1

ℑ (si) , si ∈ V, σi ̸= 0, i ∈ N

and solved the Hyers-Ulam stability problem for quadratic multi-dimensional map-
pings. Based on these studies, J. M. Rassias etc [16,22–25,28,38] discussed different
types of Hyers-Ulam stability and responded to S. M. Ulam’s question from different
angles. Many scholars have further generalized the Hyers-Ulam stability problem
and made important contributions to the development of stability theory (for ex-
ample, [1, 6, 10,14,15,17–21,32–34,39])

J. M. Rassias [26] was the first to propose and solve the earliest quartic functional
equations

ȷ(s+ 2t) + ȷ(s− 2t) = 24ȷ(t) + 4[ȷ(s+ t) + ȷ(s− t)]− 6ȷ(s). (1.2)

Next, J. K. Chung and P. K. Sahoo [7] succeeded in deriving a generalized solution
of (1.2) through a method that does not depend on arbitrary regularity assumptions
for the unknown function. Despite the fundamental nature of this method of solving
the quartic functional equation, it cleverly draws on an important result of M.
Hosszú [12], which played a key role in determining the general solution of (1.2).
Subsequently, many experts in the field of functional equations and inequalities have
proposed and solved various quartic and equations (see [3, 11,26,29,36]).

This paper introduces two classes of Euler-Lagrange quartic functional equa-
tions that map from a normed space to a β-normed space, namely the General
Quartic Functional Equation (GQFEσ) and the Differential Analogue of the Quar-
tic Functional Equation (DAQFEς). For simplification of the expression we define
the mapping ȷ : V → W, where ȷ is defined by the functions

Φσȷ(s, t) =2[ȷ(σs+ t) + ȷ(s+ σt)] + σ(σ − 1)2ȷ(s− t)

− 2
(
σ2 − 1

)2
[ȷ(s) + ȷ(t)]− σ(σ + 1)2ȷ(s+ t)

(1.3)

and

Ωςȷ(s, t) =2[ȷ(s+ ςt)− ȷ(ςs− t)]

− ς
(
ς2 + 1

)
[ȷ(s+ t)− ȷ(s− t)]− 2

(
1− ς4

)
[ȷ(s)− ȷ(t)]

(1.4)



1772 J. Xia, Q. Liu, Y. Zhou, Z. Rao & J. M. Rassias

to describe the Euler-Lagrange quartic functional equation. We study the Hyers-
Ulam stability of the quartic functions (1.3) and (1.4) under various β conditions
and explore the general solutions of related quartic functional inequalities using the
fixed point and direct methods.

2. Basic notations

This paper examines two types of Euler-Lagrange quartic functional equations: the
GQFE and the DAQFE. These equations map from a real linear space V to
a completely β-normed space W. Consequently, we have carried out a review of
certain definitions related to abstract spaces by relying on [4, 8, 37].

Definition 2.1. [37] Let V be a nonempty set and let r, s, t ∈ V. A function
ϱ : V2 → [0,∞] is designated as a generalized metric on V provided that ϱ fulfills
conditions

(i) ϱ(r, s) = 0 if and only if r = s;

(ii) ϱ(r, s) = ϱ(s, r);

(iii) ϱ(r, t) ⩽ ϱ(r, s) + ϱ(s, t).

Then, (V, ϱ) is designated as a generalized complete metric space provided that for
every Cauchy sequence {sn}∞n=1 ⊆ V, it converges to an element s ∈ V.

It is important to note that the only difference between generalized metric and
traditional metric is that generalized metric cover the concept of infinity.

Definition 2.2. [4, 8] Let V is a real vector space. Let s, t ∈ V and β ∈ R be
given. Suppose that a function ∥ · ∥ : V → [0,+∞) satisfies condition

(i) ∥s∥ = 0 if and only if s = 0;

(ii) ∥µs∥ = |µ|β∥s∥, where µ ∈ R;
(iii) ∥s+ t∥ ≤ ∥s∥+ ∥t∥,

then ∥·∥ is referred to as a β-norm. In this case, V is a β-norm space of the function
∥·∥. (V, ∥·∥) is complete if every Cauchy sequence {sn}∞n=1 ⊆ V converges to s ∈ V.

Definition 2.3. The GQFEσ for σ ∈ R with the conditions 0 < |σ| < 1 and |σ| > 1
is defined by

2[ȷ(σs+ t) + ȷ(s+ σt)] + σ(σ − 1)2ȷ(s− t)

=2
(
σ2 − 1

)2
[ȷ(s) + ȷ(t)] + σ(σ + 1)2ȷ(s+ t),

(2.1)

that is, Φσȷ(s, t) = 0.

