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Abstract In this paper, a procedure based on the fractional-order alternative
Legendre wavelets (FALWs) is introduced for solving variable-order fractal-
fractional differential equations (VFFDEs) system with power and Mittag-
Leffler kernels. An analytic formula is obtained for computing the variable-
order fractal-fractional integral operator of the FALWs by employing the reg-
ularized beta functions. The presented method converts solving the primary
problem to solving a system of nonlinear algebraic equations. To do this, the
variable-order fractal-fractional (VFF) derivative of the unknown function is
expanded in terms of the FALWs with unknown coefficients at first. Then, by
employing the properties of the VFF derivative and integral, together with the
collocation method, a system of algebraic equations is obtained, that can be
easily solved by the Newton’s iterative scheme. An error upper bound for the
numerical solution in the Sobolev space is obtained. Finally, different chaotic
oscillators of variable-order are solved in order to illustrate the accuracy and
validity of the suggested strategy.

Keywords Alternative Legendre wavelets, variable-order fractal-fractional
differential equations, collocation method, numerical method, error estimate.

MSC(2010) 28A80, 65L60, 65T60.

1. Introduction

Fractional calculus is a hot topic of research that investigates various real-world
problems, such as propagation of spherical flames [14], fluid mechanics [13], vis-
coelastic materials [5, 15], electromagnetism [7] economy [1], etc. Notice that the
main reason for employing fractional operators in modeling various phenomena in
engineering and physics is their ability to accurately describe processes with genetic
and memory properties [19]. We remind that in recent years, various numerical
techniques have been developed to solve fractional differential equations (FDEs),
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because analytical solutions of these problems are either impossible or only possible
with unrealistic simplifications. Some of these algorithms are Müntz wavelets [22],
Chelyshkov wavelets [17], fractional Chelyshkov wavelets [27], Taylor wavelets [37],
fractional-order general Lagrange scaling functions [32], fractional-order Genocchi
deep neural networks [20], Touchard-Ritz [30] algorithm etc.

In 2017, Atangana [3] introduced some new differential operators such as con-
volution of power, exponential and generalized Mittag-leffler functions with fractal
derivative. These new definitions were called fractal-fractional differential oper-
ators. Indeed, a fractal-fractional operator is made up of the concepts of frac-
tional differentiation (which have the non-local property) and fractal derivative
(which have local property) in a single differentiation. In fact, the main purpose
of fractal-fractional differentiation is to effectively represent fractal dynamics by
substituting fractal time with continuous time. Similarly, if the system is frac-
tal differentiable, then the fractal order derivative is proportional to βtβ−1. It is
highly successful in the mathematical modeling of different areas of science, such
as chaotic different problems [4], Ebola virus [35], drilling system [3], finance [38],
etc. This fact prompts researchers to use numerical schemes to obtain approx-
imate solutions for such problems. For instance, Müntz-Legendre polynomials
scheme for the numerical solution of fractal-fractional 2D optimal control prob-
lems (FFOCPs) [29], Legendre polynomials method for approximation of nonlinear
FFOCPs [9], shifted Chebyshev cardinal functions for the numerical solution of cou-
pled nonlinear fractal-fractional Schrödinger equations [10], shifted Vieta-Fibonacci
polynomials method for solving fractal-fractional fifth-order KdV equation [11],
spectral collocation method involving the shifted Legendre polynomials for solving
fractal-fractional Kuramoto-Sivashinsky and Korteweg-de Vries equations [36], and
Lagrange polynomials method for solving fractal–fractional Michaelis–Menten en-
zymatic reaction model [2], generalized Lucas wavelet method for solving nonlinear
fractal-fractional optimal control problems [31], fractional shifted Morgan-Voyce
neural networks for solving fractal-fractional pantograph differential equations [21].

A new type of fractal-fractional calculus gave birth to a new class of integral
and differential equations such that there is not much work in the literature in this
regard. The variable-order fractal- fractional calculus is defined as the extension
of the constant-order fractal-fractional one. By this generalization, the order of
fractional and dimensional of fractal are allowed to take any given function. Due to
the memory property of such operators, they become a powerful tool for modeling
complex systems in science and engineering [18]. Since these equations are highly
complex, solving them analytically is difficult. Recently, few researchers have pre-
sented numerical schemes for solving VFFDEs. Aguilar et al. [39] applied artificial
neural networks for solving fractal-fractional Mittag-Leffler differential equations of
variable-order where the neural network is optimized by the Levenberg-Marquardt
algorithm. Pérez and Aguilar [34] proposed a numerical method based on the La-
grangian piece-wise interpolation for delay VFFDEs with power, exponential and
Mittag-Leffler laws.

In recent years, there has been an increasing interest in using wavelets for solving
different classes of problems. The main reasons for such widespread applications
are due to the fact that (i) after discretization, the coefficients matrix of algebraic
equations is sparse. (ii) The solution is of multiresolution type. (iii) The wavelets
scheme is computer oriented; so, solving higher-order equations becomes a matter of
dimension increasing. (iv) The solution is convergent, even if the size of increment is
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large. In recent years, different classes of wavelets have been applied for the approx-
imate solution of diverse problems. For instance, Bernoulli wavelets for fractional
differential equations system [28], Hahn wavelets for fractional integro-differential
equations [23], Legendre wavelets for fractional delay-type integro-differential equa-
tions [16], Bernstein wavelets for distributed-order fractional optimal control prob-
lems [24], and Taylor wavelets for initial and boundary value problems of the Bratu-
type equations [12].

Since, there is a limited number of study related to the VFFDEs systems in
the Caputo and Atangana-Riemann-Liouville sense, the following objectives in this
paper are considered:

1. Defining a novel class of systems of variable-order fractal-fractional differential
equations involved with derivatives in the Caputo and Atangana-Riemann-
Liouville senses.

2. Introducing an exact formula for computing variable-order fractal-fractional
integral operator (VFFIO) in terms of the regularized beta functions for the
FALWs.

3. Presenting a feasibility and effectiveness strategy based on this operator and
FALWs for the numerical solution of such problems.

So, we concentrate on the following class of VFFDEs system:

0Dα(t),β(t)
t Ξ1(t) = F1(t,Ξ1(t),Ξ2(t), . . . ,Ξr(t)),

0Dα(t),β(t)
t Ξ2(t) = F2(t,Ξ1(t),Ξ2(t), . . . ,Ξr(t)),

...
...

0Dα(t),β(t)
t Ξr(t) = Fr(t,Ξ1(t),Ξ2(t), . . . ,Ξr(t)),

(1.1)

with the initial conditions

Ξi(0) = ℘i, i = 1, 2, . . . , r, (1.2)

where r is a given natural number, Fi for i = 1, 2, . . . , r are continuous functions,

0Dα(t),β(t)
t shows the variable-order fractal-fractional derivative of order (α(t), β(t))

in the Caputo (CFF
0 Dα(t),β(t)

t ) or Atangana-Riemann-Liouville (ARLFF
0 Dα(t),β(t)

t )
sense, and ℘i for i = 1, 2, . . . , r are given real constants.

In this work, we first construct an exact formula for the VFFIO of the FALWs
by using the regularized beta function as

CFF
0 Iα(t),β(t)

t Ψ(θ)(t) = Υ(t, α(t), β(t), θ), (1.3)

for the variable-order fractal-fractional integral (CFF
0 Iα(t),β(t)

t ) of order (α(t), β(t))
in the Caputo sense, and

ARLFF
0 Iα(t),β(t)

t Ψ(θ)(t) = Λ(t, α(t), β(t), θ), (1.4)

for the variable-order fractal-fractional integral (ARLFF
0 Iα(t),β(t)

t ) of order (α(t),

β(t)) in the Atangana-Riemann-Liouville sense. Then, the functions 0Dα(t),β(t)
t Ξi(t)

for i = 1, 2, . . . , r are approximated by the FALWs with unknown coefficients. By
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using these approximations, the VFF integral operators and the initial conditions,
we approximate the functions Ξi(t), i = 1, 2, . . . , r. By substituting these approxi-
mations in the main problem, an algebraic system of nonlinear equations including
unknown coefficients is obtained. Finally, this system is solved by the Newton’s
iterative method. The main advantages of the proposed method are:

• A small value of alternative Legendre wavelets is needed to achieve high ac-
curacy and satisfactory results.

• By using this algorithm, considered problem is reduced into a system of alge-
braic equations that can be solved via a suitable numerical scheme.

• The obtained numerical solution with this method is a continuous and differ-
entiable solution, also these solutions satisfy the initial conditions.

• This algorithm can be easily implemented to estimate the solution of VFFDEs
defined on large intervals.

• There are two degrees of freedom (k,M) for wavelets but one degree of freedom
(M) for polynomials.

• We obtain variable-order fractal-fractional integral operator of alternative
Legendre wavelets without any error.

The rest of this paper is organized as follows: Section 2 recalls some useful
definitions about fractal-fractional calculus and alternative wavelets. Section 3 in-
troduces an exact formula for computing the VFFIO of the FALWs by applying the
regularized beta function. Section 4 formulates the mentioned algorithm. An error
upper bound for the numerical solution in the Sobolev space is obtained in Section
5. Section 6 presents three numerical examples to show the accuracy and efficiency
of the proposed scheme. Finally, the main conclusions of the study are highlighted
in Section 7.

2. Useful definitions

In this section, we recall some main definitions about fractal-fractional calculus and
FALWs.

2.1. Fractal-fractional operators

In the continuation, we review some well-known fractal-fractional derivative and
integral operators.