Definition 2.4. Given 0 < |ς| < 1 and |ς| > 1, and ς3 + ς − 2 ̸= 0 and ς ∈ R.
Assuming ȷ(0) = 0, the DAQFEς is defined by

2[ȷ(s+ ςt)− ȷ(ςs− t)]

=ς
(
ς2 + 1

)
[ȷ(s+ t)− ȷ(s− t)] + 2

(
1− ς4

)
[ȷ(s)− ȷ(t)],

(2.2)

that is, Ωςȷ(s, t) = 0.

Clearly, ȷ(s) = s4 serves as a real-valued solution to GQFEσ and DAQFEς .
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3. Stability of Euler-Lagrange quartic functional
equations: Fixed point theory

In this section, we utilize the theoretical proposed by L. Cǎdariu and V. Radu
[5] and apply fixed point theory to investigate the Hyers-Ulam stability of two
distinct classes of Euler-Lagrange quartic functional equations under the specified
constraints of 0 < β < 1.

Lemma 3.1. [8, 31] Let (V, ϱ) be a generalized complete metric space, r, s ∈ V.
Let Lipschitz constant 0 < ℘ < 1 be given. Suppose that Λ : V → V be a strictly
contractive function, that is, ϱ(Λr,Λs) ≤ ℘ϱ(r, s), then a positive constant i exists
such that ϱ

(
Λi+1s,Λis

)
<∞. Therefore

(i) the sequence {Λns}∞n=1 converges to a fixed point s′ ∈ V of Λ;

(ii) s′ is the unique fixed point of Λ ∈ M, where M =
{
t ∈ V : ϱ

(
Λis, t

)
<∞

}
;

(iii) ϱ(t, s′) ≤ 1
1−℘ϱ(t,Λt) for all t ∈ M.

We first study the Hyers-Ulam stability of GQFEσ by using the fixed point
method.

Theorem 3.1. Suppose ψ : V2 → [0,+∞) is a given function and satisfies

lim
n→∞

ψ (σns, σnt)

σ4nβ
= 0, ψ(σs, 0) ≤ σ4β℘ψ(s, 0), s, t ∈ V, (3.1)

where 0 < ℘ < 1. Additionally, let ȷ : V → W be a function satisfies ȷ(0) = 0 with

∥Φσȷ(s, t)∥ ≤ ψ(s, t), s, t ∈ V. (3.2)

Then, there exists a unique quartic function ℑ : V → W satisfies

∥ȷ(s)−ℑ(s)∥ ≤ 1

(2σ4)β(1− ℘)
ψ(s, 0), s ∈ V. (3.3)

Proof. Let Υ = {g : V → W}. We define ϱ : Υ2 → [0,+∞] by

ϱ(g, ℓ) = inf {ℏ ∈ [0,+∞] : ∥g(s)− ℓ(s)∥ ≤ ℏψ(s, 0), s ∈ V} . (3.4)

Consider a Cauchy sequence {ȷn} ⊆ (Υ, ϱ). Given that ε > 0 is arbitrary, and there
exists a non-negative integer Nε associated with ε, then by applying the Cauchy
sequence and (3.4), we obtain

∥ȷm(s)− ȷn(s)∥ ≤ εψ(s, 0), m, n ≥ Nε s ∈ V. (3.5)

If s is an arbitrary point in V, then according to (3.5), the sequence {ȷn(s)} forms
a Cauchy sequence in W. Given that W is complete, {ȷn(s)} ⊆ W is converges for
each s ∈ V. Consequently, we define ȷ : V → W by

ȷ(s) = lim
n→∞

ȷn(s), s ∈ V.

If let m→ ∞, then by applying (3.5), we get

∥ȷ(s)− ȷn(s)∥ ≤ εψ(s, 0), s ∈ V, n ≥ Nε,
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that is, ϱ (ȷn, ȷ) ≤ ε. Hence, the sequence {ȷn} ⊆ W is converges. Consequently,
(W, ϱ) is a complete space. We define Λ : Υ → Υ by

(Λg)(s) =
g(σs)

σ4
, s ∈ V. (3.6)

Subsequently, we prove the following inequality ϱ(Λg,Λℓ) ≤ ℘ϱ(g, ℓ) for all g, ℓ ∈
Υ. Given g, ℓ ∈ Υ with ϱ(g, ℓ) <∞ and an arbitrary ε > 0, we conclude that

∥g(s)− ℓ(s)∥ ≤ ℏψ(s, 0), s ∈ V, (3.7)

where ℏ = ϱ(g, ℓ) + ε. It follows from (3.1),(3.6) and (3.7), we get

∥Λg(s)− Λℓ(s)∥ =

∥∥∥∥g(σs)σ4
− ℓ(σs)

σ4

∥∥∥∥ ≤ ℏψ(σs, 0)
σ4β

≤ ℏ℘ψ(s, 0), s ∈ V.