Definition 2.1. The Mittag-Leffler function for one-parameter and two-parameter
are defined as follows, respectively [8]

Eϑ(t) =

∞∑
r=0

tr

Γ(rϑ+ 1)
, ϑ ∈ R+, t ∈ R, (2.1)

and

Eϑ,ι(t) =

∞∑
r=0

tr

Γ(rϑ+ ι)
, ϑ, ι ∈ R+, t ∈ R. (2.2)
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Definition 2.2. ( [34]) The Caputo variable-order fractal-fractional derivative of
order (α(t), β(t)) of the differential function Ξ(t) is given by

CFF
0 D

α(t),β(t)
t Ξ(t) =

1

Γ(1− α(t))

d

dtβ(t)

∫ t

0

(t− s)−α(t)Ξ(s)ds, (2.3)

where 0 < α(t), β(t) ≤ 1.

Definition 2.3. ( [34]) The Caputo variable-order fractal-fractional integral of or-
der (α(t), β(t)) of the continuous function Ξ(t) is given by

CFF
0 Iα(t),β(t)

t Ξ(t) =
β(t)

Γ(α(t))

∫ t

0

(t− s)α(t)−1sβ(t)−1Ξ(s)ds. (2.4)

Definition 2.4. ( [34]) The Atangana-Riemann-Liouville variable-order fractal-
fractional derivative of order (α(t), β(t)) of the differential function Ξ(t) is defined
as

ARLFF
0 Dα(t),β(t)

t Ξ(t) =
C(α(t))
1− α(t)

d

dtβ(t)

∫ t

0

Eα(t)

[
−α(t)(t− s)α(t)

1− α(t)

]
Ξ(s)ds, (2.5)

where 0 < α(t), β(t) < 1, C(α(t)) = 1 − α(t) + α(t)
Γ(α(t)) , and Eα(t)(t) is the Mittag-

Leffler function.

Definition 2.5. ( [34]) The Atangana-Riemann-Liouville variable-order fractal-
fractional integral of order (α(t), β(t)) of the continuous function Ξ(t) is defined
as

ARLFF
0 Iα(t),β(t)

t Ξ(t)

=
α(t)β(t)

C(α(t))

∫ t

0

(t− s)α(t)−1sβ(t)−1Ξ(s)ds+
β(t)(1− α(t))tβ(t)−1

C(α(t))
Ξ(t).

(2.6)

2.2. Fractional alternative Legendre wavelets

The FALWs are defined on [0, h) as: [27]

ψ
(θ)
n,m,m̂(t) =


√
(2m+ 1)θ2

k−1
2 AL

(θ)
m,m̂

(
2k−1

h
t− n̂

)
,

n̂

2k−1
h ≤ t <

n̂+ 1

2k−1
h,

0, otherwise,

(2.7)

where AL
(θ)
m,m̂(t) denotes the fractional-order alternative Legendre functions

(FALFs) defined on [0, 1).

The FALFs are defined by putting tθ (θ > 0) instead of t in the alternative
Legendre polynomials as [25]

AL
(θ)
m,m̂(t) =

m̂∑
r=m

(−1)r−m

 m̂−m

r −m

 m̂+ r + 1

m̂−m

 trθ, m = 0, 1, . . . , m̂. (2.8)
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Theorem 2.1. ( [25]) The FALFs are orthogonal with respect to the weight function
ω(θ)(t) = t(θ−1) on [0, 1], that is∫ 1

0

AL
(θ)
m,m̂(t)AL

(θ)
n,m̂(t)ω(t)dt =

δm,n

θ(m+ n+ 1)
.

Figure 1 shows the graphs of the FALWs with θ, t ∈ [0, 1] where (k = 2,M = 10)
and (k = 3,M = 8).

Figure 1. The graphs of the fractional-order alternative wavelets with θ, t ∈ [0, 1] where (k = 2,M = 10)
(up) and (k = 3,M = 8) (bottom).

3. Variable-order fractal-fractional integral opera-
tor of the FALWs

In this section, we calculate the variable-order fractal-fractional integral operator
of FALWs in the Caputo and Atangana-Riemann-Liouville senses. For this aim, we
first introduce the regularized beta function I(t; a, b) for given real numbers a and
b as [6]

I(t; a, b) =
Γ(a+ b)

Γ(a)Γ(b)

∫ t

0

sa−1(1− s)b−1ds. (3.1)
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3.1. Variable-order fractal-fractional integral operator with
the CFF

Lemma 3.1. The Caputo variable-order fractal-fractional integral of the function
tγ for γ > 0 is obtained as

CFF
0 Iα(t),β(t)

t (tγ) =
β(t)Γ(β(t) + γ)

Γ(α(t) + β(t) + γ)
tα(t)+β(t)+γ−1. (3.2)

Proof. By using the definition of the Caputo fractal-fractional integral given in
Eq. (2.4), we get

CFF
0 Iα(t),β(t)

t (tγ) (3.3)

=
β(t)

Γ(α(t))

∫ t

0

sβ(t)+γ−1(t− s)α(t)−1ds

=
β(t)

Γ(α(t))

∫ t

0

tβ(t)+γ−1
(s
t

)β(t)+γ−1

tα(t)−1
(
1− s

t

)α(t)−1

td
s

t
.

By the change of variable y = s
t , and considering the definition of the regularized

beta function (3.1), we have

CFF
0 Iα(t),β(t)

t (tγ) (3.4)

=
β(t)

Γ(α(t))
tα(t)+β(t)+γ−1

∫ 1

0

yβ(t)+γ−1(1− y)α(t)−1dy

=
β(t)Γ(β(t) + γ)

Γ(α(t) + β(t) + γ)
tα(t)+β(t)+γ−1.

Theorem 3.1. The Caputo variable-order fractal-fractional integral of the term
tγµc(t) for γ > 0 is given by

CFF
0 Iα(t),β(t)

t (tγµc(t))

=
β(t)Γ(β(t) + γ)

Γ(α(t) + β(t) + γ)
tα(t)+β(t)+γ−1

(
1− I

(c
t
, β(t) + γ, α(t)

))
µc(t),

(3.5)

where µc is defined as

µc(t) =

1, t ≥ c,

0, otherwise.

Proof. We can conclude that the both sides of Eq. (3.5) are identically equal to
zero over the interval [0, c). Therefore, we can let t ≥ c, then µc(t) = 1. By using
the definition of the Caputo variable-order fractal-fractional integral expressed in
Eq. (2.4) for t ≥ c, the following relation is achieved:

CFF
0 Iα(t),β(t)

t (tγµc(t))
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=
β(t)

Γ(α(t))

∫ t

0

(t− s)α(t)−1sβ(t)−1sγµc(s)ds

=
β(t)

Γ(α(t))

∫ t

0

(t− s)α(t)−1sβ(t)+γ−1ds− β(t)

Γ(α(t))

∫ c

0

(t− s)α(t)−1sβ(t)+γ−1ds

= CFF
0 Iα(t),β(t)

t (tγ)− β(t)

Γ(α(t))

∫ c

0

(t− s)α(t)−1sβ(t)+γ−1ds

= CFF
0 Iα(t),β(t)

t (tγ)− β(t)

Γ(α(t))

∫ c

0

tα(t)−1
(
1− s

t

)α(t)−1

tβ(t)+γ−1
(s
t

)β(t)+γ−1

td
s

t
.

(3.6)

Applying the change of variable y = s
t , and the regularized beta function (3.1),

yield

CFF
0 Iα(t),β(t)

t (tγµc(t))

= CFF
0 Iα(t),β(t)

t (tγ)− β(t)

Γ(α(t))
tα(t)+β(t)+γ−1

∫ c
t

0

(1− y)α(t)−1yβ(t)+γ−1dy

= CFF
0 Iα(t),β(t)

t (tγ)− β(t)Γ(β(t) + γ)

Γ(α(t) + β(t) + γ)
tα(t)+β(t)+γ−1I

(c
t
, β(t) + γ, α(t)

)
=

β(t)Γ(β(t) + γ)

Γ(α(t) + β(t) + γ)
tα(t)+β(t)+γ−1

(
1− I(

c

t
, β(t) + γ, α(t))

)
.

(3.7)

This completes the proof.

Theorem 3.2. The Caputo variable-order fractal-fractional integral operator of the
vector Ψθ(t) can be given by

CFF
0 Iα(t),β(t)

t Ψ(θ)(t) = Υ(t, α(t), β(t), θ), (3.8)

where

Ψ(θ)(t) = [ψ
(θ)
1,0,M−1(t), ψ

(θ)
1,1,M−1(t), . . . ψ

(θ)

2k−1,M−1,M−1
(t)]T , (3.9)

Υ(t, α(t), β(t), θ) =
[
CFF
0 Iα(t),β(t)

t (ψ
(θ)
1,0,M−1(t)),

CFF
0 Iα(t),β(t)

t (ψ
(θ)
1,1,M−1(t)), . . .

CFF
0 Iα(t),β(t)

t (ψ
(θ)

2k−1,M−1,M−1
(t))

]T
.

Then, we have

CFF
0 Iα(t),β(t)

t (ψ
(θ)
n,m,m̂(t))
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=



0, 0 ≤ t <
n̂

2k−1
h,

√
2k−1(2m+ 1)θ

m̂∑
s=m

⌊θs⌋∑
j=0

(−1)s−m+θs−j

 m̂−m

s−m

 m̂+ s+ 1

m̂−m


×

 sθ

j

 2(k−1)j(n̂)θs−j β(t)Γ(β(t) + j)

hjΓ(α(t) + β(t) + j)
tα(t)+β(t)+j−1

×(1− I(
n̂

2k−1t
h, β(t) + j, α(t))),

n̂

2k−1
h ≤ t <

n̂+ 1

2k−1
h,

√
2k−1(2m+ 1)θ

m̂∑
s=m

⌊θs⌋∑
j=0

(−1)s−m+θs−j

 m̂−m

s−m

 m̂+ s+ 1

m̂−m


×

 sθ

j

 2(k−1)j(n̂)θs−j β(t)Γ(β(t) + j)

hjΓ(α(t) + β(t) + j)
tα(t)+β(t)+j−1

×(I(
n̂+ 1

2k−1t
h, β(t) + j, α(t))− I(

n̂

2k−1t
h, β(t) + j, α(t))),

n̂+ 1

2k−1
h ≤ t < h.

(3.10)

Proof. We can rewrite the FALWs expressed in Eq. (2.7) as

ψ
(θ)
n,m,m̂(t)

=
√
2k−1(2m+ 1)θ

×
m̂∑

s=m

(−1)s−m

 m̂−m

s−m

 m̂+ s+ 1

m̂−m

 (
2k−1t

h
− n̂)sθ(µ n̂

2k−1 h(t)−µ n̂+1

2k−1 h(t)).

(3.11)
According to the Binomial expansion, we obtain

ψ
(θ)
n,m,m̂(t)

=
√
2k−1(2m+ 1)θ

m̂∑
s=m

⌊sθ⌋∑
j=0

(−1)s−m+sθ−j

 m̂−m

s−m

 m̂+ s+ 1

m̂−m

 sθ

j


×2(k−1)j

hj
(n̂)sθ−j(tjµ n̂

2k−1 h(t)− tjµ n̂+1

2k−1 h(t)).

(3.12)
Using the definition of the Caputo variable-order fractal-fractional integral intro-
duced in Eq. (2.4) and Eq. (3.12), we have

CFF
0 Iα(t),β(t)

t (ψ
(θ)
n,m,m̂(t))

=
√
2k−1(2m+ 1)θ

m̂∑
s=m

⌊sθ⌋∑
j=0

(−1)s−m+sθ−j

 m̂−m

s−m

 m̂+ s+ 1

m̂−m

 sθ

j


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× 2(k−1)j

hj
(n̂)sθ−j

(
CFF
0 Iα(t),β(t)

t (tjµ n̂

2k−1 h(t))−
CFF
0 Iα(t),β(t)

t (tjµ ˆˆ+1n

2k−1 h
(t))

)

=
√
2k−1(2m+ 1)θ

m̂∑
s=m

⌊sθ⌋∑
j=0

(−1)s−m+sθ−j

 m̂−m

s−m

 m̂+ s+ 1

m̂−m

 sθ

j



× 2(k−1)j

hj
(n̂)sθ−j

×
((

β(t)Γ(β(t) + j)

Γ(α(t) + β(t) + j)
tα(t)+β(t)+j−1(1− I(

n̂

2k−1t
h, β(t) + j, α(t)))

)
µ n̂

2k−1 h(t)

−
(

β(t)Γ(β(t) + j)

Γ(α(t) + β(t) + j)
tα(t)+β(t)+j−1(1− I(

n̂+ 1

2k−1t
h, β(t) + j, α(t)))

)
µ n̂+1

2k−1 h(t)

)
,

(3.13)

which completes the proof.
Figures 2 and 3 show the graphs of the FALWs with α(t) = tanh(t+ 5), β(t) =

0.99 + 0.01
2 (sin(t) + 1),M = 8, h = 1 where k = 2 and k = 3, respectively.

Figure 2. The graphs of the CFF variable-order integral with k = 2,M = 8, h = 1, α(t) = tanh(t +
5), β(t) = 0.99 + 0.01

2 (sin(t) + 1) where (a) : θ = 1 and (b) : θ = 1
8 .

Figure 3. The graphs of the CFF variable-order integral with k = 3,M = 8, h = 1, α(t) = tanh(t +
5), β(t) = 0.99 + 0.01

2 (sin(t) + 1) where (a) : θ = 1 and (b) : θ = 2
3 .
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3.2. Variable-order fractal-fractional integral with the ALRFF

Lemma 3.2. The Atangana-Riemann-Liouville variable-order fractal-fractional in-
tegral of the term tγ for γ > 0 is obtained as

ARLFF
0 Iα(t),β(t)

t (tγ)

=
α(t)β(t)Γ(α(t))Γ(β(t) + γ)

C(α(t))Γ(α(t) + β(t) + γ)
tα(t)+β(t)+γ−1 +

β(t)(1− α(t))

C(α(t))
tβ(t)+γ−1. (3.14)

Proof. With the help of the definition of the Atangana-Riemann-Liouville
variable-order fractal-fractional integral expressed in Eq. (2.6), we have

ARLFF
0 Iα(t),β(t)

t (tγ)

=
α(t)β(t)

C(α(t))

∫ t

0

sβ(t)+γ−1(t− s)α(t)−1ds+
β(t)(1− α(t))

C(α(t))
tβ(t)+γ−1

=
α(t)β(t)

C(α(t))

∫ t

0

tβ(t)+γ−1(
s

t
)β(t)+γ−1tα(t)−1(1− s

t
)α(t)−1td

s

t

+
β(t)(1− α(t))

C(α(t))
tβ(t)+γ−1. (3.15)

Using the change of variable y = s
t , and employing the regularized beta function

(3.1), we get

ARLFF
0 Iα(t),β(t)

t (tγ)

=
α(t)β(t)

C(α(t))
tα(t)+β(t)+γ−1

∫ 1

0

yβ(t)+γ−1(1− y)α(t)−1dy +
β(t)(1− α(t))

C(α(t))
tβ(t)+γ−1

=
α(t)β(t)Γ(α(t))Γ(β(t) + γ)

C(α(t))Γ(α(t) + β(t) + γ)
tα(t)+β(t)+γ−1 +

β(t)(1− α(t))

C(α(t))
tβ(t)+γ−1. (3.16)

Theorem 3.3. The Atangana-Riemann-Liouville variable-order fractal-fractional
integral of the term tγµc(t) for γ > 0 is obtained as

ARLFF
0 Iα(t),β(t)

t (tγµc(t))

=

(
α(t)β(t)Γ(α(t))Γ(β(t) + γ)

C(α(t))Γ(α(t) + β(t) + γ)
tα(t)+β(t)+γ−1

× (1− I(
c

t
, β(t) + γ, α(t))) +

β(t)(1− α(t))

C(α(t))
tβ(t)+γ−1

)
µc(t). (3.17)

Proof. Applying the definition of the Atangana-Riemann-Liouville variable-order
fractal-fractional integral expressed in Eq. (2.6) for t ≥ c, gives

ARLFF
0 Iα(t),β(t)

t (tγµc(t))
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=
α(t)β(t)

C(α(t))

∫ t

0

(t− s)α(t)−1sβ(t)−1sγµc(s)ds+
β(t)(1− α(t))tβ(t)+γ−1µc(t)

C(α(t))

=
α(t)β(t)

C(α(t))

∫ t

0

(t− s)α(t)−1sβ(t)+γ−1ds− α(t)β(t)

C(α(t))

∫ c

0

(t− s)α(t)−1sβ(t)+γ−1ds

+
β(t)(1− α(t))tβ(t)+γ−1

C(α(t))

= ARLFF
0 Iα(t),β(t)

t (tγ)− α(t)β(t)

C(α(t))

∫ c

0

(t− s)α(t)−1sβ(t)+γ−1ds

= ARLFF
0 Iα(t),β(t)

t (tγ)

− α(t)β(t)

C(α(t))

∫ c

0

tα(t)−1(1− s

t
)α(t)−1tβ(t)+γ−1(

s

t
)β(t)+γ−1td(

s

t
). (3.18)

By the change of variable y = s
t , and the regularized beta function (3.1), we have

ARLFF
0 Iα(t),β(t)

t (tγµc(t))

=ARLFF
0 Iα(t),β(t)

t (tγ)

− α(t)β(t)

C(α(t))
tα(t)+β(t)+γ−1

∫ c
t

0

(1− y)α(t)−1yβ(t)+γ−1dy

=ARLFF
0 Iα(t),β(t)

t (tγ)

− α(t)β(t)Γ(β(t) + γ)Γ(α(t))

C(α(t))Γ(α(t) + β(t) + γ)
tα(t)+β(t)+γ−1I(

c

t
, β(t) + γ, α(t))

=
α(t)β(t)Γ(α(t))Γ(β(t) + γ)

C(α(t))Γ(α(t) + β(t) + γ)
tα(t)+β(t)+γ−1 +

β(t)(1− α(t))

C(α(t))
tβ(t)+γ−1

− α(t)β(t)Γ(β(t) + γ)Γ(α(t))

C(α(t))Γ(α(t) + β(t) + γ)
tα(t)+β(t)+γ−1I(

c

t
, β(t) + γ, α(t))

=
α(t)β(t)Γ(β(t) + γ)Γ(α(t))

C(α(t))Γ(α(t) + β(t) + γ)
tα(t)+β(t)+γ−1(1− I(

c

t
, β(t) + γ, α(t)))

+
β(t)(1− α(t))

C(α(t))
tβ(t)+γ−1. (3.19)

Theorem 3.4. The Atangana-Riemann-Liouville variable-order fractal-fractional
integral of the FALWs can be computed as

ARLFF
0 Iα(t),β(t)

t Ψ(θ)(t) = Λ(t, α(t), β(t), θ), (3.20)
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where

Λ(t, α(t), β(t), θ)

=
[
ARLFF
0 Iα(t),β(t)

t (ψ
(θ)
1,0,M−1(t)),

ARLFF
0 Iα(t),β(t)

t (ψ
(θ)
1,1,M−1(t)), . . .