By applying (3.4), we have

ϱ(Λg,Λℓ) ≤ ℘ℏ = ℘(ϱ(g, ℓ) + ε).

Since ε > 0 is arbitrary, this leads us to

ϱ(Λg,Λℓ) ≤ ℘ϱ(g, ℓ).

Thus, Λ is a strictly contractive map on Υ with Lipschitz constant ℘.
By substituting t = 0 into in (3.2) and then dividing both sides by (2σ4)β , we

obtain

∥Λȷ(s)− ȷ(s)∥ ≤ ψ(s, 0)

(2σ4)β
, s ∈ V.

By applying (3.4), we get

ϱ(Λȷ, ȷ) ≤ 1

(2σ4)β
<∞.

Based on the conclusion of Theorem (3.1), it follows that the sequence {Λnȷ}∞n=1

converges to a fixed point ℑ ∈ Υ of Λ. Consequently, we define ℑ : V → W by

ℑ(s) = lim
n→∞

ȷ (σns)

σ4n
, s ∈ V. (3.8)

Therefore, by Theorem (3.1), ℑ is the unique fixed point of the set M := {g ∈ Υ :
ϱ(g, ȷ) <∞}. This leads us to the following conclusion

ϱ(ȷ,ℑ) ≤ 1

1− ℘
ϱ(Λȷ, ȷ) ≤ 1

(2σ4)β(1− ℘)
.

It is obvious from (3.4) that we can verify the validity of inequality (3.3). By
combining applications (3.1), (3.2), and (3.8), we conclude∥∥∥∥2[ℑ(σs+ t) + ℑ(s+ σt)] + σ(σ − 1)2ℑ(s− t)

− 2
(
σ2 − 1

)2
[ℑ(s) + ℑ(t)]− σ(σ + 1)2ℑ(s+ t)

∥∥∥∥
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= lim
n→∞

∥∥∥∥2 [ ȷ (σn(σs+ t))

σ4n
+
ȷ (σn(s+ σt))

σ4n

]
+ σ(σ − 1)2

ȷ (σn(s− t))

σ4n

− 2
(
σ2 − 1

)2 [ ȷ (σns)

σ4n
+
ȷ (σnt)

σ4n

]
− σ(σ + 1)2

ȷ (σns+ σnt)

σ4n

∥∥∥∥
= lim

n→∞
∥Φσȷ(σ

ns, σnt)∥

≤ lim
n→∞

ψ (σns, σnt)

σ4nβ
= 0, s, t ∈ V.

Thus, ℑ is a solution of (2.1). This proves the existence of ℑ.
Let us consider the following scenario: Hf : V → W is another solution of (2.1)

that also satisfies (3.3). In this case, we can assert that Hf represents the unique
fixed point of the set M := {g ∈ Υ : ϱ(g, ȷ) < ∞}. This conclusion aligns with the
one presented in Theorem 3.1, which states that ℑ = Hf . As such, the uniqueness
of ℑ is proven.

Corollary 3.1. Suppose ψ : V2 → [0,+∞) is a given function and satisfies

lim
n→∞

σ4nβψ

(
s

σn
,
t

σn

)
= 0, σ4βψ(s, 0) ≤ ℘ψ

( s
σ
, 0
)
, s, t ∈ V,

where 0 < ℘ < 1. Furthermore, let ȷ : V → W be a function that satisfies ȷ(0) = 0
with

∥Φσȷ(s, t)∥ ≤ ψ(s, t), s, t ∈ V.

Then, there exists a unique quartic function ℑ : V → W satisfies

∥ȷ(s)−ℑ(s)∥ ≤ ℘

(2σ4)β(1− ℘)
ψ(s, 0), s ∈ V.

Next, we study the Hyers-Ulam stability of DAQFEς using fixed point theory.