ARLFF
0 Iα(t),β(t)

t (ψ
(θ)

2k−1,M−1,M−1
(t))

]T
, (3.21)

and

ARLFF
0 Iα(t),β(t)

t (ψ
(θ)
n,m,m̂(t))

=



0, 0 ≤ t <
n̂

2k−1
h,

√
2k−1(2m+ 1)θ

m̂∑
s=m

⌊θs⌋∑
j=0

(−1)s−m+θs−j

 m̂−m

s−m

 m̂+ s+ 1

m̂−m


 sθ

j

 2(k−1)j(n̂)θs−j α(t)β(t)Γ(α(t))Γ(β(t) + j)

hjC(α(t))Γ(α(t) + β(t) + j)
tα(t)+β(t)+j−1

(1− I(
n̂

2k−1t
h, β(t) + j, α(t)))

+
β(t)(1− α(t))

C(α(t))
tβ(t)+j−1,

n̂

2k−1
h ≤ t <

n̂+ 1

2k−1
h,

√
2k−1(2m+ 1)θ

m̂∑
s=m

⌊θs⌋∑
j=0

(−1)s−m+θs−j

 m̂−m

s−m

 m̂+ s+ 1

m̂−m


 sθ

j

 2(k−1)j(n̂)θs−j α(t)β(t)Γ(α(t))Γ(β(t) + j)

hjC(α(t))Γ(α(t) + β(t) + j)
tα(t)+β(t)+j−1

(I(
n̂+ 1

2k−1t
h, β(t) + j, α(t))− I(

n̂

2k−1t
h, β(t) + j, α(t))),

n̂+ 1

2k−1
h ≤ t < h.

(3.22)

Proof. Using the definition of the Atangana-Riemann-Liouville variable-order
fractal-fractional integral provided in Eqs. (2.6) and (3.12), and Theorem 3.3, we
obtain

ARLFF
0 Iα(t),β(t)

t (ψ
(θ)
n,m,m̂(t))

=
√

2k−1(2m+ 1)θ

m̂∑
s=m

⌊θs⌋∑
j=0

(−1)s−m+θs−j

 m̂−m

s−m

 m̂+ s+ 1

m̂−m

 sθ

j



× 2(k−1)j

hj
(n̂)θs−j

×
(

ARLFF
0 Iα(t),β(t)

t (tjµ n̂

2k−1 h(t))−
ARLFF
0 Iα(t),β(t)

t (tjµ ˆˆ+1n

2k−1 h
(t))

)
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=
√
2k−1(2m+ 1)θ

m̂∑
s=m

⌊θs⌋∑
j=0

(−1)s−m+θs−j

 m̂−m

s−m

 m̂+ s+ 1

m̂−m

 sθ

j



× 2(k−1)j

hj
(n̂)θs−j

((
α(t)β(t)Γ(β(t) + j)Γ(α(t))

C(α(t))Γ(α(t) + β(t) + j)
tα(t)+β(t)+j−1

× (1− I(
n̂

2k−1t
h, β(t) + j, α(t))) +

β(t)(1− α(t))

C(α(t))
tβ(t)+j−1

)
µ n̂

2k−1 h(t)

−
(
α(t)β(t)Γ(β(t) + j)Γ(α(t))

C(α(t))Γ(α(t) + β(t) + j)
tα(t)+β(t)+j−1

× (1− I(
n̂+ 1

2k−1t
, β(t) + j, α(t))) +

β(t)(1− α(t))

C(α(t))
tβ(t)+j−1

)
µ n̂+1

2k−1 h(t)

)
. (3.23)

So, the Theorem is proved.

4. Method of the solution

In this study, we consider the following two classes of systems of VFFDEs:

Problem (a).

CFF
0 D

α(t),β(t)
t Ξ1(t) = F1(t,Ξ1(t),Ξ2(t), . . . ,Ξr(t)),

CFF
0 D

α(t),β(t)
t Ξ2(t) = F2(t,Ξ1(t),Ξ2(t), . . . ,Ξr(t)),

...
...

CFF
0 D

α(t),β(t)
t Ξr(t) = Fr(t,Ξ1(t),Ξ2(t), . . . ,Ξr(t)).

(4.1)

Problem (b).

ARLFF
0 D

α(t),β(t)
t Ξ1(t) = F1(t,Ξ1(t),Ξ2(t), . . . ,Ξr(t)),

ARLFF
0 D

α(t),β(t)
t Ξ2(t) = F2(t,Ξ1(t),Ξ2(t), . . . ,Ξr(t)),

...
...

ARLFF
0 D

α(t),β(t)
t Ξr(t) = Fr(t,Ξ1(t),Ξ2(t), . . . ,Ξr(t)),

(4.2)

with the initial conditions

Ξi(0) = ℘i, i = 1, 2, . . . , r. (4.3)

In the sequence, we introduce a numerical strategy for solving the problems (a) and
(b). For this aim, we apply the following steps:

Step 1. We approximate the fractal-fractional terms 0Dα(t),β(t)
t Ξi(t), i = 1, 2, . . . , r
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by the FALWs as

CFF
0 D

α(t),β(t)
t Ξ1(t) ≃

2k−1∑
n=1

M−1∑
m=0

c(1)n,mψ
(θ)
n,m,m̂(t) = CT

1 Ψ
(θ)(t),

CFF
0 D

α(t),β(t)
t Ξ2(t) ≃

2k−1∑
n=1

M−1∑
m=0

c(2)n,mψ
(θ)
n,m,m̂(t) = CT

2 Ψ
(θ)(t),

...
...

CFF
0 D

α(t),β(t)
t Ξr(t) ≃

2k−1∑
n=1

M−1∑
m=0

c(r)n,mψ
(θ)
n,m,m̂(t) = CT

r Ψ
(θ)(t). (4.4)

Step 2. With the help of the variable-order fractal-fractional integral operator (3.8)
and relation (4.4), along with the expressed initial conditions, we can approximate
the unknown functions Ξi(t), i = 1, 2, . . . , r as

Ξ1(t) ≃ Υ(t, α(t), β(t), θ) + ℘1,

Ξ2(t) ≃ Υ(t, α(t), β(t), θ) + ℘2,

...
...

Ξr(t) ≃ Υ(t, α(t), β(t), θ) + ℘r. (4.5)

Step 3. By substituting the approximations (4.4)-(4.5) into relation (4.1), we get

CT
1 Ψ

(θ)(t) = F1(t,Υ(t, α(t), β(t), θ)

+℘1,Υ(t, α(t), β(t), θ) + ℘2, . . . ,Υ(t, α(t), β(t), θ) + ℘r),

CT
2 Ψ

(θ)(t) = F2(t,Υ(t, α(t), β(t), θ)

+℘1,Υ(t, α(t), β(t), θ) + ℘2, . . . ,Υ(t, α(t), β(t), θ) + ℘r),

...
...

CT
r Ψ

(θ)(t) = Fr(t,Υ(t, α(t), β(t), θ)

+℘1,Υ(t, α(t), β(t), θ) + ℘2, . . . ,Υ(t, α(t), β(t), θ) + ℘r).

(4.6)

Step 4. We define the residual functions Ri(t), i = 1, 2, . . . , r as

R1(t) = CT
1 Ψ

(θ)(t)−F1(t,Υ(t, α(t), β(t), θ)

+℘1,Υ(t, α(t), β(t), θ) + ℘2, . . . ,Υ(t, α(t), β(t), θ) + ℘r),

R2(t) = CT
2 Ψ

(θ)(t)−F2(t,Υ(t, α(t), β(t), θ)

+℘1,Υ(t, α(t), β(t), θ) + ℘2, . . . ,Υ(t, α(t), β(t), θ) + ℘r),

...
...

Rr(t) = CT
r Ψ

(θ)(t)−Fr(t,Υ(t, α(t), β(t), θ)

+℘1,Υ(t, α(t), β(t), θ) + ℘2, . . . ,Υ(t, α(t), β(t), θ) + ℘r).

(4.7)
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Step 5. By collocating the system (4.7) at the zeros of the shifted Legendre poly-
nomials, we achieve 

R1(tι) = 0,

R2(tι) = 0,

...

Rr(tι) = 0,

(4.8)

where ι = 1, 2, . . . , 2k−1M. So, we achieve a system of r2k−1M nonlinear algebraic
equations with r2k−1M unknown coefficients, which can be solved via the Newton’s
iterative method.

Remark 4.1. The problem (b) can be solved similar to the problem (a).

5. Error bound

In this section, we achieve an error upper bound for the numerical solution in
Sobolev space.

The Sobolev norm of integer order τ ≥ 0 in the interval (a, b), can be expressed
as follows: [33]

∥Ξ∥Hτ (a,b) =

( τ∑
j=0

∫ b

a

|Ξ(j)(t)|dt
) 1

2

=

( τ∑
j=0

∥Ξ(j)(t)∥2L2(a,b)

) 1
2

, (5.1)

where Ξ(j) represents the distributional derivative of Ξ of order j.

Theorem 5.1. ( [26]) Assume that Ξ ∈ Hτ (0, 1) where τ ≥ 0 and M ≥ τ, and
Ξ⋆ is the best approximation of Ξ which is approximated using the FALWs, then we
have

∥Ξ− Ξ⋆∥L2(0,1) ≤ c(M − 1)−τ (2k−1)−τ∥Ξ(τ)∥L2(0,1), (5.2)

and for 1 ≤ s ≤ τ , we have

∥Ξ− Ξ⋆∥Hs(0,1) ≤ c(M − 1)2s−
1
2−τ (2k−1)s−τ∥Ξ(τ)∥L2(0,1). (5.3)

Theorem 5.2. If the hypothesizes in the Theorem 5.1 are valid, and Fi, i = 1, 2, . . . ,
r satisfy the Lipshitz condition with constants ηi, i = 1, 2, . . . , r, then we get

∥Total Error∥L2(Ω)

≤ max
1≤i≤r

(
max
t∈Ω

∣∣∣∣ β(t)ηiΓ(α(t))

√
rΓ(2α(t)− 1)Γ(2β(t)− 1)

Γ(2α(t) + 2β(t)− 2)
tα(t)+β(t)− 3

2

∣∣∣∣
×
(
ηi
√
r

( r∑
j=1

c2(M − 1)−2τ (2k−1)−2τ∥Ξ(τ)
j ∥2L2(Ω)

) 1
2

+ ∥Ri(t)∥L2(Ω)

))
, (5.4)

where

∥Total Error∥L2(Ω)∥ = ∥Ξ− Ξ⋆∥L2(Ω), Ω = (0, 1).
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Proof. According to Eqs. (4.1) and (4.7), for the exact solution Ξ(t) and the
approximate solution Ξ⋆(t), we have

CFF
0 Dα(t),β(t)

t Ξi(t) = Fi(t,Ξ1(t),Ξ2(t), . . . ,Ξr(t)), i = 1, 2, . . . , r, (5.5)

and

CFF
0 Dα(t),β(t)

t Ξ⋆
i (t) = Fi(t,Ξ

⋆
1(t),Ξ

⋆
2(t), . . . ,Ξ

⋆
r(t)) +Ri(t), i = 1, 2, . . . , r. (5.6)

By subtracting Eq. (5.6) from Eq. (5.5) and taking the variable-order fractal-
fractional integral on both sides of the relation, we get

Ξi(t)− Ξ⋆
i (t) =

CFF
0 Iα(t),β(t)

t (Fi(t,Ξ1(t),Ξ2(t), . . . ,Ξr(t))

−Fi(t,Ξ
⋆
1(t),Ξ

⋆
2(t), . . . ,Ξ

⋆
r(t)))− CFF

0 Iα(t),β(t)
t (Ri(t)).

(5.7)

Employing the definition of the Caputo variable-order fractal-fractional integral
(2.4) and the Schwarz’s inequality, we deduce∣∣∣∣CFF

0 Iα(t),β(t)
t (Fi(t,Ξ1(t),Ξ2(t), . . . ,Ξr(t))−Fi(t,Ξ

⋆
1(t),Ξ

⋆
2(t), . . . ,Ξ

⋆
r(t)))

∣∣∣∣
=

∣∣∣∣ β(t)

Γ(α(t))

∫ t

0

(t− s)α(t)−1sβ(t)−1(Fi(s,Ξ1(s),Ξ2(s), . . . ,Ξr(s))

−Fi(s,Ξ
⋆
1(s),Ξ

⋆
2(s), . . . ,Ξ

⋆
r(s)))ds

∣∣∣∣
≤ β(t)

Γ(α(t))

(∫ t

0

(t− s)2α(t)−2s2β(t)−2ds

) 1
2

×
(∫ t

0

(Fi(s,Ξ1(s),Ξ2(s), . . . ,Ξr(s))−Fi(s,Ξ
⋆
1(s),Ξ

⋆
2(s), . . . ,Ξ

⋆
r(s)))

2ds

) 1
2

.

(5.8)

From the definition of the regularized beta function (3.1), we have∫ t

0

(t− s)2α(t)−2s2β(t)−2ds =
Γ(2α(t)− 1)Γ(2β(t)− 1)

Γ(2α(t) + 2β(t)− 2)
t2α(t)+2β(t)−3. (5.9)

By considering the Lipshitz condition of the functions Fi, and the relation
(
∑n

i=1 xi)
2 ≤ n

∑n
i=1 x

2
i , we get∫ t

0

(Fi(s,Ξ1(s),Ξ2(s), . . . ,Ξr(s))−Fi(s,Ξ
⋆
1(s),Ξ

⋆
2(s), . . . ,Ξ

⋆
r(s)))

2ds

≤
∫ t

0

(
ηi|Ξ1(s)− Ξ⋆

1(s)|+ ηi|Ξ2(s)− Ξ⋆
2(s)|+ . . .+ ηi|Ξr(s)− Ξ⋆

r(s)|
)2

ds

≤
∫ t

0

η2i r

r∑
j=1

|Ξj(s)− Ξ⋆
j (s)|2ds ≤ η2i r

r∑
j=1

∫ 1

0

|Ξj(s)− Ξ⋆
j (s)|2ds

≤ η2i r
r∑

j=1

∥Ξj − Ξ⋆
j∥2L2(Ω). (5.10)
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From Eqs. (5.8)-(5.10), we obtain∣∣∣∣CFF
0 Iα(t),β(t)

t (Fi(t,Ξ1(t),Ξ2(t), . . . ,Ξr(t))−Fi(t,Ξ
⋆
1(t),Ξ

⋆
2(t), . . . ,Ξ

⋆
r(t)))

∣∣∣∣
≤ β(t)ηi

Γ(α(t))

√
rΓ(2α(t)− 1)Γ(2β(t)− 1)

Γ(2α(t) + 2β(t)− 2)
tα(t)+β(t)− 3

2

( r∑
j=1

∥Ξj − Ξ⋆
j∥2L2(Ω)

) 1
2

≤ max
t∈Ω

∣∣∣∣ β(t)ηiΓ(α(t))

√
rΓ(2α(t)− 1)Γ(2β(t)− 1)

Γ(2α(t) + 2β(t)− 2)
tα(t)+β(t)− 3

2

∣∣∣∣( r∑
j=1

∥Ξj − Ξ⋆
j∥2L2(Ω)

) 1
2

.

(5.11)

Also, for

∣∣∣∣CFF
0 Iα(t),β(t)

t Ri(t)

∣∣∣∣, we get

∣∣∣∣CFF
0 Iα(t),β(t)

t Ri(t)

∣∣∣∣
=

∣∣∣∣ β(t)

Γ(α(t))

∫ t

0

(t− s)α(t)−1sβ(t)−1Ri(s)ds

∣∣∣∣
≤max

t∈Ω

∣∣∣∣ β(t)

Γ(α(t))

√
Γ(2α(t)− 1)Γ(2β(t)− 1)

Γ(2α(t) + 2β(t)− 2)
tα(t)+β(t)− 3

2

∣∣∣∣∥Ri∥L2(Ω). (5.12)

From Eqs. (5.7), (5.9) and (5.12), we achieve

∥Ξi − Ξ⋆
i ∥L2(Ω)

≤max
t∈Ω

∣∣∣∣ β(t)ηiΓ(α(t))

√
rΓ(2α(t)− 1)Γ(2β(t)− 1)

Γ(2α(t) + 2β(t)− 2)
tα(t)+β(t)− 3

2

∣∣∣∣( r∑
j=1

∥Ξj − Ξ⋆
j∥2L2(Ω)

) 1
2

+max
t∈Ω

∣∣∣∣ β(t)

Γ(α(t))

√
Γ(2α(t)− 1)Γ(2β(t)− 1)

Γ(2α(t) + 2β(t)− 2)
tα(t)+β(t)− 3

2

∣∣∣∣∥Ri∥L2(Ω). (5.13)

By applying Eq. (5.2) and (5.13) for i = 1, 2, . . . , r, we obtain

∥Ξi − Ξ⋆
i ∥L2(Ω)

≤ max
t∈Ω

∣∣∣∣ β(t)ηiΓ(α(t))

√
rΓ(2α(t)− 1)Γ(2β(t)− 1)

Γ(2α(t) + 2β(t)− 2)
tα(t)+β(t)− 3

2

∣∣∣∣
×
(
ηi
√
r

( r∑
j=1

c2(M − 1)−2τ (2k−1)−2τ∥Ξ(τ)
j ∥2L2(Ω)

) 1
2

+ ∥Ri∥L2(Ω)

)
.

(5.14)

Therefore, we conclude that

∥Total Error∥L2(Ω)

≤ max
1≤i≤r

(
max
t∈Ω

∣∣∣∣ β(t)ηiΓ(α(t))

√
rΓ(2α(t)− 1)Γ(2β(t)− 1)

Γ(2α(t) + 2β(t)− 2)
tα(t)+β(t)− 3

2

∣∣∣∣
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×
(
ηi
√
r

( r∑
j=1

c2(M − 1)−2τ (2k−1)−2τ∥Ξ(τ)
j ∥2L2(Ω)

) 1
2

+ ∥Ri∥L2(Ω)

))
, (5.15)

which completes the proof.

Remark 5.1. We can obtain the error upper bound for the numerical solution
obtained in the Atangana-Riemann-Liouville sense with a similar way for the Caputo
sense.

6. Numerical results and discussion

In this section, we apply three examples to demonstrate the efficiency and accuracy
of the mentioned scheme. Also, the computations were performed on a personal
computer and the codes were written in Mathematica 10.

Example 6.1. ( [39]) Consider the following system of VFFDEs:
0Dα(t),β(t)

t Ξ1(t) = (20ζ + 40)(Ξ2(t)− Ξ1(t)) +
5ζ+4
25 Ξ1(t)Ξ3(t),

0Dα(t),β(t)
t Ξ2(t) = (55− 90ζ)Ξ1(t) + (5ζ + 20)Ξ2(t)− Ξ1(t)Ξ3(t),

0Dα(t),β(t)
t Ξ3(t) = − 13

20Ξ
2
1(t) + Ξ1(t)Ξ2(t) +

11−6ζ
6 Ξ3(t),

(6.1)

with the initial conditions

Ξ1(0) = 2, Ξ2(0) = 1, Ξ3(0) = 4,

where ζ = 0, α(t) = tanh(t + 5) and β(t) = 0.98. Now, we explain the mentioned
technique in section 4 for the aforesaid problem with k = 2,M = 8, θ = 1

4 , h = 1.