Theorem 3.2. Suppose ψ : V2 → [0,+∞) is a given function and satisfies

lim
n→∞

ς4nβψ

(
s

ςn
,
t

ςn

)
= 0, ψ

(
s

ς
, 0

)
≤ ℘ψ (s, 0)

ς4β
, s, t ∈ V, (3.9)

where 0 < ℘ < 1. Furthermore, let ȷ : V → W be a function that satisfies f(0) = 0
and

∥Ωςȷ(s, t)∥ ≤ ψ(s, t), s, t ∈ V. (3.10)

Then, there exists a unique quartic function ℑ : V → W satisfies

∥ȷ(s)−ℑ(s)∥ ≤ ℘

(2ς)4β(1− ℘)
ψ(s, 0), s ∈ V. (3.11)

Proof. We apply the proof method related to (Υ, ϱ) in Theorem 3.1 proof. There-
fore, we conclude that (Υ, ϱ) is a complete generalized metric space. Then, we define
Λ : Υ → Υ by

Λg(s) = ς4g

(
s

ς

)
, s ∈ V. (3.12)
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It follows from (3.9) and (3.12) that

∥Λg(s)− Λℓ(s)∥ =

∥∥∥∥ς4g(sς
)
− ς4ℓ

(
s

ς

)∥∥∥∥ ≤ ς4βℏψ
(
s

ς
, 0

)
≤ ℘ℏψ(s, 0), s ∈ V,

where ℏ = ϱ(g, ℓ) + ε, that is, ϱ(Λg,Λℓ) ≤ ℘ℏ. Thus, we obtain

ϱ(Λg,Λℓ) ≤ ℘ϱ(g, ℓ), g, ℓ ∈ Υ.

Therefore, Λ is strictly contractive with Lipschitz constant ℘ on Υ.
Thereafter, if we set s = s

ς , t = 0 in (3.10), and then divide by 2β , we get∥∥∥∥ȷ(s)− ς4ȷ

(
s

ς

)∥∥∥∥ ≤
ψ
(
s
ς , 0
)

2β
≤ ℘ψ (s, 0)

2βς4β

for all s ∈ V, which implies

ϱ(ȷ,Λȷ) ≤ ℘

2βς4β
<∞.

By Theorem 3.1 we conclude that the sequence {Λnȷ}∞n=1 converges to a fixed point
ℑ ∈ Υ of Λ. Therefore

ℑ : V → W, ℑ(s) = lim
n→∞

ς4nȷ

(
s

ςn

)
, s ∈ V. (3.13)

Accordingly, Theorem 3.1 indicates that ℑ is the unique fixed point of M := {g ∈
Υ : ϱ(g, ȷ) <∞}. Furthermore,

ϱ(ȷ,ℑ) ≤ 1

1− ℘
ϱ(Λȷ, ȷ) ≤ ℘

(2ς4)β(1− ℘)
,

gives rise to the inequality (3.11). Using (3.9), (3.10), and (3.13), we get∥∥∥∥2[ℑ(ςs+ t) + ℑ(s+ ςt)] + ς(ς − 1)2ℑ(s− t)

− 2
(
ς2 − 1

)2
[ℑ(s) + ℑ(t)]− ς(ς + 1)2ℑ(s+ t)

∥∥∥∥
= lim

n→∞

∥∥∥∥2 [ς4nȷ( ςs+ t

ςn

)
+ ς4nȷ

(
s+ ςt

ςn

)]
+ ς(ς − 1)2ς4nȷ

(
s− t

ςn

)
− 2

(
ς2 − 1

)2 [
ς4nȷ

(
s

ςn

)
+ ς4nȷ

(
t

ςn

)]
− ς(ς + 1)2ς4nȷ

(
s+ t

ςn

)∥∥∥∥
≤ lim

n→∞
ς4nβψ

(
s

ςn
,
t

ςn

)
= 0, s, t ∈ V.

This indicates that ℑ is a solution to (2.2). As with the proof of uniqueness in
Theorem 3.1, we can similarly demonstrate the uniqueness of ℑ. Therefore, the
uniqueness of ℑ is proven.

Corollary 3.2. Suppose ψ : V2 → [0,+∞) is a given function and satisfies

lim
n→∞

ψ (ςns, ςnt)

ς4nβ
= 0, ψ(ςs, 0) ≤ ς4β℘ψ(s, 0), s, t ∈ V, (3.14)
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where 0 < ℘ < 1. Furthermore, let ȷ : V → W be a function that satisfies ȷ(0) = 0
and

∥Ωςȷ(s, t)∥ ≤ ψ(s, t), s, t ∈ V. (3.15)

Then, there exists a unique quartic function ℑ : V → W such that

∥ȷ(s)−ℑ(s)∥ ≤ 1

(2ς)4β(1− ℘)
ψ(s, 0), s ∈ V. (3.16)

Remark 3.1. If ȷ is an even function, the above theorem and inference can be used
to consider the case of ψ(0, t) and still get a similar result.