Step 1. We approximate the fractal-fractional terms 0Dα(t),β(t)
t Ξi(t), i = 1, 2, 3, by

the FALWs as

CFF
0 D

tanh(t+5),0.98
t Ξ1(t) ≃

2∑
n=1

7∑
m=0

c(1)n,mψ
( 1
4 )

n,m,m̂(t) = CT
1 Ψ

( 1
4 )(t),

CFF
0 D

tanh(t+5),0.98
t Ξ2(t) ≃

2∑
n=1

7∑
m=0

c(2)n,mψ
( 1
4 )

n,m,m̂(t) = CT
2 Ψ

( 1
4 )(t),

CFF
0 D

tanh(t+5),0.98
t Ξ3(t) ≃

2∑
n=1

7∑
m=0

c(3)n,mψ
( 1
4 )

n,m,m̂(t) = CT
3 Ψ

( 1
4 )(t). (6.2)

Step 2. With the help of the variable-order fractal-fractional integral operator (3.8)
and relation (6.2), along with the expressed initial conditions, we can approximate
the unknown functions Ξi(t), i = 1, 2, 3 as

Ξ1(t) ≃ Υ(t, tanh(t+ 5), 0.98, 14 ) + 2,

Ξ2(t) ≃ Υ(t, tanh(t+ 5), 0.98, 14 ) + 1,

Ξ3(t) ≃ Υ(t, tanh(t+ 5), 0.98, 14 ) + 4.

(6.3)
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Step 3. By substituting the approximations (6.2)-(6.3) into relation (6.1), we get

2∑
n=1

7∑
m=0

c(1)n,mψ
( 1
4 )

n,m,m̂(t)

= (20ζ + 40)((Υ(t, tanh(t+ 5), 0.98,
1

4
) + 1)

−(Υ(t, tanh(t+ 5), 0.98,
1

4
) + 2))

+
5ζ + 4

25
(Υ(t, tanh(t+ 5), 0.98,

1

4
) + 2)(Υ(t, tanh(t+ 5), 0.98,

1

4
) + 4),

2∑
n=1

7∑
m=0

c(2)n,mψ
( 1
4 )

n,m,m̂(t)

= (55− 90ζ)(Υ(t, tanh(t+ 5), 0.98,
1

4
) + 2)

+(5ζ + 20)(Υ(t, tanh(t+ 5), 0.98,
1

4
) + 1)

−(Υ(t, tanh(t+ 5), 0.98,
1

4
) + 2)(Υ(t, tanh(t+ 5), 0.98,

1

4
) + 4),

2∑
n=1

7∑
m=0

c(3)n,mψ
( 1
4 )

n,m,m̂(t)

= −13

20
(Υ(t, tanh(t+ 5), 0.98,

1

4
) + 2)2(t)

+(Υ(t, tanh(t+ 5), 0.98,
1

4
) + 2)(Υ(t, tanh(t+ 5), 0.98,

1

4
) + 1)

+
11− 6ζ

6
(Υ(t, tanh(t+ 5), 0.98,

1

4
) + 4),

(6.4)

Step 4. We define the residual functions Ri(t), i = 1, 2, 3 as

R1(t) =

2∑
n=1

7∑
m=0

c(1)n,mψ
( 1
4 )

n,m,m̂(t)− (20ζ + 40)((Υ(t, tanh(t+ 5), 0.98,
1

4
) + 1)

−(Υ(t, tanh(t+ 5), 0.98,
1

4
) + 2))− 5ζ + 4

25
(Υ(t, tanh(t+ 5), 0.98,

1

4
)

+2)× (Υ(t, tanh(t+ 5), 0.98,
1

4
) + 4),

R2(t) =

2∑
n=1

7∑
m=0

c(2)n,mψ
( 1
4 )

n,m,m̂(t)− (55− 90ζ)(Υ(t, tanh(t+ 5), 0.98,
1

4
) + 2)

−(5ζ + 20)(Υ(t, tanh(t+ 5), 0.98,
1

4
) + 1)

+(Υ(t, tanh(t+ 5), 0.98,
1

4
) + 2)(Υ(t, tanh(t+ 5), 0.98,

1

4
) + 4),

R3(t) =

2∑
n=1

7∑
m=0

c(3)n,mψ
( 1
4 )

n,m,m̂(t) +
13

20
(Υ(t, tanh(t+ 5), 0.98,

1

4
) + 2)2(t)

−(Υ(t, tanh(t+ 5), 0.98,
1

4
) + 2)(Υ(t, tanh(t+ 5), 0.98,

1

4
) + 1)

−11− 6ζ

6
(Υ(t, tanh(t+ 5), 0.98,

1

4
) + 4),

(6.5)
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Step 5. By collocating the system (6.5) at the zeros of the shifted Legendre poly-
nomials, we achieve 

R1(tι) = 0,

R2(tι) = 0,

R3(tι) = 0,

(6.6)

ι = 1, 2, . . . , 16.

So, we achieve a system of 48 nonlinear algebraic equations with 48 unknown coef-
ficients, which can be solved via the Newton’s iterative method.

Table 1 describes the numerical results (NRs) and error estimation (EE) of the
presented technique for k = 2,M = 8, θ = 1

4 , h = 1 with CFF and ARLFF via the
FALWs. A comparison of the EE for k = 2,M = 8, h = 1 and diverse values of θ
with ARLFF are provided in Table 2. Also, in Table 3 we compared the EE where
θ = 1

8 , h = 1 for different values of k,M with CFF. In addition, the CPU time
(in seconds) is reported in Tables 2 and 3. From Table 3, it can be inferred that
using more number of the FALWs, we can obtain a numerical solution with high
precision. The behavior of the numerical solutions for k = 2,M = 6, h = 2, θ = 1

4
and β(t) ∈ (0, 1) with CFFP is plotted in Figure 4. We have reported the EE with
k = 2,M = 8, h = 2, θ = 1

8 for the CFF and ARLFF in Figure 5. Moreover, the
NR for k = 1, h = 10, θ = 1

8 and M = 4, 6, 8 with ARLFF is denoted in Figure 6.

Table 1. The NRs and EE of the established method with k = 2,M = 8, θ = 1
4 , h = 1 for CFF and

ARLFF in Example 6.1.

t CFF ARLFF

Ξ1(t) Ξ2(t) Ξ3(t) EE Ξ1(t) Ξ2(t) Ξ3(t) EE

0.1 2.35443 1.12868 4.41065 2.46× 10−6 2.28395 1.70568 4.31898 7.55× 10−6

0.2 2.68348 1.23623 4.80391 3.64× 10−7 2.58969 2.11993 4.58839 1.17× 10−6

0.3 2.99373 1.32533 5.18713 1.00× 10−6 2.87241 2.57668 4.83341 3.18× 10−6

0.4 3.28664 1.39662 5.56185 3.00× 10−6 3.13367 3.07588 5.05528 9.15× 10−6

0.5 3.56290 1.45045 5.92883 2.95× 10−5 3.37423 3.61756 5.25464 8.49× 10−5

0.6 4.50217 1.98455 6.59573 6.01× 10−5 3.73602 4.31904 5.36074 3.84× 10−5

0.7 5.53107 2.57940 7.24276 1.40× 10−6 4.03903 4.90139 5.44501 1.07× 10−6

0.8 6.64956 3.23492 7.87036 2.63× 10−7 4.33406 5.50965 5.51736 3.96× 10−8

0.9 7.85755 3.95101 8.47885 2.69× 10−7 4.62121 6.14348 5.57785 1.56× 10−8

Example 6.2. ( [39]) Consider the following system of VFFDEs:
0Dα(t),β(t)

t Ξ1(t) = −(Ξ3(t) + Ξ2(t)),

0Dα(t),β(t)
t Ξ2(t) = Ξ1(t) + ζ1Ξ2(t),

0Dα(t),β(t)
t Ξ3(t) = ζ2 + Ξ3(t)(Ξ1(t)− ζ3),

(6.7)

with the initial conditions

Ξ1(0) = 4.87623, Ξ2(0) = 4.87623, Ξ3(0) = 0.1278,
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Table 2. Comparison of the EE with k = 2,M = 8, h = 1 and diverse values of θ for ARLFF in Example
6.1.

t θ = 1
8 θ = 1

5 θ = 1
4 θ = 1

2 θ = 2
3 θ = 1

0.1 2.54× 10−5 1.25× 10−5 7.55× 10−6 3.39× 10−4 4.64× 10−3 3.78× 101

0.2 2.55× 10−6 1.72× 10−6 1.17× 10−6 1.05× 10−4 5.81× 10−3 3.78× 101

0.3 5.40× 10−6 4.41× 10−6 3.18× 10−6 5.14× 10−4 6.49× 10−2 3.78× 101

0.4 1.32× 10−5 1.22× 10−5 9.15× 10−6 2.49× 10−3 5.95× 10−1 3.78× 101

0.5 1.08× 10−4 1.11× 10−3 8.49× 10−5 3.71× 10−2 1.52× 101 3.77× 101

0.6 1.88× 10−5 2.98× 10−5 3.84× 10−5 7.44× 10−4 1.76× 10−1 3.78× 101

0.7 2.53× 10−6 8.96× 10−7 1.07× 10−6 2.98× 10−4 1.78× 10−1 3.79× 101

0.8 6.02× 10−9 3.27× 10−8 3.96× 10−8 1.30× 10−6 1.56× 10−3 3.81× 101

0.9 2.64× 10−9 1.76× 10−8 1.56× 10−8 5.32× 10−7 1.23× 10−3 3.85× 101

CPU times 1.750 2.728 2.906 2.922 5.656 5.203

Table 3. Comparison of the EE with θ = 1
8 , h = 1 and diverse values of k,M for the CFF in Example