4. Stability of Euler-Lagrange quartic functional
equations: Direct method

In this section, we study the Hyers-Ulam stability of two classes of Euler-Lagrange
quartic functional equations under parity of β by direct method.

Theorem 4.1. Let ε > 0 be given. Suppose ȷ : V → W is a given function and
satisfies

∥Φσȷ(s, t)∥ ≤ ε, s, t ∈ V (4.1)

where 0 < |σ| < 1 and |σ| > 1. Then there exists a unique mapping ℑ : V → W
such that

2[ℑ(σs+ t) + ℑ(s+ σt)] + σ(σ − 1)2ℑ(s− t)

=2
(
σ2 − 1

)2
[ℑ(s) + ℑ(t)] + σ(σ + 1)2ℑ(s+ t)

(4.2)

and

∥ȷ(s)−ℑ(s)∥ ≤



(2σ2)β + (σ2 − 1)β

(σ4β − 1)(4σ2)β
ε, β is odd (even), |σ| > 1;

(2σ2)β − (σ2 − 1)β

(1− σ4β)(4σ2)β
ε, β is odd, 0 < |σ| < 1;

(2σ2)β + (σ2 − 1)β

(1− σ4β)(4σ2)β
ε, β is even, 0 < |σ| < 1,

with

ℑ(s) = lim
n→∞

ℑn(s) = lim
n→∞


ȷ (σns)

σ4n
, |σ| > 1,

σ4nȷ
( s

σn

)
, 0 < |σ| < 1,

s ∈ V, n ∈ N.

Proof. Letting s = t = 0 in (4.1), we get

∥ȷ(0)∥ ≤ ε

(4σ2 |σ2 − 1|)β
. (4.3)
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Letting t = 0 in (4.1), we get

∥ȷ(σs)− σ4ȷ(s)− (σ2 − 1)2ȷ(0)∥ ≤ ε

2β
, s ∈ V. (4.4)

By employing the triangle inequality in (4.3) and (4.4), we obtain∥∥ȷ(σs)− σ4ȷ(s)
∥∥ ≤ ∥ȷ(σs)− σ4ȷ(s)− (σ2 − 1)2ȷ(0)∥+ ∥(σ2 − 1)2ȷ(0)∥

≤
(2σ2)β +

∣∣σ2 − 1
∣∣β

(4σ2)β
ε, s ∈ V.

(4.5)

Case 1. When β is odd ( or even) and |σ| > 1 , we obtain

∥∥ȷ(σs)− σ4ȷ(s)
∥∥ ≤ (2σ2)β + (σ2 − 1)β

(4σ2)β
ε, s ∈ V.

Therefore ∥∥∥∥ȷ(s)− ȷ(σs)

σ4

∥∥∥∥ ≤ (2σ2)β + (σ2 − 1)β

(4σ6)β
ε, s ∈ V. (4.6)

Substituting σns for s in (4.6) yields∥∥∥∥ȷ(σns)− ȷ(σn+1s)

σ4

∥∥∥∥ ≤ (2σ2)β + (σ2 − 1)β

(4σ6)β
ε, s ∈ V, n ∈ N. (4.7)

Applying the inequality (4.7), we obtain∥∥∥∥ȷ(s)− ȷ (σns)

σ4n

∥∥∥∥ ≤
n∑

i=1

1

σ4(i−1)β

∥∥∥∥ȷ(σi−1s)− ȷ(σis)

σ4

∥∥∥∥
≤
1− 1

σ4nβ

1− 1
σ4β

· (2σ
2)β + (σ2 − 1)β

(4σ6)β
ε, s ∈ V.

(4.8)

Thus, the sequence
{

ȷ(σns)
σ4n

}
n
is a Cauchy sequence, and by W being complete,

we get that the sequence
{

ȷ(σns)
σ4n

}
n
is convergent. Then, we define the function

ℑ : V → W by

ℑ(s) := lim
n→∞

ȷ (σns)

σ4n
, s ∈ V. (4.9)

Therefore

∥ȷ(s)−ℑ(s)∥ ≤ (2σ2)β + (σ2 − 1)β

(σ4β − 1)(4σ2)β
ε, s ∈ V. (4.10)

Replacing s with σns, t with σnt in (4.1), dividing the resultant inequality by σ4nβ ,
we obtain

∥Φσȷ(σ
ns, σnt)∥ ≤ ε

σ4nβ
, s, t ∈ V, n ∈ N. (4.11)
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By applying (1.3) and (4.9)and by setting n→ ∞ in (4.11), we obtain

2[ℑ(σs+ t) + ℑ(s+ σt)] + σ(σ − 1)2ℑ(s− t)

=2
(
σ2 − 1

)2
[ℑ(s) + ℑ(t)] + σ(σ + 1)2ℑ(s+ t).

(4.12)

Therefore, the existence of ℑ is completed.
Next, let us prove the uniqueness of ℑ. Let Hd1 : V → W be another mapping

satisfies (4.10) and (4.12), we get

∥ℑ(s)−Hd1(s)∥ ≤ ∥ℑ(s)− ȷ(s)∥+ ∥ȷ(s)−Hd1(s)∥

≤
2
(
(2σ2)β + (σ2 − 1)β

)
(σ4β − 1)(4σ2)β

ε, s ∈ V.

Therefore

∥ℑ(s)−Hd1(s)∥ ≤ 1

n4β
{∥ℑ(ns)− ȷ(ns)∥+ ∥ȷ(ns)−Hd1(ns)∥}

≤
2
{
(2σ2)β + (σ2 − 1)β

}
n4β(σ4β − 1)(4σ2)β

ε, s ∈ V, n ∈ N.

Letting n→ ∞, the proof of the uniqueness is completed.

Case 2. When β is odd and 0 < |σ| < 1. Substituting s
σ for s in inequality (4.5)

yields ∥∥∥ȷ(s)− σ4ȷ
( s
σ

)∥∥∥ ≤ (2σ2)β − (σ2 − 1)β

(4σ2)β
ε, s ∈ V. (4.13)

By replacing s with s
σn in (4.13), we get∥∥∥ȷ( s

σn

)
− σ4ȷ

( s

σn+1

)∥∥∥ ≤ (2σ2)β − (σ2 − 1)β

(4σ2)β
ε, s ∈ V, n ∈ N. (4.14)

By using a similar method as (4.8), we obtain the following conclusion∥∥∥ȷ(s)− σ4nȷ
( s

σn

)∥∥∥ ≤
n∑

i=1

σ4(i−1)β
∥∥∥ȷ( s

σi

)
− σ4ȷ

( s

σi+1

)∥∥∥
≤1− σ4β

1− σ4β

(2σ2)β − (σ2 − 1)β

(4σ2)β
ε, s ∈ V.

(4.15)

ByCase 1, it is clear that the sequence
{
σ4nȷ

(
s
σn

)}
n
is converges, then the function

ℑ : V → W is defined by

ℑ(s) := lim
n→∞

σ4nȷ
( s

σn

)
, s ∈ V. (4.16)

Therefore

∥ȷ(s)−ℑ(s)∥ ≤ (2σ2)β − (σ2 − 1)β

(1− σ4β)(4σ2)β
ε, s ∈ V. (4.17)

In addition, substituting s
σn and t

σn for s and t in (4.1) and multiply the resulting
inequality by σ4nβ , we obtain

∥Φσȷ(σ
ns, σnt)∥ ≤ σ4nβε, s, t ∈ V, n ∈ N. (4.18)
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By applying (1.3) and (4.16) and by setting n→ ∞ in (4.18), which gives a equation
(4.12). Therefore, the existence of ℑ is completed.

Next, we prove the uniqueness of ℑ. Let Hd2 : V → W be another mapping
satisfies (4.12) and (4.17), we conclude

∥ℑ(s)−Hd2(s)∥ ≤∥ℑ(s)− ȷ(s)∥+ ∥ȷ(s)−Hd2(s)∥

≤ 1

n4β
{∥ℑ(ns)− ȷ(ns)∥+ ∥ȷ(ns)−Hd2(ns)∥}

=
2
(
(2σ2)β − (σ2 − 1)β

)
(1− σ4β)(4σ2n4)β

ε, s ∈ V.

(4.19)

Letting n→ ∞, the proof of the uniqueness is completed.

Case 3. When β is even and 0 < |σ| < 1,

∥∥ȷ(σs)− σ4ȷ(s)
∥∥ ≤ (2σ2)β + (σ2 − 1)β

(4σ2)β
ε, s ∈ V. (4.20)

By replacing s with s
σ in inequality (4.20), follows∥∥∥ȷ(s)− σ4ȷ

( s
σ

)∥∥∥ ≤ (2σ2)β + (σ2 − 1)β

(4σ2)β
ε, s ∈ V. (4.21)

Substituting s
σn for s in inequality (4.21) yields∥∥∥ȷ( s

σn

)
− σ4ȷ

( s

σn+1

)∥∥∥ ≤ (2σ2)β + (σ2 − 1)β

(4σ2)β
ε, s ∈ V, n ∈ N. (4.22)

Using the same method as (4.8), we obtain the followings∥∥∥ȷ(s)− σ4nȷ
( s

σn

)∥∥∥ ≤
n∑

i=1

σ4(i−1)β
∥∥∥ȷ( s

σi

)
− σ4ȷ

( s

σi+1

)∥∥∥
≤1− σ4nβ

1− σ4β

(2σ2)β + (σ2 − 1)β

(4σ2)β
ε, s ∈ V.