6.1.

t k = 1 k = 2

M = 2 M = 4 M = 6 M = 8 M = 2 M = 4 M = 6 M = 8

0.1 1.62× 10−1 1.21× 10−1 4.40× 10−3 2.44× 10−5 7.09× 10−1 2.29× 10−3 1.24× 10−4 7.98× 10−6

0.2 9.80× 10−2 7.94× 10−2 4.10× 10−4 4.09× 10−5 1.09× 10−1 1.69× 10−2 1.33× 10−5 8.45× 10−7

0.3 5.00× 10−1 1.15× 10−2 2.54× 10−4 1.37× 10−5 3.29× 10−1 2.16× 10−2 2.42× 10−5 1.82× 10−6

0.4 7.03× 10−1 1.46× 10−2 3.26× 10−5 7.54× 10−7 8.81× 10−1 4.91× 10−3 7.81× 10−5 4.74× 10−6

0.5 6.87× 10−1 1.60× 10−2 6.85× 10−5 3.35× 10−6 2.30× 10−1 9.19× 10−2 4.21× 10−4 4.08× 10−5

0.6 5.30× 10−1 7.04× 10−3 1.04× 10−5 1.71× 10−7 1.88× 10−1 1.54× 10−2 4.38× 10−4 8.35× 10−5

0.7 2.80× 10−1 2.56× 10−3 2.40× 10−5 6.41× 10−7 3.83× 10−1 1.36× 10−2 9.20× 10−6 1.12× 10−6

0.8 3.89× 10−2 7.14× 10−3 9.44× 10−6 3.03× 10−7 7.34× 10−1 2.51× 10−3 4.51× 10−7 1.76× 10−7

0.9 4.08× 10−1 3.22× 10−3 1.50× 10−5 1.34× 10−8 2.52× 10−1 6.20× 10−5 2.40× 10−7 1.92× 10−7

CPU times 0.001 0.031 0.063 0.125 0.031 0.078 0.515 1.531

where ζ1 = ζ2 = 0.1, ζ3 = 14 and β(t) = 0.99+ 0.01
2 (sin(t)+1). We have reported the

NRs and EE obtained from the proposed method with k = 2,M = 9, θ = 1
8 , h = 1

for the CFF and ARLFF in Table 4. Table 5 contains the EE and CPU time
obtained by the mentioned scheme with k = 2,M = 9, h = 1 and different values
of θ for the ARLFF. From this table, it can be observed that the best value for θ
is 1

4 . Also, the EE and CPU time with θ = 1
8 , h = 1 and different values of k,M

for the CFF are illustrated in Table 6. This table illustrates that as the number
of FALWs increases, the numerical solutions converge to the exact solution. The
numerical solutions with k = 2,M = 9, h = 2 and α(t) ∈ (0, 1) for θ = 1 and θ = 1

8
are plotted in Figures 7 and 8, respectively. Figure 9 demonstrates the EE with
k = 2,M = 9, h = 2, θ = 1

8 for the CFF and ARLFF. Also, the NRs are depicted
graphically with k = 1, h = 200, θ = 1 and M = 5, 7, 9 for the CFF and ARLFF in
Figure 10.

Example 6.3. ( [39]) Consider the following system VFFDE:

0Dα(t),β(t)
t Ξ1(t) = Ξ2(t),

0Dα(t),β(t)
t Ξ2(t) = −(ζ1 + ζ2Ξ3(t))Ξ1(t)−(ζ1 + ζ2Ξ3(t))Ξ

3
1(t)−ζ3Ξ2(t) + ζ4Ξ3(t),

0Dα(t),β(t)
t Ξ3(t) = Ξ4(t),

0Dα(t),β(t)
t Ξ4(t) = −Ξ3(t) + ζ5(1− Ξ2

3(t))Ξ4(t) + ζ6Ξ1(t),

(6.8)



1852 P. Rahimkhani & S. Sedaghat

Figure 4. The NR with k = 2,M = 6, h = 2, θ = 1
4 and β(t) ∈ (0, 1) for the CFFP in Example 6.1.

Figure 5. The EE with k = 2,M = 8, h = 2, θ = 1
8 for (a) : CFF and (b) : ARLFF in Example 6.1.
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Figure 6. The NR with k = 1, h = 10, θ = 1
8 and M = 4, 6, 8 for the ARLFF in Example 6.1.

Table 4. The NRs and EE of the established method with k = 2,M = 9, θ = 1
8 , h = 1 for the CFF and

ARLFF in Example 6.2.

t CFF ARLFF

Ξ1(t) Ξ2(t) Ξ3(t) EE Ξ1(t) Ξ2(t) Ξ3(t) EE

0.1 4.68704 5.51386 0.15816 3.49× 10−7 0.497225 6.56744 0.00165 4.58× 10−9

0.2 4.50482 6.12825 0.18699 1.46× 10−6 −0.00755 7.00514 0.00069 4.53× 10−9

0.3 4.32529 6.73386 0.21501 3.36× 10−6 −0.51365 7.43899 − 0.00046 4.46× 10−9

0.4 4.14750 7.33380 0.24236 6.04× 10−6 −1.01959 7.86994 − 0.00167 3.74× 10−8

0.5 3.97102 7.92961 0.26913 8.92× 10−6 −1.52525 8.29866 − 0.00292 3.66× 10−7

0.6 3.75236 8.59992 0.29363 5.67× 10−6 6.50310 − 1.79384 0.01641 4.31× 10−7

0.7 3.52998 9.27689 0.31755 4.86× 10−6 6.97981 − 1.68351 0.01702 2.33× 10−9

0.8 3.30313 9.96203 0.34090 2.15× 10−6 7.45905 − 1.57520 0.01758 1.75× 10−8

0.9 3.07162 10.6558 0.36368 8.77× 10−7 7.94346 − 1.46915 0.018085 3.34× 10−8

Table 5. Comparison of the EE with k = 2,M = 9, h = 1 and different values of θ for the ARLFF in
Example 6.2.

t θ = 1
8 θ = 1

4 θ = 1
3 θ = 1

2 θ = 2
3 θ = 1

0.1 4.58× 10−9 1.06× 10−9 3.82× 10−1 7.98× 10−8 1.10× 10−2 3.49× 10−6

0.2 4.53× 10−9 2.42× 10−9 3.82× 10−1 3.17× 10−7 6.04× 10−6 2.76× 10−5

0.3 4.46× 10−9 8.20× 10−10 3.82× 10−1 1.56× 10−7 3.67× 10−6 2.18× 10−5

0.4 3.74× 10−8 9.26× 10−9 3.82× 10−1 2.17× 10−6 5.92× 10−5 4.37× 10−4

0.5 3.66× 10−7 1.45× 10−7 3.82× 10−1 4.22× 10−5 1.30× 10−3 1.15× 10−2

0.6 4.31× 10−7 8.97× 10−8 3.82× 10−1 2.33× 10−8 1.01× 10−5 2.35× 10−5

0.7 2.33× 10−9 5.59× 10−10 3.82× 10−1 4.01× 10−10 9.56× 10−8 4.01× 10−7

0.8 1.75× 10−8 2.73× 10−10 3.82× 10−1 3.19× 10−10 2.60× 10−8 1.44× 10−7

0.9 3.34× 10−8 2.58× 10−10 3.82× 10−1 4.10× 10−10 1.69× 10−9 3.05× 10−9

CPU times 1.516 2.484 0.797 6.156 1.438 1.672

with the initial conditions Ξ1(0) = Ξ2(0) = Ξ3(0) = Ξ4(0) = 0, where ζ1 = 10, ζ2 =
3, ζ3 = 0.4, ζ4 = 70, ζ5 = 5, ζ6 = 0.1, α(t) = tanh(t + 5), β(t) = 0.99 + 0.01

2 (sin(t)
+1). The NRs and EE of the presented method with k = 2,M = 8, θ = 1

8 , h = 1 for
the CFF and ARLFF are considered in Table 7. Comparison of the EE and CPU
time with k = 2,M = 8, h = 1 and different values of θ for the CFF and ARLFF
are shown in Tables 8 and 9. Also, in Table 10, we compare the EE and CPU time
obtained by the presented strategy with θ = 1

8 , h = 1 and different values of k,M .
We plot the approximate solutions for k = 1 with the CFF (h = 1, θ = 1) and
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Table 6. Comparison of the EE with θ = 1
8 , h = 1 and different values of k,M for the CFF in Example

6.2.

t k = 1 k = 2

M = 3 M = 5 M = 7 M = 9 M = 3 M = 5 M = 7 M = 9

0.1 1.73× 10−2 8.56× 10−3 1.60× 10−4 5.80× 10−5 6.58× 10−2 6.08× 10−4 1.91× 10−6 3.49× 10−7

0.2 4.02× 10−2 9.43× 10−4 4.78× 10−5 1.68× 10−6 2.07× 10−2 2.41× 10−4 9.28× 10−7 1.46× 10−6

0.3 3.18× 10−2 7.42× 10−4 8.22× 10−7 1.74× 10−6 3.74× 10−2 9.68× 10−5 8.09× 10−7 3.36× 10−6

0.4 1.46× 10−2 4.54× 10−4 8.01× 10−6 8.01× 10−7 1.47× 10−2 2.21× 10−4 1.65× 10−6 6.04× 10−6

0.5 1.99× 10−4 3.36× 10−6 6.70× 10−8 6.87× 10−9 1.20× 10−1 1.52× 10−3 1.04× 10−5 8.92× 10−6

0.6 8.90× 10−3 1.78× 10−4 2.74× 10−6 1.71× 10−7 1.88× 10−2 1.08× 10−3 1.87× 10−5 5.67× 10−6

0.7 1.15× 10−2 1.08× 10−4 8.91× 10−8 7.08× 10−8 1.52× 10−2 6.17× 10−5 6.71× 10−7 4.86× 10−6

0.8 7.91× 10−3 4.32× 10−5 1.35× 10−6 1.05× 10−8 3.29× 10−3 2.47× 10−5 6.96× 10−8 2.15× 10−6

0.9 1.50× 10−3 8.32× 10−5 7.19× 10−7 2.52× 10−8 3.25× 10−3 7.07× 10−6 7.68× 10−9 8.77× 10−7

CPU times 0.016 0.125 0.175 0.235 0.063 0.256 0.500 1.672

Figure 7. The NR with k = 2,M = 9, h = 2, θ = 1 and α(t) ∈ (0, 1) for CFF in Example 6.2.
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Figure 8. The NR with k = 2,M = 9, h = 2, θ = 1
8 and α(t) ∈ (0, 1) for the CFF in Example 6.2.