(4.23)

Similarly, by (4.16), we obtain

∥ȷ(s)−ℑ(s)∥ ≤ (2σ2)β + (σ2 − 1)β

(1− σ4β)(4σ2)β
ε, s ∈ V. (4.24)

By Case 2 to prove in the same argument, we obtained the equation (4.12), and
the uniqueness of the ℑ. We can easily get the thesis.

Theorem 4.2. Let ε > 0 be given. Suppose ȷ : V → W, is a given function and
satisfies ∥ȷ(0)∥ ≤ ε and

∥Ωςȷ(s, t)∥ ≤ ε, s, t ∈ V, (4.25)

where 0 < |ς| < 1 and |ς| > 1. Then, there exists a unique mapping ℑ : V → W
satisfies

2[ℑ(s+ ςt)−ℑ(ςs− t)] = ς
(
ς2 + 1

)
[ℑ(s+ t)−ℑ(s− t)] + 2

(
1− ς4

)
[ℑ(s)−ℑ(t)]
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and

∥ȷ(s)−ℑ(s)∥ ≤



ς4nβ − 1

ς4nβ(ς4 − 1)

(
1

2β
+
(
ς4 − 1

)β)
ε, β is odd (even), |ς| > 1;

1− ς4nβ

1− ς4β

(
1

2β
−
(
ς4 − 1

)β)
ε, β is odd, 0 < |ς| < 1;

1− ς4nβ

1− ς4β

(
1

2β
+
(
ς4 − 1

)β)
ε, β is even, 0 < |ς| < 1,

with

ℑ(s) = lim
n→∞

ℑn(s) = lim
n→∞


ȷ (ςns)

ς4n
, |ς| > 1,

ς4nȷ

(
s

ςn

)
, 0 < |ς| < 1.

s ∈ V.

Proof. Letting t = 0 in (4.25), we obtain∥∥ȷ(ςs)− ς4ȷ(s) +
(
ς4 − 1

)
ȷ(0)

∥∥ ≤ ε

2β
, s ∈ V. (4.26)

By employing the triangle inequality in (4.26) and ∥ȷ(0)∥ ≤ ε, we obtain∥∥ȷ(ςs)− ς4ȷ(s)
∥∥ ≤

(
1

2β
+
∣∣ς4 − 1

∣∣β) ε, s ∈ V. (4.27)

Case 1. When β is odd ( or even) and |ς| > 1. By dividing both sides of (4.27) by
ς4β , we obtain ∥∥∥∥ȷ(s)− ȷ(ςs)

ς4

∥∥∥∥ ≤

(
1

2βς4β
+

(
1− 1

ς4

)β
)
ε, s ∈ V. (4.28)

Replacing s by ςns in (4.28) gives∥∥∥∥ȷ(ςns)− ȷ(ςn+1s)

ς4

∥∥∥∥ ≤

(
1

2βς4β
+

(
1− 1

ς4

)β
)
ε, s ∈ V, n ∈ N. (4.29)

Similar to (4.8), we obtain the followings∥∥∥∥ȷ(s)− ȷ(ςns)

ς4n

∥∥∥∥ ≤
n∑

ς=1

1

ς4(i−1)β

∥∥∥∥∥ȷ (kis)− ȷ
(
ςi+1s

)
ς4

∥∥∥∥∥
≤ ς4nβ − 1

ς4(n−1)β(ς4 − 1)

(
1

2βς4β
+

(
1− 1

ς4

)β
)
ε, s ∈ V.

(4.30)

Thus, the sequence
{

ȷ(ςns)
ς4n

}
n
is a Cauchy sequence, and by W being complete, the

sequence
{

ȷ(ςns)
ς4n

}
n
is convergent. Then, we define the function ℑ : V → W by

ℑ(s) := lim
n→∞

ȷ (ςns)

ς4n
, s ∈ V. (4.31)
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Then, we have

∥ȷ(s)−ℑ(s)∥ ≤ ς4nβ − 1

ς4nβ(ς4 − 1)

(
1

2β
+
(
ς4 − 1

)β)
ε, s ∈ V.

Moreover, replacing s by ςns, t by ςnt, and dividing the resultant inequality by ς4nβ ,
we obtain∥∥∥∥2 [ ȷ(ςn(s+ ςt))

ς4n
− ȷ(ςn(ςs− t))

ς4n

]
− ς(ς2 + 1)

[
ȷ(ςn(s+ t))

ς4n
− ȷ(ςn(s− t))

ς4n

]
− 2

(
1− ς4

) [ ȷ(ςns)
ς4n

− ȷ(ςnt)

ς4n

] ∥∥∥∥ ≤ ε

ς4nβ

for all s, t ∈ V, where n ∈ N. Letting n→ ∞, we obtain

2[ℑ(s+ ςt)−ℑ(ςs− t)]

=ς
(
ς2 + 1

)
[ℑ(s+ t)−ℑ(s− t)] + 2

(
1− ς4

)
[ℑ(s)−ℑ(t)].

(4.32)

Therefore, the existence of ℑ is completed.

Case 2. As β is odd and 0 < |ς| < 1, by replacing s with s
ς in (4.27), we obtain∥∥∥∥ȷ(s)− k4ȷ

(
s

ς

)∥∥∥∥ ≤
(

1

2β
−
(
ς4 − 1

)β)
ε, s ∈ V. (4.33)

Substituting s
ςn for s in inequality (4.33) yields∥∥∥∥ȷ( s

ςn

)
− ς4ȷ

(
s

ςn+1

)∥∥∥∥ ≤
(

1

2β
−
(
ς4 − 1

)β)
ε, s ∈ V, n ∈ N. (4.34)

Similar to (4.8), we obtain the followings∥∥∥∥ȷ(s)− ς4nȷ

(
s

ςn

)∥∥∥∥ ≤
n∑

i=1

ς4(i−1)β

∥∥∥∥ȷ( s

ςn

)
− ς4ȷ

(
s

ςn+1

)∥∥∥∥
≤1− ς4nβ

1− ς4β

(
1

2β
−
(
ς4 − 1

)β)
ε, s ∈ V.

(4.35)

By Case 1, it is obvious that the sequence
{
ς4nȷ

(
s
ςn

)}
n
is complete, so ℑ : V →W

is defined by

ℑ(s) := lim
n→∞

ς4nȷ

(
s

ςn

)
, s ∈ V. (4.36)

Then, we obtain

∥ȷ(s)−ℑ(s)∥ ≤ 1− ς4nβ

1− ς4β

(
1

2β
−
(
ς4 − 1

)β)
ε, s ∈ V.

Moreover, replacing s by s
ςn , t by

t
ςn , and multiply the resulting inequality by ς4nβ ,

we obtain∥∥∥∥2 [ς4nȷ(s+ ςt

ςn

)
− ς4nȷ

(
ςs− t

ςn

)]
− ς(ς2 + 1)

[
ς4nȷ

(
s− t

ςn

)]
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− 2
(
1− ς4

) [
ς4nȷ

(
s

ςn

)
− ς4nȷ

(
t

ςn

)]∥∥∥∥ ≤ ς4nβε

for all s, t ∈ V, where n ∈ N. Similarly, letting n → ∞, which gives you equation
(4.32). Therefore, the existence of ℑ is completed.

Case 3. When β is even and 0 < |a| < 1, replacing s by s
ς in (4.27), we obtain∥∥∥∥ȷ(s)− ς4ȷ

(
s

ς

)∥∥∥∥ ≤
(

1

2β
+
(
ς4 − 1

)β)
ε, s ∈ V. (4.37)

By replacing s with s
ςn in (4.37), then∥∥∥∥ȷ( s

ςn

)
− ς4ȷ

(
s

ςn+1

)∥∥∥∥ ≤
(

1

2β
+
(
ς4 − 1

)β)
ε, s ∈ V. (4.38)

Applying a similar method to (4.8), we get the following conclusions∥∥∥∥ȷ(s)− ς4nȷ

(
s

ςn

)∥∥∥∥ ≤
n∑

i=1

ς4(i−1)β

∥∥∥∥ȷ( s

ςn

)
− ς4ȷ

(
s

ςn+1

)∥∥∥∥
≤1− ς4nβ

1− ς4β

(
1

2β
+
(
ς4 − 1

)β)
ε, s ∈ V.

(4.39)

Using a similar method to (4.8), we come to the conclusion

∥ȷ(s)−ℑ(s)∥ ≤ 1− ς4nβ

1− ς4β

(
1

2β
+
(
ς4 − 1

)β)
ε.

By Case 2 to prove in the same argument, we obtained the equation (4.32). This
proves the existence of ℑ, and the proof of the uniqueness of ℑ is omitted because
it is similar to the proof of Theorem 4.1.
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