ARLFF (h = 400, θ = 2
3 , 1) in Figures 11 and 12, respectively.

7. Conclusions

In this work, a flexible framework based on the FALWs was used for solving systems
of VFFDEs associated with the Caputo and Atangana-Riemann-Liouville senses.
The exact formula of the variable-order fractal-fractional integral operator of the
FALWs was calculated by using the regularized beta function. Using a collocation
method based on the FALWs, we transformed the problem under consideration to a
system of algebraic equations. Also, the error upper bound of the numerical solution
in the Sobolev space was discussed. At the end, the approximate results obtained
from the established method for some examples confirmed that the expressed scheme
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Figure 9. The EE with k = 2,M = 9, h = 2, θ = 1
8 for (a) : the CFF and (b) : the ARLFF in Example

6.2.

Figure 10. The NR with k = 1, h = 200, θ = 1 and M = 5, 7, 9 for up: the CFF and bottom: the
ARLFF in Example 6.2.

Table 7. The NRs and EE of the established method with k = 2,M = 8, θ = 1
8 , h = 1 for the CFF and

ARLFF in Example 6.3.

t CFF ARLFF

Ξ1(t) Ξ2(t) Ξ3(t) Ξ4(t) EE Ξ1(t) Ξ2(t) Ξ3(t) Ξ4(t) EE

0.1 1.45517 1.88902 1.50680 1.78742 1.43× 10−7 1.46826 2.16717 1.50842 1.82503 6.44× 10−7

0.2 1.41069 2.27493 1.51354 2.07255 1.50× 10−8 1.42835 2.64171 1.51499 2.15518 6.00× 10−8

0.3 1.36633 2.65978 1.52027 2.35689 1.95× 10−8 1.38881 3.12043 1.52160 2.48420 1.52× 10−7

0.4 1.32204 3.04410 1.52699 2.64084 5.14× 10−8 1.34951 3.60286 1.52824 2.81258 3.41× 10−7

0.5 1.27778 3.42818 1.53370 2.92461 2.86× 10−7 1.31040 4.08851 1.53491 3.14061 2.99× 10−6

0.6 1.23613 3.85288 1.51490 3.26210 7.52× 10−6 1.33267 5.42140 1.53175 3.04058 3.10× 10−5

0.7 1.19447 4.27763 1.49610 3.59961 1.43× 10−7 1.30768 6.57633 1.53569 3.08303 5.59× 10−7

0.8 1.15281 4.70251 1.47730 3.93723 2.89× 10−8 1.28408 7.73849 1.53946 3.12146 1.59× 10−8

0.9 1.11112 5.12757 1.45850 4.27499 3.91× 10−8 1.26163 8.90675 1.54308 3.15664 1.73× 10−8

is a powerful and efficient tool for solving systems of VFF differential equations.
The suggested strategy can be applied to a wider class of biological systems, such
as infectious diseases dynamics, finance economics, and engineering problems. We
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Table 8. Comparison of the EE with k = 2,M = 8, h = 1 and different values of θ for the CFF in
Example 6.3.

t θ = 1
8 θ = 1

5 θ = 1
3 θ = 2

3 θ = 1

0.1 1.43× 10−7 3.31× 10−8 3.62× 10−7 9.83× 10−6 7.94× 10−1

0.2 1.50× 10−8 3.31× 10−9 7.40× 10−7 3.76× 10−6 7.94× 10−1

0.3 1.95× 10−8 1.97× 10−8 1.04× 10−6 1.89× 10−5 7.94× 10−1

0.4 5.14× 10−8 3.91× 10−8 1.17× 10−6 8.88× 10−5 7.95× 10−1

0.5 2.86× 10−7 5.05× 10−7 3.26× 10−6 1.24× 10−3 7.90× 10−1

0.6 7.52× 10−6 2.40× 10−6 1.52× 10−4 1.29× 10−4 8.08× 10−1

0.7 1.43× 10−7 1.01× 10−7 3.55× 10−4 5.76× 10−6 7.93× 10−1

0.8 2.89× 10−8 7.31× 10−8 6.49× 10−4 2.75× 10−7 7.95× 10−1

0.9 3.91× 10−8 1.05× 10−7 1.06× 10−3 1.34× 10−7 7.95× 10−1

CPU times 12.296 16.439 2.750 6.844 8.453

Table 9. Comparison of the EE with k = 2,M = 8, h = 1 and different values of θ for the ARLFF in
Example 6.3.

t θ = 1
8 θ = 1

5 θ = 1
3 θ = 2

3 θ = 1

0.1 6.44× 10−7 4.39× 10−6 2.17× 10−6 9.79× 10−6 2.88× 10−6

0.2 6.00× 10−8 2.01× 10−5 3.27× 10−6 3.80× 10−6 2.56× 10−6

0.3 1.52× 10−7 4.73× 10−5 2.83× 10−6 1.92× 10−5 1.93× 10−5

0.4 3.41× 10−7 8.61× 10−5 4.25× 10−7 9.04× 10−5 1.18× 10−4

0.5 2.99× 10−6 1.34× 10−4 3.38× 10−6 1.27× 10−3 1.99× 10−3

0.6 3.10× 10−5 5.45× 10−4 2.04× 10−5 1.46× 10−4 1.42× 10−3

0.7 5.59× 10−7 1.35× 10−3 4.71× 10−5 6.54× 10−6 1.71× 10−4

0.8 1.59× 10−8 2.28× 10−3 9.12× 10−5 3.12× 10−7 1.58× 10−5

0.9 1.73× 10−8 3.33× 10−3 1.51× 10−4 1.53× 10−7 1.27× 10−5

CPU times 15.906 2.922 3.334 8.281 10.109

Table 10. Comparison of the EE with θ = 1
8 , h = 1 and different values of k,M for the CFF in Example

6.3.

t k = 1 k = 2

M = 2 M = 4 M = 6 M = 8 M = 2 M = 4 M = 6 M = 8

0.1 7.41× 10−2 6.00× 10−3 2.49× 10−4 4.60× 10−6 3.83× 10−2 1.11× 10−4 1.50× 10−5 1.43× 10−7

0.2 4.53× 10−3 4.05× 10−3 2.15× 10−5 8.83× 10−6 6.00× 10−2 8.31× 10−4 1.86× 10−6 1.50× 10−8

0.3 2.34× 10−2 6.01× 10−4 1.21× 10−5 3.27× 10−6 1.85× 10−2 1.08× 10−3 3.74× 10−6 1.95× 10−8

0.4 3.32× 10−2 7.71× 10−4 1.36× 10−6 1.93× 10−7 5.03× 10−2 2.49× 10−4 1.32× 10−5 5.14× 10−8

0.5 3.28× 10−2 8.53× 10−4 2.42× 10−6 6.43× 10−7 1.34× 10−1 4.71× 10−3 7.72× 10−5 2.86× 10−7

0.6 2.55× 10−2 3.80× 10−4 2.94× 10−7 4.99× 10−8 5.53× 10−2 7.64× 10−4 5.57× 10−5 7.52× 10−6

0.7 1.36× 10−2 1.40× 10−4 4.96× 10−7 1.96× 10−7 1.13× 10−2 6.86× 10−4 1.19× 10−6 1.43× 10−7

0.8 1.91× 10−3 3.93× 10−4 1.20× 10−7 9.46× 10−8 2.16× 10−2 1.29× 10−4 5.74× 10−8 2.89× 10−8

0.9 2.01× 10−2 1.79× 10−4 6.32× 10−8 5.29× 10−9 7.41× 10−3 3.22× 10−6 2.91× 10−8 3.91× 10−8

CPU times 0.016 0.047 0.188 0.375 0.047 0.203 0.892 12.296

offer the following works in the future:

• This method can be used to solve different problems such as pantograph frac-
tional differential equations, optimal control problems, delay fractal-fractional
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Figure 11. The NR with θ = 1, k = 1, h = 1, for the CFF in Example 6.3.

Figure 12. The NR for up: θ = 2
3 and bottom: θ = 1 with k = 1, h = 400, and ARLFF in Example

6.3.

differential equations, fractal-fractional integro-differential equations etc.

• We can used other wavelets base, including Hahn wavelets, Legendre wavelets,
Bernstein wavelets etc.

• We can obtain the variable-order fractal-fractional integral operator of the
FALWs by using the Laplace transform method.

• We can applied machine learning method such as neural networks, and least
squares-support vector regression for solving the proposed problem.
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